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Abstract: Surface plasmon resonance (SPR) can track molecular interactions in real time, and is a
powerful as well as widely used biological and chemical sensing technique. Among the different
SPR-based sensing applications, aptamer-based SPR biosensors have attracted significant attention
because of their simplicity, feasibility, and low cost for target detection. Continuous developments in
SPR aptasensing research have led to the emergence of abundant technical and design concepts. To
understand the recent advances in SPR for biosensing, this paper reviews SPR-based research from the
last seven years based on different sensing-type strategies and sub-directions. The characteristics of
various SPR-based applications are introduced. We hope that this review will guide the development
of SPR aptamer sensors for healthcare.
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1. Introduction

Biosensors are critical analytical devices not only in biochemical and molecular di-
agnostics, but also in food analysis and environmental monitoring. Numerous labeling
strategies have been developed via the covalent attachment of chemical tags to molecules
to quantitatively assess the binding events among biomolecules. However, the use of tags
may cause steric hindrance, resulting in a change in the binding capacities of molecules for
their targets. In addition, labeling molecules for large-scale studies is complicated, tedious,
and limited by various factors. Conversely, label-free bioanalysis technologies eliminate
labeling or tagging procedures, thus allowing the use of natural biomolecules that are suit-
able for numerous applications in the biomedical field [1–4]. Various label-free analytical
techniques have been reported, involving the use of the quartz crystal microbalance [5],
biolayer interferometry [6], surface acoustic waves [7], silicon nanowires [8], and surface
plasmon resonance (SPR) [9]. Among them, there has been significant interest in biosensors
based on SPR owing to their inherently attractive features, such as rapid detection in real
time and the possibility of on-chip integration for smart sensor systems [10–12]. SPR-based
biosensing is a powerful analytical technique for tracking molecular interactions, and
makes molecule detection simple and rapid. There has been much research based on the
classical Kretschmann configuration of SPR [13–15]. SPR is characterized by an evanescent
wave field, which is generated across an interface by total internal reflection and propagates
at ~100 nm from the surface of a gold film [16]. Hence, an SPR sensor can detect binding
events that occur at the gold surface, resulting in changes in the refractive index and shifts
in the SPR resonance angle. Optical transduction directly converts a molecular binding
event or a biological reaction into a physically measurable signal, which is proportional
to the concentration of the analyte molecules. Label-free SPR detection provides an effi-
cient method, and the use of nanomaterials as a label improves the SPR response signals.
Although SPR belongs to label-free techniques in terms of signal generation mechanisms,
SPR detection using nanomaterials for the signal enhancement can be considered as a
‘label-based’ strategy [17]. Due to these properties, SPR has been widely used as a sensing
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technique in food safety [18–20], medical diagnostics [21–24], and environmental moni-
toring [25–27]. Typically, an antibody as the bio-recognition element is immobilized onto
the gold surface, leading to the selective interaction of target proteins or biomolecules
and the generation of SPR signals. However, the high cost, extensive purification steps,
low-temperature storage, and inherent batch-to-batch variation are significant challenges
inhibiting the use of antibodies as bio-receptors [28–30].

The success of antibody-based SPR detection has inspired research in the field of
aptamers. Recently, novel combinatorial nucleic acid and peptide molecules have at-
tracted the attention of researchers working in various areas of sensing, ranging from
molecular diagnosis to analytical chemistry [31–34]. These molecules are referred to as
aptamers, and have been proposed as alternatives to antibodies. For example, nucleic
acid aptamers are small sequences of DNA or RNA that fold into well-defined and sta-
ble 3D sequence-dependent structures. This inherent feature enables them to efficiently
interact with molecular targets, ranging from metal ions and small organic compounds
to large protein targets or even complex molecules [35,36]. Aptamers are successfully
generated from combinatorial nucleic acid libraries using in vitro selection methods, which
are usually more cost-effective than antibody production and purification. In addition to
the aforementioned advantages of aptamers, nucleic acid aptamers, in particular, provide
distinct advantages. For example, they can be chemically modified with tags (such as
a fluorescent molecules or gold particles) or integrated into nucleic acid nanostructures
without any negative impact on the binding affinity toward their targets [37]. Moreover,
unlike protein-based antibodies and nanobodies, the denaturation of nucleic acid aptamers
under unfavorable conditions is reversible [38]. Although RNA aptamers were identified
first, DNA aptamers have been extensively employed in sensors because of their resistance
to base-catalyzed hydrolysis [39]. Consequently, by incorporating these nucleic acid ap-
tamers into various sensing platforms, it is possible to subject these probes to repeated use
without loss of functionality, thereby allowing a device to be potentially recyclable. Numer-
ous aptamer-based approaches have been reported for chemical and biological detection,
such as surface-enhanced Raman spectroscopy [40,41], SPR [42,43], fluorescence [44,45],
colorimetry [46,47], and electrochemistry [48,49].

These aptamer-based SPR methods have been extensively used owing to their sim-
plicity. In this review, we describe SPR sensors that use aptamers as sensing materials for
biological and chemical detection applications. Many review articles published by experts
in SPR have highlighted the advantages of the working principles, setups, and applica-
tions [50–54]. There are many more reviews on the improvement of the SPR sensitivity, par-
ticularly for integration with other techniques, such as those using nanomaterials [55–58].
Comparatively fewer reviews exist on aptamer-based SPR sensors [59]. For this reason, we
focus mainly on articles published in the last seven years (2014–2020). Considering the
large number and variety of aptasensors reported, this review focuses mainly on two detec-
tion methods: direct (one-site binding) and sandwich (two-site binding) (Figure 1). Finally,
future challenges and perspectives on the development of SPR aptasensors are described.
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2. Direct (One-Site Binding) Detection Mode
2.1. Basic SPR Assay

The basic sensing mechanism of SPR aptasensors is similar to that of other sensors:
aptamers are immobilized on the sensing surface, following which the aptamer probe
recognizes and interacts with its target; in the last step, the optical transducer converts
this interaction information into detectable signals. This direct detection approach is much
faster than other SPR sensing modes, as fewer steps and less time are required. Notably,
most small molecules bind aptamers only with the one-site binding configuration because
there is no room for the aptamer to interact with a second molecule [60]. Therefore, many
SPR aptasensors have been developed based on this direct strategy [61–65]. For example,
Wu et al. and Ashley et al. immobilized a biotin-modified aptamer probe on an avidin-
modified chip through streptavidin–biotin interaction for the detection of aflatoxin in
vinegar and lysozyme in milk [66,67]. RNA aptamers were anchored on the sensor surface
via thiol–gold interactions to evaluate the binding kinetics of various molecules [68–70].
However, as SPR is sensitive to changes in the refractive index at the sensor surface caused
by the mass of the binding component, it is challenging to achieve satisfactory sensor per-
formance in the detection of small molecules [71,72]. Duanghathaipornsuk et al. believed
that the strength of the binding affinity also affects the sensing performance. To improve
the binding stability and strength of aptamers to target proteins, DNA nanocages were
fabricated for the SPR sensing of hemoglobin and glycated hemoglobin (Figure 2) [73]. The
3D DNA cage contained two selected, closed cavities with aptamers designed to fit, capture,
and enhance binding and selectivity to target proteins. Compared to the single-stranded
DNA aptamer, the DNA aptamer-embedded origami cage structure yielded 22-fold and
9-fold enhancements of binding affinity and selectivity toward glycated hemoglobin re-
spectively, rendering it a promising tool for the enhancement of SPR performance.

Multiplexed molecular sensing systems aim to detect multiple targets simultaneously
from a single sample, thereby reducing the required volume and minimizing the detection
time [74–76]. There has been common interest in the development of analytical tools
for biomolecule detection using SPR sensors. Chen et al. constructed a four-chambered
microfluidic SPR system based on microarrays of RNA aptamers for the detection of human
thrombin and vascular endothelial growth factor (VEGF) proteins [77]. In the microfluidic
format, RNA aptamers can be produced directly and quickly by the surface transcription
reaction of T7 RNA polymerase, thus allowing for one-step multiplexed protein biosensing.
Although a single SPR aptamer array permits the simultaneous analysis of multiple target
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molecules, the reliability of SPR chips is significantly affected by the reproducibility of the
sensor array. To overcome this limitation, Inoue et al. reported an SPR aptamer array using
an inkjet spotter that could precisely control the position and volume of an ejected aptamer
solution [78]. They used a portable multi-analysis SPR device with a capillary-driven flow
chip for thrombin detection (Figure 3a). SPR signals arising from different concentrations
of thrombin were observed simultaneously. Based on this method, the reproducibility
of SPR arrays was significantly improved by minimizing the manual intervention in the
preparation process and by using the BlockAce reagent, which is widely employed as a
blocking solution with ELISA technology for separating biomolecule spots. Based on this
method, the detection limit of the SPR aptamer array was comparable to that of other SPR
sensors (1 nM). Non-specific attachment in SPR arrays has often been a critical problem that
affects the reliability of assay results. To this end, Duanghathaipornsuk et al. reported that
the inclusion of 3,6-dioxa-8-mercaptooctan-1-ol (DMOL) in a self-assembled monolayer-
modified array surface can mitigate the nonspecific binding of proteins and impart more
degrees of freedom to the aptamers for interacting with the targets [79]. In addition to
sensing applications, SPR arrays can be used to assess the surface density of aptamer
strands. Gyurcsányi et al. reported that an optimal surface density of the aptamers yielded
the best measured affinity, which is largely determined by the size of the target [80].

Biosensors 2021, 11, x FOR PEER REVIEW 4 of 22 
 

 

Figure 2. (a) Aptamers embedded into the DNA origami cage by hybridization, with glycated Hb (gHb) subsequently 

interacting with the aptamers. (b) Aptamer-modified DNA origami cage immobilized on a gold chip and bonded to gHb. 

Inset: DNA cage with thiol-modified ssDNA strands covalently bound to the gold surface. SPR assays for (c) thiolated 

aptamer and (d) thiolated aptamer-embedded DNA nano-cage. Reproduced with permission from [73]. Elsevier B.V., 

2020. 

Multiplexed molecular sensing systems aim to detect multiple targets simultane-

ously from a single sample, thereby reducing the required volume and minimizing the 

detection time [74–76]. There has been common interest in the development of analytical 

tools for biomolecule detection using SPR sensors. Chen et al. constructed a four-cham-

bered microfluidic SPR system based on microarrays of RNA aptamers for the detection 

of human thrombin and vascular endothelial growth factor (VEGF) proteins [77]. In the 

microfluidic format, RNA aptamers can be produced directly and quickly by the surface 

transcription reaction of T7 RNA polymerase, thus allowing for one-step multiplexed pro-

tein biosensing. Although a single SPR aptamer array permits the simultaneous analysis 

of multiple target molecules, the reliability of SPR chips is significantly affected by the 

reproducibility of the sensor array. To overcome this limitation, Inoue et al. reported an 

SPR aptamer array using an inkjet spotter that could precisely control the position and 

volume of an ejected aptamer solution [78]. They used a portable multi-analysis SPR de-

vice with a capillary-driven flow chip for thrombin detection (Figure 3a). SPR signals aris-

ing from different concentrations of thrombin were observed simultaneously. Based on 

this method, the reproducibility of SPR arrays was significantly improved by minimizing 

the manual intervention in the preparation process and by using the BlockAce reagent, 

which is widely employed as a blocking solution with ELISA technology for separating 

biomolecule spots. Based on this method, the detection limit of the SPR aptamer array was 

comparable to that of other SPR sensors (1 nM). Non-specific attachment in SPR arrays 

has often been a critical problem that affects the reliability of assay results. To this end, 

Duanghathaipornsuk et al. reported that the inclusion of 3,6-dioxa-8-mercaptooctan-1-ol 

(DMOL) in a self-assembled monolayer-modified array surface can mitigate the nonspe-

cific binding of proteins and impart more degrees of freedom to the aptamers for interact-

ing with the targets [79]. In addition to sensing applications, SPR arrays can be used to 

assess the surface density of aptamer strands. Gyurcsányi et al. reported that an optimal 

surface density of the aptamers yielded the best measured affinity, which is largely deter-

mined by the size of the target [80]. 

In general, the SPR signal, which is proportional to the molecular weight and refrac-

tive index increment, is expected to be positive and increase with the amount of target 

Figure 2. (a) Aptamers embedded into the DNA origami cage by hybridization, with glycated Hb (gHb) subsequently
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Inset: DNA cage with thiol-modified ssDNA strands covalently bound to the gold surface. SPR assays for (c) thiolated
aptamer and (d) thiolated aptamer-embedded DNA nano-cage. Reproduced with permission from [73]. Elsevier B.V., 2020.

In general, the SPR signal, which is proportional to the molecular weight and refrac-
tive index increment, is expected to be positive and increase with the amount of target
molecules [71,81]. However, nonconventional SPR signals were observed in the detection
of tyrosinase by Bonnet et al. (Figure 3b), who reported that the observation of negative
SPR signals during analyte recognition resulted from the conformational transition of
aptamers [82]. They found that configuration rearrangement of the aptamer resulted in a
deviation of the refractive index increment of a small molecule/aptamer complex from the
sum of the refractive index increments of the individual entities. These results provide new
ideas and insights for understanding the effects of the nonlinearity of the refractive index
increment on SPR signal changes.
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Typically, direct-mode-based SPR aptasensors for biomolecules are achieved at
nanomolar concentrations. Consequently, there has been considerable effort to further am-
plify the SPR detection response, such as in terms of nanomaterial or enzyme amplification,
the details of which are introduced in the next section.

2.2. SPR Assay Using Nanostructural Surface Design

Direct assays are less flexible, and there is no secondary probe to amplify the SPR
signal. Another major contribution to the development of direct detection-based SPR
aptasensors was from the use of nanomaterials and conducting metal oxides as aptamer
probe-immobilized substrates to enhance the SPR performance. Chang et al. fabricated
an Au/ZnO nanocomposite that allowed for a sensitivity higher than that of standard
gold-based substrates [83]. By combining DNA aptamers, this nanocomposite has also
been applied for environmental monitoring [84]. Recently, graphene-related materials
have been explored as coatings of SPR chips with the aim of enhancing the SPR sensor
performance [85–87]. With regard to the application of graphene-related materials to SPR
sensors, Wu et al. reported that a graphene-on-gold SPR sensor can be more sensitive than
the conventional configuration of the SPR chip, owing to the optical properties of graphene
and increased adsorption of biomolecules [88]. They found that the highest sensitivity was
achieved with a single layer of graphene, which was five times more sensitive than the
conventional gold thin-film SPR biosensor. However, a graphene thickness exceeding 10 nm
substantially restricts optical absorption, resulting in a decrease in the SPR sensitivity [89].

Graphene-based SPR aptasensors have been increasingly used for protein detection
since their first report in 2011 [90]. Prior to detection, the SPR chip was modified to create a
positively charged chip that interacted with graphene through electrostatic interactions
(Figure 4a). Next, a thrombin aptamer was noncovalently adsorbed onto the graphene
surface through π–π stacking interactions. Thrombin recognized and bonded to its aptamer,
greatly disturbing the interaction between the aptamer and graphene. Consequently, the
aptamer detached from the graphene-based SPR chip, resulting in a decreased SPR response.
Based on the concept of non-covalent aptamer immobilization, Hu et al. recently developed
SPR optical fiber sensors for dopamine detection using a single layer of graphene over the
surface of a gold film [91]. They found that the presence of dopamine changed its aptamer
conformation, which could amplify the surface refractive index signals at the fiber surface
(Figure 4b). The aptasensor showed excellent sensitivity with a lower limit of detection of
10−13 M. The SPR sensing platform is not typically sensitive to small-molecule detection,
but these studies demonstrated that the use of graphene as a sensing layer for SPR could
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be effective for small-molecule detection. However, a major challenge for future research
is that the interaction between aptamers and the graphene-based SPR chip substantially
relies on the sensing environment. In crude biological fluids such as serum, nonspecific
proteins attached to the graphene surface of SPR sensors generate an unrecognized signal,
limiting the detection of targets. Therefore, the accuracy and repeatability of this strategy
are slightly lower than those of the covalent aptamer-modified SPR assay.
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To improve the interfacial adhesion of graphene onto a gold-coated SPR chip, Sub-
ramanian et al. fabricated a graphene matrix on gold-based SPR interfaces through the
electrophoretic deposition of graphene oxide [92]. The lysozyme binding of the aptamer on
the SPR interface also occurred through π-stacking interactions. The probe-label-free SPR
aptasensor was reusable by immersing it in the aptamer solution, and convenient without
modification of the DNA aptamer. Écija-Arenas et al. developed a graphene-modified SPR
surface with covalent aptamer immobilization for the determination of kanamycin residues
in foods. They used two types of graphene, reduced graphene oxide (rGO) and chemical
vapor deposition (CVD) graphene, as substrate surfaces to compare the aptasensor per-
formance (Figure 5) [93]. In their study, the CVD graphene-based gold films exhibited
more homogeneous and reproducible substrates than the rGO-modified films, resulting in
an optimal immobilization of aptamers. Better sensitivity of the sensor was obtained for
aptasensors functionalized with CVD graphene, leading to a 7-fold enhancement in the
LOD for kanamycin detection. Besides DNA aptamers, peptide aptamers are also consid-
ered as promising biorecognition probes to replace antibodies in the biosensor field [94,95].
Chiu et al. reported the peptide aptamer functionalized GO-based SPR biosensor for hu-
man chorionic gonadotropin (hCG) detection in clinical serum samples [96]. In this study,
it had the lowest LOD of 1.15 pM for hCG and showed high sensitivity in the occurrence of
interfering proteins.

In addition to nanomaterials, Wang et al. created a novel nanostructured SPR surface
with a 3D DNA nanostructure [97]. A DNA tetrahedron nanostructure was designed with
a pendant aptamer probe at the top and three biotinylated sites at the base (Figure 6).
This DNA tetrahedron was readily immobilized on the gold surface through biotin–avidin
interaction, leaving a free-standing aptamer probe. These DNA tetrahedral nanostructures
possess the unique properties of ordered orientation, well-defined probe-to-probe spacing,
and structural stability. Therefore, the introduction of this 3D DNA nanostructure led to
a significant increase in aptamer–tetracycline binding at the surface, which was directly
translated into a remarkable increase in the signal-to-noise ratio. This is because the
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presence of a bulky tetrahedral structure can avoid the entanglement of the inter-aptameric
probe and reduce steric hindrance effects by spatially segregating the pendant probes.
Compared to the conventional anchoring approaches of aptamer probes on gold surfaces,
the DNA tetrahedron structure-based SPR aptasensor exhibited a 10-fold improvement in
sensitivity toward tetracycline, with a detection limit of 0.0069 µg/kg. Subsequently, the
effectiveness of the sensor for tetracycline determination in several honey samples was
examined, revealing acceptable recoveries in the range of 80.2% to 114.3%.
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The developed sensing platforms with the one-site binding configuration are summa-
rized in Table 1 in terms of target analytes and sensing performance. The sensitivity of SPR
assays with the direct detection mode mostly falls in the nanomolar range.
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Table 1. List of aptamer SPR assays with the one-site binding configuration for the detection of bio/molecules. (NR:
not reported).

Basic SPR Assay

Immobilized
Aptamer Probe Analyte Response Time Detection

Range
Limit of

Detection Ref.

DNA kanamycin and
neomycin 10 min

0.002–0.48
µg/mL

(kanamycin)
0.003–0.72
µg/mL

(neomycin)

0.89 ng/mL
(kanamycin)
1.55 ng/mL
(neomycin)

[61]

DNA Pseudomonas aeruginosa 70 min 10–103 cfu/mL 10 cfu/mL [62]
DNA thrombin 60 min 5–20 nM 0.7 nM [63]
DNA Glycated hemoglobin (HbA1c) 50 min 73–294 nM 2.55 nM [64]

DNA Escherichia coli (E. coli) and
Staphylococcus aureus (S. aureus) 80 min 105–108 cfu/mL

106–108 cfu/mL

105 cfu/mL
(E. coli)

106 cfu/mL
(S. aureus)

[65]

DNA lysozyme 20 min 0.05–1 µg/mL 0.035 µg/mL [66]

DNA aflatoxin B1 (AFB1) 150 s 0.19–200
ng/mL 0.19 ng/mL [67]

RNA acute myeloid leukemia 1 protein
(AML1) 200 s NR NR [68]

DNA Glycated hemoglobin (HbA1c) 15 min NR 2.4 nM [73]
DNA thrombin 10 min 1.35–27 nM 1.35 nM [78]
DNA IgE 10 min 0.156–40 µM NR [80]
DNA L-tyrosinamide 10 min 0.010–250 µM 10 nM [82]

SPR Assay Using Nanostructural Surface Design

Nanostructural
Surface Design Aptamer Type Analyte Response Time Detection

Range
Limit of

Detection Ref.

graphene-coated
gold surface DNA thrombin 65 min 0.08–200 nM 0.05 nM [90]

graphene-coated
gold surface DNA dopamine NR 10−13–10−8 M 1.66 × 10−13 M [91]

reduced graphene
oxide(rGO)-coated

gold surface
DNA lysozyme NR 0.5–200 nM 0.5 nM [92]

CVD-graphene- and
rGO-coated gold surface DNA kanamycin 20 min

1–100 µM
(CVD-

graphene)
5.88–100 µM

(rGO)

0.28 µM
(CVD-

graphene)
1.79 µM (rGO)

[93]

carboxyl-GO-coated
gold surface peptide

human
chorionic

gonadotropin
(hCG)

400 s 2–100 pM 1.15 pM [96]

DNA tetrahedron-
immobilized
gold surface

DNA tetracycline 2 min 0.01–1000
µg/kg 0.0069 µg/kg [97]

3. Sandwich (Two-Site Binding) Sensing Mode

A pair of aptamers binding to two different epitopes in the same molecule can be easily
established using a sandwich format, which is useful for developing more sensitive SPR
aptasensors. One aptamer as a capture probe is immobilized on the gold surface, while the
other aptamer as a reporter probe is frequently conjugated with signal-amplified tags such
as nanoparticles. Although these two probes generally contain distinct oligonucleotide
sequences, some dimeric proteins, such as platelet-derived growth factor-BB (PDGF-BB),
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have two identical binding sites [98]. Hence, in that case, the sandwich assay for PDGF-
BB could be carried out using a single aptamer. However, if there is only one aptamer
binding site on the target of interest, it is possible to use an antibody to construct an
aptamer–antibody sandwich assay format.

3.1. Nanomaterial-Based Sandwich Format

Since it is possible to have limits of detection in the low nanomolar range, nanomaterial-
label-based sensing strategies are extensively used in sandwich formats to amplify the SPR
signal. The most promising nanomaterials employed in such formats are gold nanomate-
rials [99], quantum dots [100], and graphene-related materials [101], which have shown
remarkable biological and chemical sensing potentials. Nanomaterial-capture probe com-
plexes have a higher refractive index than the analytes alone, and nanomaterial-enhanced
SPR sandwich aptasensors have been extensively reported [102–104].

With respect to gold nanomaterials, spherical gold nanoparticles (AuNPs) are the
most common signal amplification tags used for many immunoassays, including lateral
flow methods, colorimetric assays, and plasmonic sensing applications [105–107]. The
optical properties of AuNPs are affected by localized SPR, which can be used to amplify
SPR immunosensing. Additionally, biological ligands can be facilely linked with AuNPs,
utilizing the stable chemical conjugation of mercapto and amino functional groups to gold.
Therefore, AuNPs can be modified with various aptamers for the amplified detection of
different analytes [108]. It is known that electronic coupling between the localized surface
plasmons (SPs) of AuNPs and the SP waves associated with a gold chip can prominently
amplify the SPR signal [109]. Moreover, it is noteworthy that the diameter of the AuNPs
used is less than 40 nm, which is commonly used to enhance the SPR responses because the
influence of scattering in AuNPs with diameters greater than 40 nm will be much stronger
than the absorption [110]. Wang’s group demonstrated an efficient SPR-reliant aptasensor
for breast cancer-derived exosomes with dual gold nanoparticle-assisted signal amplifica-
tion (Figure 7a) [111]. First, exosomes interacted with the CD63 aptamer-immobilized gold
substrate. Next, aptamer-coated T30-linked AuNPs (aptamer-T30-AuNP) were introduced
to form a sandwich complex of CD63 aptamer/exosome/aptamer-T30-AuNP, resulting in
a single AuNP-amplified SPR response. The A30-coated AuNPs were finally added by the
hybridization of two complementary sequences (T30 and A30) to achieve dual-signal am-
plification. This strategy allowed an LOD of 5 × 103 exosomes/mL, providing an avenue
to capture exosomes. The same group recently introduced another amplification strategy
using polydopamine-functionalized AuNPs (Figure 7b) [112]. Chloroauric acid (HAuCl4)
was reduced by polydopamine molecules to generate small AuNPs on the polydopamine-
modified AuNPs, resulting in a further enhanced SPR response. The detection of exosomes
with polydopamine-modified AuNPs is simpler than that of the previous method using
poly(A) and T-DNA hybridization. In addition, the DNA tetrahedron-immobilized film
prevented the deposition of gold on the surface during the reduction of HAuCl4.

Recently, Lee et al. used different shapes of gold nanomaterials for the aptasensing
of thrombin (Figure 8a). They found that a detection limit of 1 aM thrombin could be
obtained using 40 nm quasi-spherical AuNPs, whereas detection limits of 1 fM and 10 aM
were measured using gold nanocages and nanorods of the same size, respectively [113].
In another report, they developed a dual nanoparticle SPR amplification approach for
detecting thrombin at concentrations as low as 0.1 aM. Two different gold nanomaterials
were employed, a nanorod and a quasi-spherical nanoparticle, which resulted in a two-
step SPR response amplification (Figure 8b) [114]. These methods are extremely sensitive,
but their practical applications are still limited owing to their narrow detection range.
Subsequently, the same group demonstrated that 50 nm gold nanocubes had a great
enhancement in the SPR sensing response, similar to the quasi-spherical AuNP in the
aptamer-antibody-based sandwich format (Figure 8c). Based on the combination of an
aptamer-anchored gold substrate and antibody-linked gold nanocubes, the use of SPR
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measurements to detect B-type natriuretic peptide could be achieved down to 1 aM. A
linear response range was obtained over a wide concentration range (1 aM–500 nM) [115].
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Magnetic nanoparticles (MNPs) are commonly used for the separation and concentra-
tion of analytes before the detection event without the need for expensive or sophisticated
equipment. For the SPR sensing applications, as MNPs do not possess the optical property
of localized SPs, these particles improve the SPR performance only through their high
refractive index and large mass effects, and have been successfully used in SPR analy-
sis [116]. Chen et al. presented a highly sensitive SPR cytosensor for the detection of
breast cancer cells. First, human mucin-1 (MUC1) aptamers were immobilized on the gold
surface. When breast cancer cells were captured by MUC1 aptamers, folic acid-conjugated
MNPs, as the second detection probe, formed a sandwich SPR assay with an LOD below
500 cells/mL [117]. The addition of a plasmonic element has been reported by coating
particles with a nanoscale layer of gold, creating core–shell magnetic nanoparticles for en-
hanced SPR. Despite the sensing potential of MNPs, their surfaces are not fully compatible
with well-defined surface chemistry, limiting their various sensing applications. Thus, the
synthesis of gold-coated magnetic nanoparticles (Au@MNPs) has overcome this limitation
and has been applied to SPR aptasensors [118,119]. These Au@MNPs, possessing the
advantages of optical and magnetic properties and gold surface chemistry, can be highly
versatile materials for the enhancement of the SPR response.

Quantum dots (QDs) have been extensively employed in biological imaging and as
energy donors for use in fluorescence resonance energy transfer (FRET) sensors. Owing
to their unique optical and electrical properties, the use of QDs has recently been applied
to SPR biosensors to achieve high sensitivity. For example, Vance et al. used aptamer-QD
conjugates for the quantitative detection of C-reactive protein (CRP) in clinical samples,
with high specificity [120]. The sandwich configuration increased the SPR signal ampli-
fication 10-fold and yielded a detection limit as low as 5 fg/mL for CRP. Although the
sensitivity has been significantly improved using QDs, the exact mechanism of signal
improvement is still not fully understood. One hypothesis suggests that a bidirectional
relationship exists between QDs and SPs. Propagating SPs interact with QDs on a metal
surface and induce photon emission from QDs, and the excited QDs prompt the generation
of propagating SPs [121]. Recently, another aptamer-functionalized QD-based sensor was
reported by Singh [100]. An array chip incorporated with QDs was employed for the detec-
tion of insulin in serum samples of diabetic patients (Figure 9). In this study, nonspecific
binding was reduced for the immobilization of high-molecular-weight dendrimers on the
cysteamine layer. The designed aptasensor could detect 5 pM of serum insulin, which is
important for detecting concentrations of insulin in complex clinical samples.
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In the Section 2.2, graphene-based nanomaterials were used as immobilization sub-
strates of aptamer probes on the SPR chips. In the sandwich format, secondary aptamer-
linked graphene-related materials were used for the enhancement of SPR aptasensors.
Although both formats of sensors have been found to increase SPR sensitivity, there are
no reports comparing the sensitivity of these two formats under the same condition. The
sensing applications of graphene in the SPR sandwich configuration were reported by
several research groups. Lou et al. used aptamer-modified graphene oxide (GO) sheets for
enhancing SPR signals (Figure 10) [122]. The detection limit for the prion disease-associated
isoform was achieved at 1 pg/mL, a 156-fold improvement over that of direct SPR detec-
tion. In addition to the above-mentioned nanomaterials, some studies have demonstrated
the superior properties of hybrid nanomaterials for aptamer detection, such as polymer
dots [123]. However, the use of polymer dots in SPR-based aptamer-sensing applications
has not been reported and should be explored.
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3.2. Isothermal Amplification-Based Sandwich Format

In addition to the use of nanomaterials, various isothermal amplification approaches
have been explored for SPR aptasensors. In these strategies, target molecules from sample
solutions are captured by immobilized antibodies or aptamers. Detection probes include
the secondary aptamer region for targets and the initiation region as the primer for the
isothermal amplification reaction, which are then introduced to bind to the captured target
molecules. Unbound detection probes are washed away, and isothermal amplification
is performed.

Rolling circle amplification (RCA) is one of the most popular isothermal amplification
strategies in the SPR sandwich format, which produces a long ssDNA product by unidi-
rectionally replicating a circular ssDNA template many times. For example, Chen et al.
employed an RCA assay to improve SPR performance for the detection of vascular endothe-
lial growth factor (Figure 11a) [124]. The detection limit was 100 pg/mL, which was slightly
better than that of electrochemical methods. To notably amplify the sensitivity, He et al.
developed two-step signal-amplification strategies by combining RCA and AuNPs for the
detection of cancer cells and thrombin [125]. The presence of target molecules interacted
with the immobilized capture probes and the detection probe with the RCA primer, result-
ing in the initiation of the RCA reaction. Then, RCA products were hybridized with the
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AuNP-modified DNA probe, producing significant amplification efficiency. In their assays,
RCA-AuNPs amplified the SPR signal by almost nine orders of magnitude as compared to
the direct detection, which enhanced the signal by approximately five orders of magnitude
compared with the AuNP-amplified sandwich SPR-sensing configuration.

3.3. Other Emerging Amplification Technologies

In addition to enzyme-based isothermal amplification, recent studies have used
enzyme-free reactions to amplify the reaction signal using self-assembling nucleic acids.
Without the requirement of enzymes, the self-assembly of nucleic acid molecules can be
triggered by free energy, and many nucleic acid byproducts can be generated through the
recycling reaction. There are two common types of nucleic acid self-assembly methods, cat-
alytic hairpin assembly (CHA) [126] and hybridization chain reaction (HCR) [127], which
have been widely used in various analyses. This amplification reaction also allows for the
analysis of various low concentrations of biological molecules from crude samples, such
as DNA methylation and cancer biomarker detection [128–130]. Compared to traditional
sandwich methods with the targets in the middle, these emerging amplification approaches
utilized the byproducts of the target-catalyzed reaction to generate a DNA super-sandwich
structure for the quantitative analysis of targets. For example, Li et al. developed a multi-
step amplification scheme using an integrative approach from HCR, magnetic beads (MBs),
and strand displacement for the detection of ATP (Figure 11b) [131].
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When ATP is introduced into the solution with aptamer-modified MBs, aptamers
bind to ATP and form a complex structure, resulting in the release of complementary
DNA. After magnetic separation, a solution containing complementary DNA as trigger
DNA was introduced into the gold chip, and the HCR reaction was initiated by the trigger
DNA. Compared with other signal-amplified SPR sensors, there are few reports based
on CHA or HCR strategies for aptamer detection. This may be because the resulting
nucleic acid byproducts are still small molecules that only cause a small SPR response.
The efficiency of signal amplification is still not as high as that of amplification using
nanomaterials such as AuNPs. To overcome this limitation, a nonlinear HCR amplification
strategy was introduced, which has been used in various analysis methods [132–134].
In contrast to general HCR, nonlinear HCR is composed of more complex components,
including a trigger DNA sequence, two dsDNA substrates with bridge loops in the middle,
and two assistant DNA fragments, which can be assembled into highly branched DNA
nanostructures in the presence of target proteins [135]. As a result, a non-linear HCR
can achieve better amplification efficiency and larger molecular weight. Moreover, the
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designed DNA components for the nonlinear HCR have less secondary structure, so the
amplification reaction can be completed faster. For example, Ding et al. reported real-time
detection of adenosine triphosphate (ATP) using a nonlinear HCR amplification-based SPR
biosensor (Figure 12) [136]. The existence of ATP can induce a nonlinear HCR allosteric
effect, which leads to the dendritic growth of the DNA nanostructure on the sensing
chip’s surface. Thus, the SPR response, which relies on the mass of the DNA molecules
bound to the surface of the sensing chip, can be significantly increased by a nonlinear HCR
amplification strategy. Concisely, under optimized conditions, the developed biosensor
has demonstrated dynamic range (from 0.1 to 10 µM), and an LOD of 0.1 µM. Since the
normal value of the concentration of ATP in humans is approximately 1 µM, this amplified
SPR aptasensor has the potential to be used for ATP detection in humans.
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The developed sensing platforms with the two-site binding configuration are summa-
rized in Table 2 in terms of sandwich design and sensing performance. The ultrasensitive
sandwich-based SPR assays in the attomolar range have been developed.

Table 2. List of aptamer SPR assays with the two-site binding configuration for the detection of bio/molecules. (NR:
not reported).

Nanomaterial-Based Sandwich Format

Sandwich Design
(Ligand 1-Linked Nanomaterial/

Analyte/
Ligand 2 Immobilized on the Surface)

Aptamer
Type

Response
Time Detection Range Limit of

Detection Ref.

antibody-magnetic nanoparticle/
insulin/
aptamer

DNA 13 min 0.8–250 pM 0.8 pM [100]

aptamer I-gold nanorod/
norovirus capsid protein/

aptamer II
DNA 50 min 70–500 aM 50 aM [102]
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Table 2. Cont.

Nanomaterial-Based Sandwich Format

Sandwich Design
(Ligand 1-Linked Nanomaterial/

Analyte/
Ligand 2 Immobilized on the Surface)

Aptamer
Type

Response
Time Detection Range Limit of

Detection Ref.

aptamer I-dual gold nanoparticle
(T30-AuNP/A30-AuNP)/

exosome/
aptamer II

DNA 60 min NR 5 × 103

particles/mL
[111]

aptamer I-polydopamine-functionalized gold
nanoparticle/

exosome/
aptamer II

DNA 40 min NR 5.6 × 105

particles/mL
[112]

antibody-gold nanocage(AuNC), gold
nanorod(AuNR), or gold quasi-spherical

nanoparticles (AuQNP)/
thrombin/
aptamer

DNA 25 min

1 aM–1 fM
(AuQNP)

10 aM–10 fM
(AuNR)

1 fM–1 pM (AuNC)

1 aM (AuQNP)
10 aM (AuNR)
1 fM (AuNC)

[113]

aptamer I-dual gold nanomaterials
(T20-AuNR/A30-AuQNP)/

thrombin/
aptamer II

DNA 100 min 0.1–2 aM. 0.1 aM [114]

antibody-gold nanocube/
B-type natriuretic peptide/

aptamer
DNA 35 min 1 aM–500 nM 1 aM [115]

folic acid-magnetic nanoparticle
breast cancer cells (MCF-7)/

aptamer
DNA 333 min 5 × 102–104

cells/mL
5 × 102

cells/mL
[117]

aptamer I-gold capped magnetic nanoparticle/
thrombin/
aptamer II

DNA 60 min 0.1–100 nM 0.1 nM [119]

aptamer I-near-infrared quantum dot/
C-reactive protein/

aptamer II
DNA 183 min 5–5000 fg/mL 5 fg/mL [120]

aptamer-graphene oxide/
prion disease-associated isoform/

intramolecular thiol group
DNA 40 min 4.24 × 10−5–

4.24 × 10−2 nM 4.24 × 10−5 nM [122]

Isothermal Amplification-based Sandwich Format

Isothermal
Amplification

Method

Sandwich Design
(Ligand 1/
Analyte/
Ligand 2)

Aptamer
Type

Response
Time Detection Range Limit of

Detection Ref.

rolling circle
amplification

(RCA)

aptamer I for the
generation of RCA

product/
VEGF/

aptamer II

DNA 333 min 10−10–10−6 g/mL 10−10 g/mL [124]

rolling circle
amplification

aptamer I-linked magnetic
nanoparticle for the
generation of RCA

product/
romas cell/
aptamer II

DNA NR 10–5000 cells/mL 10 cells/mL [125]
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Table 2. Cont.

Other Emerging Amplification Technologies

Amplification
Method

Sandwich Design
(Ligand 1/

DNA byproduct/
Ligand 2)

Analyte Response
Time Detection Range Limit of

Detection Ref.

hybridization
chain reaction

detection probe for the
generation of linear DNA

structure/
DNA byproduct/

capture probe

Adenosine
triphos-
phate
(ATP)

130 min 1–5000 nM 0.48 nM [131]

nonlinear
hybridization
chain reaction

detection probe for the
generation of branched

DNA nanostructure/
DNA byproduct/

capture probe

ATP 67 min 1 pM–1 nM 0.85 pM [136]

4. Summary and Outlook

This paper reviews state-of-the-art aptameric SPR-based biosensors and chemical
sensors that function through one- and two-binding site modes. The one-binding site mode
assay without labeling is a direct measurement of the target molecules, which is a simple
and fast detection method. Nevertheless, the sensitivity of state-of-the-art aptamer SPR
biosensors in the one-binding site mode is still insufficient to ensure a reliable non-invasive
examination of low-concentration target molecules. Hence, with the aid of aptamer-
modified nanomaterials as well as self-assembling nucleic acid-based nanostructures,
different approaches in the two-binding-site mode have been demonstrated to enhance
the sensitivity of SPR aptamer sensors. Although the integration of nanostructures and
nanomaterials into the establishment of aptasensor systems has notable advantages, it
increases the complexity of the sensor design, leading to higher costs, which may limit
its applicability in low-resource settings. Moreover, sensor stability and manufacturing
reproducibility are major challenges.

The aforementioned problems need to be solved, and thus, research efforts in the SPR
field will likely concentrate on the following areas. A number of existing but underde-
veloped aptamers are expected to be used in the design and construction of SPR aptamer
sensors. Meanwhile, breakthroughs will also be made in further optimizing current SPR
aptasensing to ensure its compatibility with real sample analysis. The availability of a
cost-effective and integrated SPR aptamer biosensor system with smartphone devices could
have a major positive impact on human health.
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