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Abstract

Background

Ischemia/reperfusion (I/R) is the most common cause of acute kidney injury (AKI). Its patho-
physiology remains unclear. Metabolomics is dedicated to identify metabolites involved in
(patho)physiological changes of integrated living systems. Here, we performed 'H-Nuclear
Magnetic Resonance metabolomics using urine, serum and kidney samples from a mouse
model of renal I/R.

Methods

Renal 30-min ischemia was induced in 12-week-old C57BL/6J male mice by bilaterally
clamping vascular pedicles, and was followed by 6, 24 or 48-hour reperfusion (n = 12/
group). Sham-operated mice were used as controls. Statistical discriminant analyses, i.e.
principal component analysis and orthogonal projections to latent structures (OPLS-DA),
were performed on urine, serum and kidney lysates at each time-point. Multivariate receiver
operating characteristic (ROC) curves were drawn, and sensitivity and specificity were cal-
culated from ROC confusion matrix (with averaged class probabilities across 100 cross-
validations).

Results

Urine OPLS-DA analysis showed a net separation between I/R and sham groups, with sig-
nificant variations in levels of taurine, di- and tri-methylamine, creatine and lactate. Such
changes were observed as early as 6 hours post reperfusion. Major metabolome modifica-
tions occurred at 24h post reperfusion. At this time-point, correlation coefficients between
urine spectra and conventional AKI biomarkers, i.e. serum creatinine and urea levels,
reached 0.94 and 0.95, respectively. The area under ROC curve at 6h, 24h and 48h post
surgery were 0.73, 0.98 and 0.97, respectively. Similar discriminations were found in kidney
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samples, with changes in levels of lactate, fatty acids, choline and taurine. By contrast,
serum OPLS-DA analysis could not discriminate sham-operated from I/R-exposed animals.

Conclusions

Our study demonstrates that renal I/R in mouse causes early and sustained metabolomic
changes in urine and kidney composition. The most implicated pathways at 6h and 24h
post reperfusion include gluconeogenesis, taurine and hypotaurine metabolism, whereas
protein biosynthesis, glycolysis, and galactose and arginine metabolism are key at 48h post
reperfusion.

Introduction

Ischemia/reperfusion (I/R) is the primary cause of acute kidney injury (AKI), a common situa-
tion currently defined as a rapid fall of glomerular filtration rate (GFR) and/or a decline in
urine output [1]. The incidence of AKI is generally 5-7.5% in all acute care hospitalizations,
but it accounts for up to 20% of admissions to intensive care units [2]. Furthermore, approxi-
mately 30-40% of all cases of AKI during hospitalization are observed in operative settings,
and particularly after cardiovascular surgery [3]. The reduction or interruption of renal perfu-
sion with a subsequent reflow induces significant cell metabolism perturbations and tissue
inflammation [4-6]. Still, our understanding of the pathophysiology of I/R-associated AKI
remains limited, which most often delays the diagnostic procedure and limits the therapeutic
options.

The metabolomic approach consists in holistically characterizing metabolite abundances
and/or fluctuations in biological matrices [7, 8]. According to the Metabolomics Society
(http://www.metabolomicssociety.org/), the term “metabolomics” corresponds to “the com-
prehensive characterization of the small molecule metabolites in biological systems which can
provide an overview of the metabolic status and global biochemical events associated with a
cellular or biological system” [9, 10]. Metabolomics has been applied to mammalian systems
biology to study the health-disease continuum, the homeostatic impact of certain diets and the
safety/efficacy profile of drug therapy. Furthermore, such a global profiling of metabolites
appears particularly useful to identify novel prognosis and diagnosis biomarkers, and innova-
tive targets for drug discovery [11]. Metabolomics provides unique, challenging opportunities
to link dynamic variations of the metabolome with a physiological or a pathological status and
offers an innovative global insight into the relationships between genes, gene expression, envi-
ronment, phenotype, lifestyle and pathologies. Moreover, the comprehension of the mecha-
nisms that underlie the transition from physiological to pathophysiological states is of great
interest for the discovery and the development of therapeutic strategies [12].

Technological developments are one of the main driving forces in scientific knowledge.
Recent advances in two analytical platforms of mass spectrometry (MS) and Nuclear Magnetic
Resonance (NMR) spectroscopy have put forward the discipline of metabolomics. Each of
these techniques has advantages and limitations (for a detailed review see Ref.[13]). Despite a
lower sensitivity in comparison to MS, NMR spectroscopy benefits from being non-destructive,
quantitative, highly reproducible and fast (acquisition of metabolite profiles within 10 min per
sample), with minimal sample preparation. This technics is particularly adapted to analyze bio-
fluid collections, like urine or blood, but also tissue after a lysis step. Therefore, even if NMR
spectroscopy can only detect and reliably quantify metabolites present in high concentrations
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[13, 14], this approach leads to a non-targeted snapshot of the metabolic pattern linked to a
physiologic or a pathologic state.

In nephrology, metabolomics was first used to detect metabolome changes associated with
drug-induced AKI [15, 16]. Interestingly, recent reports based on murine and human models
of renal I/R highlighted relevant changes in blood and kidney metabolomes at the time of both
injury and recovery. Most of these studies used MS-based metabolomic approach and led to
the structural documentation of several endogenous metabolites whose abundance were modi-
fied by renal I/R [17-19]. "H-NMR metabolomics has been used to evaluate drug-induced
nephrotoxicity or the impact of cold ischemia at the time of kidney transplantation [20-22].
Here, we take advantage of "H-NMR to characterize the metabolome of urine and kidney
lysates after mechanical I/R in mice at increasing time point post reperfusion. In addition to the
identification of specific metabolites affected by renal I/R, we plot the correlation between the
metabolomic signature and levels of serum creatinine and urea regarded as a conventional
markers of I/R severity.

Materials and Methods
Acute renal ischemia in mice

This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was
approved by the Committee on the Ethics of Animal Experiments of the University of Liege
School of Medicine (protocol number #1335). All surgery was performed under anesthesia,
and all efforts were made to minimize suffering. Ten-week-old male C57BL/6 mice weighing
~20g were anesthetized with pentobarbital (60 mg/kg, Ceva™) by i.p. injection and, using asep-
tic techniques, subjected to a laparotomy with bilateral renal pedicle clamping (“ischemia”) for
30 min. Ischemia was confirmed by color change observed in kidneys following clamping. Sup-
portive fluids were given throughout the operative period, and hypothermia was prevented by
use of an isothermal heating pad and warming lights.

Urine and blood collection

Following surgery, animals were kept in light- and temperature-controlled conditions for max-
imum 48 hours, with a twice-daily clinical evaluation of scar and general health status. Mice
were placed in metabolic cages for maximum 24 hours with ad libitum access to food and
drinking water. Urine was collected on 2%-Na* azide solution (Sigma™) with one drop of min-
eral oil (Sigma™) to prevent bacterial proliferation and evaporation, respectively. Blood was
obtained by vena cava puncture at the time of sacrifice, kept at room temperature for 2h, and
centrifuged (10.000r/min. for 10 min) to collect supernatants (sera) for storage at -20°C. Serum
levels of urea and creatinine were measured on a COBAS 6000 C501 device (Roche-Hitachi®).
Kidneys were snap-frozen and stored at -80°C. Urine, serum and kidney metabolome were
analyzed using 'H-NMR (see infra).

Study groups

Renal tissue, urine and serum were examined in 3 different groups: 6h, 24h and 48h post-reper-
fusion. 27 (13 sham and 14 I/R), 21 (10 sham and 11 I/R) and 32 (13 sham and 19 I/R) kidney
samples were collected at 6, 24 and 48h post-reperfusion, respectively. Concerning urine sam-
ples, 24 (11 sham and 13 I/R) at 6h, 31 (17 sham and 14 I/R) at 24h and 31 (15 sham and 16 I/
R) at 48h post-reperfusion were collected. Finally the number of sera samples are of 27 (14
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sham and 13 I/R) at 6h, 20 (10 sham and 10 I/R) at 24h and 32 (13 sham and 19 I/R) at 48h
post-reperfusion.

"H-NMR metabolomics

All samples were recorded at 298 K on a Bruker Avance spectrometer operating at 500.13 MHz
for the proton signal acquisition. The instrument was equipped with a 5 mm TCI cryoprobe
with a Z-gradient. Maleic acid was used as internal standard for quantification and trimethylsi-
lyl-3-propionic acid-d4 (TMSP) for the zero calibration. Upper half left of each kidney
(+50mg) was suspended in 700 pl of deuterated phosphate buffer (DPB, pH 7.4), placed in a
2ml centrifugation vial in an ice bath and then subjected to sonication with the vibrating probe
(Vibra-Cell, Sonics and Materials Inc., Newtown, USA) for periods of 2 x 30s. The mixture was
then centrifuged (13.300 r/min, 4°C for 10 min) to eliminate membranes and cell residues, and
600 pL of the supernatant was supplemented with 100 pl of a 5 mM solution of maleic acid and
10 pl of a 10 mg/ml TMSP D20 solution. Serum (100 pl) and urine samples (150 pl) were sup-
plemented with 400 (serum) or 450 (urine) pl of deuterated phosphate buffer (DPB, pH 7.4),
100 pl of a 5 mM solution of maleic acid and 10 pl of a 10 mg/ml TMSP solution. "H-NMR
spectra were acquired using a 1D NOESY sequence with presaturation for urine samples and
CPMG relaxation-editing sequence with presaturation for serum samples and kidney lysates.
The Noesypresat experiment used a RD-90°-T;-90°-T,,,-90°-acquire sequence with a relaxation
delay of 4 s, a mixing time (T,,,) of 10 ms and a fixed T, delay of 4 us. Water suppression pulse
was placed during the relaxation delay (RD). The number of transient is 128 (64K data points)
for urine and kidney lysates, 32 for serum samples and a number of 4 dummy scans is chosen.
Acquisition time is fixed to 3.2769001 s. The CPMG experiment used a RD-90-(t-180-t)n-
sequence with a relaxation delay (RD) of 2s, a spin echo delay (t) of 400 ms and the number of
loops (n) equal to 80. The water suppression pulse was placed during the relaxation delay
(RD). The number of transients was typically 32. The acquisition time was set to 3.982555 s
and a quantity of four dummy scans was chosen. The data were processed with the Bruker
Topspin 3.1 software with a standard parameter set. Phase and baseline corrections were per-
formed manually over the entire range of the spectra and the 3 scale was calibrated to 0 ppm
using the internal standard TMSP.

Multivariate analysis

For statistical analysis, optimized "H-NMR spectra were automatically baseline-corrected and
reduced to ASCII files using AMIX software (version 3.9.14; Bruker). The spectral intensities
were normalized to total intensities and reduced to integrated regions of equal width

(0.04 ppm) corresponding to the 0.5-10.00 ppm region. Because of the residual signals of water
and maleic acid, regions between 4.7 and 5 ppm (water signal) and 5.6-6.2 ppm (maleic acid
signal) were removed before analysis. The reduced and normalized NMR spectral data were
imported into SIMCA (version 13.0.3, Umetrics AB, Umea Sweden). Pareto scaling was applied
to bucket tables and discriminant analysis (DA) such as PCA (Principal Component Analysis),
PLS-DA (Partial Least Squares Discriminant Analysis), OPLS-DA (orthogonal partial least
squares discriminant analysis) and PLS (Partial Least Square) regression were performed.
SIMCA was used to generate all PCA, PLS, PLS-DA, and OPLS-DA models and plots. PCA
was only used to detect possible outliers and determine intrinsic clusters within the data set,
while PLS-DA maximized the separation and OPLS-DA facilitated the graphic visualization of
differences and similarities between groups. The quality of OPLS-DA models was determined
by the goodness of fit (R?) and the predictability was calculated on the basis of the fraction cor-
rectly predicted in one-seventh cross-validation (Q?). By using the web-based analysis tool,
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Metaboanalyst (www.metaboanalyst.ca), receiver operating characteristic (ROC) curves were
drawn to assess the robustness of the models. ROC analyses were based on PLS-DA models as
classification methods with 3 latent variables. Model sensitivity and specificity were calculated
from the ROC confusion matrix (generated on the basis of the average of predicted class proba-
bilities of each sample across 100 cross-validations). ROC curves were generated by Monte-
Carlo cross validation (MCCV) using balanced sub-sampling. In each MCCV, two thirds (2/3)
of the samples were used to evaluate the feature importance. The top 100 important features
were then used to build classification models which were validated on the residual 1/3 sample.
The procedure was repeated multiple times to calculate performance and confidence intervals
of each model.

Metabolite identification

From PLS-DA and OPLS-DA loading plots, metabolites with higher loadings were identified.
Signals with values of Variable Importance in Projection (VIP) higher than 1 were considered
as significant, and further validated using ¢-test with Metaboanalyst. Metabolite identification
was next performed using the open-access database NMR suite 8.1 (Chenomx inc., Edmonton,
Canada), the free web-based tool HMDB (http://www.hmdb.ca) and tables. Each metabolite
identified was finally confirmed by performing peak correlation plots from 2D-NMR spectra
(COSY and HSQCQC).

Pathway analysis

The detailed analysis of the metabolic pathways were performed by Metaboanalyst (www.
metaboanalyst.ca) using the Metabolic Set Enrichment Analysis (MSEA) with an Over Repre-
sentation Analysis (ORA) algorithm. MSEA is a metabolomic version of the Gene Set Enrich-
ment Analysis (GSEA) and aims at identifying patterns of metabolites. It contrasts with the
conventional approach in which each metabolite is individually evaluated, thereby improving
the identification of subtle and coordinated changes in related compounds [23].

Results
Thirty minutes of bilateral renal I/R induce recoverable AKI

Ten-week-old male C57BL/6 mice were subjected to 30 minutes of bilateral renal ischemia fol-
lowed by 6h, 24h, and 48h of reperfusion. The renal function was monitored by serum levels of
creatinine and urea (Fig 1). In comparison to sham-operated animals (creatinine, 0.11 + 0.03;
urea, 41.9 + 6.4 mg/dl), I/R-exposed mice showed a significant increase of both AKI parame-
ters, as early as 6h post reperfusion (creatinine, 0.26 + 0.09; urea, 75.7 + 22.4 mg/dl). The levels
of creatinine and urea peaked at 24h post reperfusion (creatinine, 0.88 + 0.69; urea,

179.6 + 60.1 mg/dl). At 48h post I/R, levels of both AKI parameters significantly recovered (cre-
atinine, 0.11 * 0.04; urea, 62.5 + 22.7 mg/dl). Such an experimental model of transient I/R-
induced AKI allows determining early metabolomic changes during initial and peak phases of
injury.

Thirty minutes of bilateral renal I/R induce early and significant changes
in urine and kidney metabolomes, but not in serum profile

Urine samples were initially collected before the I/R operation, but were not used as references
since score plots from OPLS-DA applied to "H-NMR spectra highlighted a significant impact
of sham surgery per se on urine metabolome (S1 Fig). Therefore, urine samples were collected
in both sham-operated and I/R-exposed mice at 6h, 24h and 48h post surgery, and processed
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Fig1. Serum levels of creatinine (A) and blood urea (B) in mice following renal ischemia/reperfusion or sham
surgery. Unpaired Student t-test between groups of renal ischemia/reperfusion (I/R) and sham surgery showed statistically
significant differences (*, p<0.05; **, p<0.01; ***, p<0.007) for both serum creatinine and urea levels at 6h and 24h post
reperfusion.

doi:10.1371/journal.pone.0163021.g001

following 'H-NMR metabolomic procedure (S1-S3 Datasets). Representative spectra of each
time-point post reperfusion are shown in S2 Fig. Statistical investigations using OPLS-DA rep-
resented as score plots (Fig 2; upper panels) highlighted a significant discrimination of sham-
operated versus I/R-exposed groups as early as 6h post surgery (R”: 0.651, Q*: 0.153), which was
sustained at 24h (R%: 0.892,Q%: 0.740) and 48h (R?: 0.821,Q%: 0.546) post I/R. Detailed analysis
of the associated loading plots allowed the identification of metabolites of increased or
decreased abundance in I/R group in comparison to sham-operated mice (Fig 2; lower panels).
Hence, urine levels of taurine, lactate and glucose were steadily increased after I/R, whereas
urine levels of trimethylamine were significantly reduced. Model validity was assessed by ROC
analysis (based on PLS-DA model), as described above. Sensitivity and specificity of the model
respectively reached 60% and 76.9% at 6h post-IR, 93.7% and 100% at 24h, 94.4% and 94.1% at
48h. Area under the ROC curve (AUC) at 24h and 48h post-surgery were 0.98 and 0.97 respec-
tively, suggesting a high predictive accuracy. Conversely, the AUC at 6h post-surgery was 0.73
(Fig 3). MSEA analysis led to the identification of several pathways significantly affected by
renal I/R. The most relevant cascades were gluconeogenesis and taurine / hypotaurine metabo-
lism at 6 and 24h reperfusion. Protein biosynthesis, glycolysis and galactose and arginine
metabolisms appeared essential at 48h reperfusion. Next, kidney samples were similarly col-
lected in both sham-operated and I/R-exposed mice at 6h, 24h and 48h post surgery, lysed, and
processed by "H-NMR metabolomics (S4-S6 Datasets). Representative spectra of each time-
point post reperfusion are shown in S3 Fig. OPLS-DA kidney analysis found a significant dis-
crimination between sham-operated and I/R-exposed animals at 6h (R*: 0.692, Q*: 0.388), 24h
(R% 0.705, Q%: 0.441) and 48h (R?: 0.643, Q5:0.416) post surgery (Fig 4; upper panels). The iden-
tification of metabolites, whose increased abundance reached significance in loading plots
included fatty acids (and modified lipoproteins), lactate and N-acetyl groups of glycoproteins.
Conversely, levels of taurine and myo-inositol were decreased in kidneys from I/R-exposed
mice in comparison to sham-operated animals (Fig 4; lower panels). Sensitivity and specificity
of the model were respectively 73.3% and 56.2% at 6h post-IR, 72.7% and 63.6% at 24h, 68.4%
and 78.5% at 48h. The AUC of the ROC curves (based on PLS-DA models) at 6h, 24h and 48h
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Fig 2. Score plots from OPLS-DA applied to 'H-NMR spectra of mouse urine samples following renal ischemia/reperfusion or sham surgery. The
upper panels represent the score plots of OPLS-DA from "H-NMR metabolomic analysis using mouse urine samples collected after 6-hour (left), 24-hour
(middle) and 48-hour (right) reperfusion following renal ischemia (black dots) or sham surgery (grey dots). The lower tables correspondingly list the
metabolites whose urinary abundance is significantly increased or decreased after renal ischemia/reperfusion (I/R) in comparisonto sham surgery.

doi:10.1371/ournal.pone.0163021.g002
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Fig 3. Receiver operating characteristic (ROC) curves of 'H-NMR metabolomics of mouse urine samples following renal ischemia/reperfusion or
sham surgery. Multivariate ROC curves were drawn using "H-NMR metabolomic spectral data from mouse urine samples collected after 6-hour (left),
24-hour (middle) and 48-hour (right) reperfusion following renal ischemia.

doi:10.1371/journal.pone.0163021.9003
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surgery.

doi:10.1371/journal.pone.0163021.9004

post-surgery reached 0.69, 0.82 and 0.82, respectively (Fig 5). MSEA analysis of metabolites at
6h and 24h reperfusion revealed that taurine / hypotaurine and betaine metabolisms were sig-
nificantly affected by renal I/R. At 48h post reperfusion, I/R-associated cascades were protein
biosynthesis, biotin and taurine / hypotaurine metabolisms. Finally, 'H-NMR metabolomic

6h reperfusion

24h reperfusion

Sensitivity (True positive rate)

Area under the curve (AUC) = 0.693
95% CI: 0.382-0.9

Sensitivity (True posilive rate)

Area under the curve (AUC) = 0.816
95% CI: 0.5-1

1-Specificity (False positive rate)

T T T
0.0 0.2 0.4

T T T
0.6 0.8 10

1-Specificity (False positive rate)

Sensitivity (True positive rate)

48h reperfusion

Area under the curve (AUC) = 0.821
95% CI: 0.479-1

0.0 0.2 0.4

T T T
0.6 08 10

1-Specificity (False positive rate)

Fig 5. Receiver operating characteristic (ROC) curves of 'H-NMR metabolomics of mouse kidney samples following renal ischemia/reperfusion or
sham surgery. Multivariate ROC curves were drawn using "H-NMR metabolomic spectral data from mouse kidney samples collected after 6-hour (left),
24-hour (middle) and 48-hour (right) reperfusion following renal ischemia.

doi:10.1371/journal.pone.0163021.9005
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analysis of sera collected at 6h, 24h and 48h post surgery could not discriminate sham-operated
from I/R-exposed animals (data not shown). Representative spectra of each time-point post
reperfusion are shown in S4 Fig. Of interesting note, the signals corresponding to urea and cre-
atinine in serum samples are barely detectable in rodents, in strong contrast to man (S5 Fig).
This may be linked to species variability and/or "H-NMR sensitivity/specificity. Also, our
experimental handling of serum samples may not be the most adapted for 'H-NMR.

Urine metabolome significantly correlates with serum levels of creatinine
and urea

Transversal correlation studies were performed between urine metabolome and serum levels of
creatinine or urea at increasing time points following renal I/R. These correlations were per-
formed by PLS regression using all NMR spectral regions included in the original OPLS-DA.
As a reminder, regions between 4.7 and 5 ppm and 5.6-6.2 ppm were removed because of the
residual signals of water and maleic acid, respectively. At 6h post surgery, a significant positive
correlation was found between urine metabolome and serum levels of urea (% 0.69; Q,, 0.352)
and creatinine (1% 0.87; Q,, 0.117). Such a positive correlation between urine metabolome and
AKI parameters was further observed at 24h (urea (%, 0.93; Q,, 0.693) and creatinine (r? 0.95;
Q> 0.817)) and at 48h (urea (%, 0.94; Q,, 0.154); creatinine (r% 0.98; Q,, 772)) post surgery.

Discussion

Renal I/R is the leading cause of AKI, which represents a frequent morbid condition, particu-
larly in operative settings like cardio-thoracic surgery and solid organ transplantation [2, 24].
Advances in deciphering the pathophysiology of renal I/R injury are urgently required to fill
the gap of preventive and curative approaches in AKI [25, 26]. Metabolomics presents an
innovative method in (patho)physiology, which empowers us to comprehensively and sys-
tematically study and characterize metabolite changes in biological systems in response to
perturbation [8, 27]. Metabolomics is by nature hypothesis-generating. Indeed, adopting
such a systems biology approach will (i) facilitate our understanding of mechanistic pathways
that play a role in I/R, (ii) allow for biomarker discovery and earlier AKI diagnosis, and (iii)
assist the monitoring of efficacy and toxicity of current and future therapeutic approaches to
prevent and eventually cure AKI [14, 15]. "H-NMR spectroscopy is regarded as quantitative
given that the intensity of a signal is directly related to the amount of resonant nuclei. How-
ever, due to the abundance of water in our samples, water signal suppression had to be per-
formed, which may affect the baseline, as well as signal intensities. Additionally, signal
overlapping hampers the integration step. Therefore, comparative analysis was rather chosen
here.

Our murine model of bilateral renal I/R produced early, robust and dynamic changes of
metabolites in urine and kidney parenchyma over time. By contrast, no significant change was
observed in serum samples following renal I/R using "H-NMR metabolomics. Of note, serum
was collected and worked-up following the classical protocol used for medical chemistry,
which might not be appropriate for 'H-NMR approach. In early phase of I/R-induced AKI, i.e.
6h post surgery, both urine and kidney metabolome showed evidence of altered energy metabo-
lism affecting glycolysis, tricarboxylic acid cycle and lipid metabolism. The accumulation of
lactate, end-product of anaerobic glycolysis, was particularly observed in both urine and kidney
lysates. Anoxia, ischemia, and infarction produce rapid loss of high-energy phosphates and
accumulation of hydrolysis products, like lactate, B-hydroxybutyrate and citrate [28]. Beside
the metabolic cascades, renal I/R appears to significantly impact osmoregulation, as reflected
by the altered levels of osmolytes, like taurine, betaine and trimethylamine. Organic osmolytes

PLOS ONE | DOI:10.1371/journal.pone.0163021 September 22,2016 9/14



@° PLOS | ONE

Metabolomics in Renal Ischemia/Reperfusion Injury

are small solutes used by cells of numerous water-stressed organisms and tissues to maintain
cell volume [29]. They include amino acids and derivatives, polyols and sugars, methyl-
amines, methylsulfonium compounds and urea. Here, taurine appeared to be significantly
lost into the urine following I/R, with a decreased abundance in renal parenchyma. In a rat
model of renal I/R, prior i.v. administration of taurine significantly reduces injury, as
reflected by final serum creatinine levels much lower than in control rats [30]. No protection
in terms of ATP content was found. Likewise, the addition of taurine to organ preservation
solution was able to reduce tissue alterations during hypoxia and reoxygenation and permit-
ted recovery of energy metabolism in LLC-PK1 cells [31]. In addition to its role in osmoregu-
lation, the most important function for taurine in oxidant I/R likely involves the local and
systemic scavenging of reactive oxygen species [32, 33]. In contrast to taurine’s metabolomic
profile, the urinary abundance of another organic osmolyte, i.e. trimethylamine (TMA),
appeared reduced following renal I/R. TMA is a volatile tertiary aliphatic amine that is
derived from the diet either directly from the consumption of foods containing TMA, or by
the intake of food containing precursors to TMA such as trimethylamine-N-oxide (TMAO),
choline and L-carnitine[34]. In the mammalian kidney, TMA may help enhance protein fold-
ing and ligand binding in order to counteract perturbations by urea, inorganic ions, and
hydrostatic pressure [29, 34]. In murine and porcine models of severe I/R induced by kidney
transplantation, elevations of TMA levels in blood and urine detected by 'H-NMR spectros-
copy have been identified as reliable markers of renal medullary injury [22, 35]. Furthermore,
renal graft dysfunction is associated with damage to the renal medulla as determined by
TMA release in urine and plasma [35]. Finally, renal I/R induced a significant loss of betaine,
a key choline-derivated osmolyte of kidney medulla [36]. Previous studies similarly pointed
towards an impact of I/R-induced AKI on betain homeostasis [20, 37]. Altogether, these
observations suggest that renal I/R significantly modifies osmoregulation and its associated
biochemical pathways. The exact underlying mechanisms taking place in renal parenchyma
and tubules require further investigation.

Our present NMR-based metabolomic approach does not technically allow us establish the
exact nature of glycoproteins and lipids impacted by renal I/R. Still, in kidney samples, spectral
data disclosed significant variations in signals related to methyl- and methylene groups of fatty
acids (but not in phospholipids and sphingolipids), as well as in acetyl groups linked to glyco-
proteins. These metabolomics changes are not observed in blood and urine samples. Major lip-
ids play key roles in membrane bilayer structure, signaling pathways and energy storage, and
provide functional support to membrane proteins [38]. I/R-associated AKI induces cellular
membrane instability, leading to lipid dysfunction and accumulation in the renal parenchyma.
There, lipids may be either protective or toxic depending on their species and the time-course
of the injury [39]. Further “lipidomic” studies may help better understand such impact of renal
I/R injury on lipid compositions and functions [40].

A major debate is ongoing regarding the need for normalization of urinary biomarker con-
centration to urinary creatinine (UCr) [41, 42]. Normalization to UCr appears to be valid for
the evaluation of chronic kidney disease, but may be inappropriate in case of acute conditions.
Therefore, in our present study, normalization of urine metabolite concentrations was done
upon the global metabolome and not to UCr. The correlation of the urine metabolomic profile
measured by 'H-NMR spectroscopy with classical biomarkers of I/R-induced AKI, i.e. SCr and
urea, was determined by multivariate linear regression analysis using PLS approach. The AUC
of urine metabolome at 24h and 48h post surgery reached 0.98 and 0.97 respectively, suggesting
a high predictive accuracy. After validation in man, one may expect that urine metabolome
analysis may help noninvasively follow kidney function, and eventually detect renal dysfunc-
tion at early stages.
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Conclusion

Our study demonstrates that "H-NMR metabolomics is able to identify early and sustained
metabolic changes in urine and kidney composition, but not in serum, caused by renal I/R.
The most implicated pathways at 6 and 24h post reperfusion include gluconeogenesis, tau-
rine / hypotaurine metabolism, whereas protein biosynthesis, glycolysis, and galactose and
arginine metabolisms are key at 48h post reperfusion. Such innovative approach may open
new research avenues in the understanding, diagnosis and prevention of I/R-associated
AKI.
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fusion (black dots) or sham surgery (dark grey dots).

(TIF)

S2 Fig. 'H-NMR spectra of mouse urine at 6h (A), 24h (B) and 48h (C) post reperfusion.
Relevant metabolites are identified by letters, which correspond to a, isoleucine/leucine; b, lac-
tate; ¢, proline; d, citrate; e, dimethylamine; f, trimethylamine; g, creatine; h, taurine; i, creati-
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(TIF)

$3 Fig. 'H-NMR spectra of mouse kidney at 6h (A), 24h (B) and 48h (C) post reperfusion.
Relevant metabolites are identified by letters, which corresponds to a, methyl and methylene
protons of fatty acid chains; b, lactate; ¢, N-acetyl groups of glycoproteins; d, choline; e, myo-
inositol; f, taurine.

(TIF)

$4 Fig. 'H-NMR spectra of mouse serum at 6h (A), 24h (B) and 48h (C) post reperfusion.
(TIF)

S5 Fig. 'H-NMR spectra of human (A), rat (B) and mouse (C) serum. Spectral regions corre-
sponding to creatinine (*) and urea (**) are indicated by grey zones.
(TIF)
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