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Abstract: Hiding data in electrocardiogram signals are a big challenge due to the embedded
information that can hamper the accuracy of disease detection. On the other hand, hiding data
into ECG signals provides more security for, and authenticity of, the patient’s data. Some recent
studies used non-blind watermarking techniques to embed patient information and data of a patient
into ECG signals. However, these techniques are not robust against attacks with noise and show
a low performance in terms of parameters such as peak signal to noise ratio (PSNR), normalized
correlation (NC), mean square error (MSE), percentage residual difference (PRD), bit error rate (BER),
structure similarity index measure (SSIM). In this study, an improved blind ECG-watermarking
technique is proposed to embed the information of the patient’s data into the ECG signals using
curvelet transform. The Euclidean distance between every two curvelet coefficients was computed
to cluster the curvelet coefficients and after this, data were embedded into the selected clusters.
This was an improvement not only in terms of extracting a hidden message from the watermarked
ECG signals, but also robust against image-processing attacks. Performance metrics of SSIM, NC,
PSNR and BER were used to measure the superiority of presented work. KL divergence and PRD
were also used to reveal data hiding in curvelet coefficients of ECG without disturbing the original
signal. The simulation results also demonstrated that the clustering method in the curvelet domain
provided the best performance—even when the hidden messages were large size.

Keywords: ECG; steganography; curvelet transform; clustering; performance metric

1. Introduction

The health of a patient can be constantly be monitored with the help of medical devices and
digital communication. The old patients can send their physiological signals to the hospitals to avoid
a repeated visit to the hospital. However, this technology has some concern about the security and
content of the information. If the patients broadcast their medical or private information on the Internet
in that case security is an important issue. Information broadcast without security can be assessed,
modified, hacked by some unauthorized user [1]. The privacy of the patient can be leaked and affects
the ability to diagnose due to unauthorized access. United States was passed an Act in 1996 as the
Health Insurance Portability and Accountability Act (HIPAA) to protect patient privacy (personal data).
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This act was instructed about security regarding the communicating and storing of confidential and
private information [2].

One possible solution to secure and protect ECG information is using cryptography, in which
the original signal is encrypted at the sender side and decrypted at the receiver end [3]. However,
the protection is not robust against data piracy as well as changes the bio-medical information
that hampers the ability to diagnose. In that sense, steganography and watermarking are the
alternative approaches to secure the patient’s data and information. A steganography approach [4,5]
provides the worthy embedding capacity, even though it preserves the invisibility of embedded data.
However, the hidden information would fail to extract if marked signals were corrupted during the
transmission. Thus, the watermark needs to resist against geometric operations like rotation, noise
addition and cropping [6]. However limited embedded information size of the watermark can affect
the imperceptibility of the watermarked signal.

Nowadays, few authors have considered some method to hide patients’ information as a piece of
copyright information in electrocardiogram (ECG) signals, magnetic resonance imaging (MRI) and
electroencephalogram (EEG) [7,8]. The security of ECG signals using watermarking is still a developing
area. Embedding a copyright message in an ECG signal is a sophisticated task, as the ability to
diagnose the disease is dependent on the T and P waves of the QRS. Here QRS is the name for the
combination of three of the graphical deflections seen on a typical electrocardiogram (EKG or ECG).
Hence, the effects of data on T and P wave reduction are essential to cover the data in the ECG signal.
Two watermarking approaches are used to embed a watermark in ECG signals. One is a spatial
domain that modifies pixel intensities, and another one is the frequency domain, in which frequency is
modified. In the spatial domain, a hidden message is embedded in the time domain of the original
signal. A reversible ECG steganography method that is based on the coefficients of alignment and is
resistant to image-processing attacks has been proposed by Yang et al. [9]. Some authors have used
discrete wavelets transform (DWT) to embed a watermark. Zhang et al. [10] presented a reversible
ECG steganography using DWT. Tseng et al. [11] also used the wavelet transform and compression for
hiding the copyright information into ECG signals. The combination of singular value decomposition
(SVD) and DWT for hiding data in ECG signals has presented by Jero et al. [12]. However, the wavelet
transform is not able to represent the curvelet.

The author [12,13] also examined that the copyright information inserted in the High-High
(HH) band offers the finest imperceptibility in DWT. However, the wavelet transforms not efficiently
represent the curved lines in that existing DWT method due to the two-directional parameters such
as scale and translation. Thus, some new curvelet transform is required to characterize 2-D or 3-D
singularity. This transform having three parameters such as scale, translation and orientation. The three
parameters are easy to represent curved lines. ECG signals are a mixture of curved lines and peak
values. The curved lines play a very important role in diagnosing disease. The Shearlet transform is also
an alternative to choose as an embedding approach. The Shearlet transform can deliver optimally sparse
approximations for cartoon-like functions. This transform function was also used to hide the data.

Some researchers [14–17] also utilize the curvelet transform in ECG steganography. They hide the
data into ECG by manipulating the curvelet coefficients. Jero et al. [15] represent an ECG steganography
technique by using the n × n sequence method and modified the curvelet coefficients by an adaptive
technique. A novel technique for ECG steganography using quantization has proposed by Jero et al. [16].
In this technique, the coefficients were selected based on the values equal to zero or close to zero. Patil
et al. [17] proposed the ECG-watermarking using a curvelet by evaluating the coefficients and embed
binary information into ECG signals with the help of property of quantization and least significant
bit (LSB). Thanki [18] analyzed the hybrid multi-biometric technique by exploiting the fast discrete
curvelet transform.

In this study, [18], the authors have investigated a technique of ECG-watermarking
(using watermarking with compressive sensing theory) that hides the patient’s information into
the curvelet domain of ECG. To maintain the diagnosis process and the QRS complex, P and T wave
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attributes, the curvelet coefficient clustering approach is used. For the demonstration, the MIT-BIH
arrhythmia database is used to collect the ECG signals [19]. The performance of the proposed technique
has been measured by the PSNR, NC, KL, PRD, SSIM, MSE, and BER parameters to show the
imperceptibility of the watermarked ECG signal. The clustering approach in curvelet coefficients
provides the invisibility and robustness of embedded watermark as well as provides the good quality of
extracted watermark even from image-processing attacks. The performance of the proposed technique
considering different sizes of the watermark and different selection of clusters has also been presented.

2. Curvelet Transform

Mainly the former transform, which is the ridgelet transform represents lines and curves in a very
informative manner. The ridgelet transform solitary works for line singularities. There are inadequate
directional features in ridgelet transform and not follows the scaling law. However, curvelet transforms
added a new parameter called orientation that gives more information about the angles [20–22].
The basic unit of the curvelet is the ridgelet. Though the curvelet has higher directional representations
than other multiresolution representations such as wavelets, ridgelet and random. The ccurvelet
transform usages the scaling law in its structure.

Candes and Donoho [20] presented a new transform called the curvelet transform. For the curvelet
transform, the first ridgelet transform is needed on each wedge. Ridgelet computation is a very
costly procedure and the computation cost of curvelet is slow [23–25]. The ridgelet on each wedge is
discarded to make the curvelet faster computation.

Curvelet transform is the function with three parameters: orientation, scale and translation as
discussed, so assume ϑ(s, o, t) to be the function plane as defined in below equation:

T ϑ =

1∫
R2

f(α)φ ϑ(α) dx =

∫
f̂(u)Ws(Qou)ei<αo

t ,u>
∗

1

(2π)2 (1)

where s = scale parameter s = 0,1 . . . , o = orientation 0,1,2 . . . , t = translation where t = (t1,t2,); t1,, t2, ∈

Z, Qo = rotation by o radian, Ws = polar wedge window. Define coarse scale curvelet in below equations.

φj,0,k = φj,0

(
x− 2−j,0,k

)
(2)

φ̂ j,o(w) = 2−j0A0
(
2−j,0
|w|

)
(3)

The continuous-time window smoothly extracts the frequency near the dyadic corona and near
the angle. In digital curvelet transform, a Cartesian corona is based on concentric square and shears
instead of circles.

A new transform—the contourlets transform—is also a multiresolution directional transform,
as it proficiently imprecise images prepared of smooth regions disconnected by smooth boundaries.
It encouraged by the Human Visual System (HVS). The difference between two is that the curvelet
transform was developed in a continuous domain, whereas the contourlet transform was planned as
a directional multiresolution transform in a discrete domain. The curvelet transform can capture the
smoothness of the curve of images with different elongated shapes and in variety of directions.

3. Proposed Method

In this application, the watermark is embedded into the ECG signal, as these signals contains an
enormous number of curved surfaces. The curvelet transform authoritatively decomposes an image
at different angles and the scales it to represent more curvilinear objects and have better edge
representations. Hence, there is motivation to embed watermark on ECG signal by using curvelet
transform without affecting the ability to diagnose.
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3.1. Conversion of the ECG Signal into an Image

The biomedical ECG 1-D signal from the MIT-BIH arrhythmia database [19] sampled at 128 Hz
was in this study. Figure 1 shows the 1D-ECG signal. P waves and T waves in the ECG QRS complex
are the fundamental attributes for diagnosing any disease. The Tompkins algorithm [26] is used to
identify P waves and T waves in ECG. In this, band-pass filters are used to filter the ECG signal.
The signals are squared, and these squared signals are averaged by the window function to exclude
noise, hence forming the ECG signal. The fiducial mask is attained by focusing the QRS attributes on
a distinct instantaneous time. Then, its explorations back for missed QRS complexes and removes the
duplicate detections. Lastly, the R-wave and QRS attributes are identified. P waves and T are utilized
to alter the 1D-ECG signal into a 2-D image. Sampling rate 128 Hz is used and for each ECG trained
signal fiducial points are calculated. From each calculated fiducial mask 64 points are utilized [12].
Now the ECG signal is changed into the image. The size of the 2-D image depends upon the number
of ECG trains. There are some data losses due to the selected arguments employed to transform the
2D-ECG image into a 1D-ECG signal. However, this data loss is negligible and does not affect the
ability to diagnose of the disease. The 2D-ECG image produced from Figure 1 is shown in Figure 2.

Sensors 2020, 20, x 4 of 16 

 

3.1. Conversion of the ECG Signal into an Image 

The biomedical ECG 1-D signal from the MIT-BIH arrhythmia database [19] sampled at 128 Hz 
was in this study. Figure 1 shows the 1D-ECG signal. P waves and T waves in the ECG QRS complex 
are the fundamental attributes for diagnosing any disease. The Tompkins algorithm [26] is used to 
identify P waves and T waves in ECG. In this, band-pass filters are used to filter the ECG signal. The 
signals are squared, and these squared signals are averaged by the window function to exclude noise, 
hence forming the ECG signal. The fiducial mask is attained by focusing the QRS attributes on a 
distinct instantaneous time. Then, its explorations back for missed QRS complexes and removes the 
duplicate detections. Lastly, the R-wave and QRS attributes are identified. P waves and T are utilized 
to alter the 1D-ECG signal into a 2-D image. Sampling rate 128 Hz is used and for each ECG trained 
signal fiducial points are calculated. From each calculated fiducial mask 64 points are utilized [12]. 
Now the ECG signal is changed into the image. The size of the 2-D image depends upon the number 
of ECG trains. There are some data losses due to the selected arguments employed to transform the 
2D-ECG image into a 1D-ECG signal. However, this data loss is negligible and does not affect the 
ability to diagnose of the disease. The 2D-ECG image produced from Figure 1 is shown in Figure 2. 

 
Figure 1. Original 1-D electrocardiogram. 

 
Figure 2. 2-DECG image. 

  

0
50

100
150

0

50

100

150
-100

0

100

200

300

Sampling

2D ECG signal

Train ECG

A
m

pl
itu

de

Figure 1. Original 1-D electrocardiogram.
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3.2. Transform ECG Image into Curvelet Transform

A fast discrete curvelet transform (FDCT) is applied to transform the host ECG image into the
frequency domain. After applying FDCT, we obtained the number of scales k scale = log2 k − 2,
where k × k is the dimensions of the ECG image. Subsequently, the decomposition Coarse, fine and
detail level of coefficients are obtained. From these three levels, we can embed our data at any level.
The invisibility and robustness can be decided from the selection of the level. In a coarse-level maintain
most of the energy of image to give more invisibility.

3.3. Processing Patient Information

The main aim of this step is to gather the information of patients and development the patient
information that non-authorized entity should not get admittance or tamper the personal evidence of
the patient. Private information is gathered in the form of a text file then the text file is transformed
into the binary image. The implanting the information in the ECG is easygoing and offers a good
quality of mined watermark. Sample of patient information that could be implanted in ECG signals by
modified the coefficients of curvelet transform as shown in Figure 3.
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3.4. Curvelet Coefficients Clustering

In the curvelet coefficients selected the embedding domain is coarse-level (D) comprises K number.
With the help of Euclidean distance, D is divided into m number of subclasses. Non-similarity measure
between the curvelet coefficients and the cluster center is used to find Euclidean distance. Let P is the
maximum coefficient and p is the minimum coefficient in the D. If p > 0 then we take the supreme
coefficient P. Then preliminary cluster centers are selected after that the coarse-level D decomposed
into B equal intervals. Then find out cluster’s center by using the following equations:

c0 = 0, ci =
i
X

P, c =
i
X

p (4)

where 1 ≤ i ≤ X − 1. For each cluster, calculate the Euclidean distance using EDi,j =
∣∣∣ Di − Dj

∣∣∣ .
After that categorize the coefficients rendering to the smallest Euclidean distance and placed the
coefficient equivalent to the group center. The entire number of clusters is 2X − 1. They are Ri, R0, R-i.
Formerly apprise the cluster’s center by spending a threshold, i.e., (T = 0.1), Vj = average value of
Ri, Yi = Vi − Vj, if Yi > T then update the group epicenter. This method distributes coefficients into
groups ranging from R(X−1) to R−(X−1). Patient information is implanted to coefficients of groups among
R(X−1) − R0 and R0 − R−(X−1).

3.5. Watermark Embedding

Select the cluster where do you wants to hide the patient’s information. Let, it be group Ri to Rj.
Change name the particular cluster G1, G2... Gk, where k = 2(I − j) + 2. For each cluster Gi, the radius
of the groups are radii1 = ci −max(Gi), radii2 = ci −min(Gi).
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Where, radii1 and radii2 are the radius of cluster Gi and ci = center of the Gi. For, respectively
carefully chosen cluster q calculate following:

l0(q) = ci −
a
A
∗radii1 (5)

l1(q) = ci −
(a− 1)

A
∗radii1 (6)

L0(q) = ci +
a
A
∗radii2 (7)

L1(q) = ci +
(a− 1)

A
∗radii2 (8)

where A = numeral no. X = grouping for amount of cluster classes. a = 1, 2, . . . . . .A.
Each coefficient essential appropriate to some of l0, l1, L0 and L1 set. Discover the group number

of the coefficient of D for each curvelet coefficient. If the group is not identical to Gi then find the group
number of subsequent coefficients of curvelet. Or else, patient information is inserted into D by using
the following equations. 

D′ = D− 1
A ∗ radi12 if (l0 ≥ D ≥ L1)

D′ = D− 1
A ∗ radi11 if (l1 ≥ D ≥ L0)

D′ = D Otherwise
(9)

4. Data Extraction

A reversible blind extraction process is presented in this section that mined an embedded
watermark from the ECG signals. In this work, the original watermark is not required to extract of the
patient’s information. The ECG embedded with patient’s information i.e., watermarked ECG is firstly
converted to 2D-ECG signal as the procedure discussed in Section 3.1. To convert time-domain image
into frequency domain curvelet transform was applied on 2-D watermarked ECG image and then
select course level of curvelet transform. The selected scale’s coefficients are classified into clusters
as discussed in Section 3.4 above. To extract the embedded watermark, use the embedding clusters,
i.e., R(X−1) to R−(X−1). Then for each selected cluster calculate l0(q), l1(q), L0(q), L1(q) by using Radii1,
Radii2 as discussed in Equations (5)–(7). Then for each selected cluster calculate extract bits of the
watermark by using the below equation.

w = 1 if (L0 ≤ D ≤ L1)∧ (A% 2 == 1)
w = 1 if ((l0 ≤ D ≤ l1)∧ (A% 2 == 1)

w = 1 Otherwise
(10)

5. Pseudo Code

5.1. At Transmission: Embedding

Input: patient information as text data and 1D-ECG signal.
Output: watermarked ECG image.
The pseudo-code for embedding patient information into the curvelet domain using clustering is

given below:

1. Read patient information, convert this text information into image. To process, the patient
information or to make the watermark more imperceptible this patient information image,
i.e., in RGB format converts it into a 2-D grayscale image;

2. Read ECG signal as the original signal and detect the QRS wave in this ECG signal to resist the
diagnose detection;
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3. For detection of QRS wave Pan–Tompkins function was used. Here the parameters of this
Pan–Tompkins function are ECG signal, frequency and number;

a [qrs_amp_raw, qrs_i_raw,delay,final] = pan_tompkin(Orig_Sig,128,1)

4. To process the ECG signal in time domain first, convert this 1D-ECG signal into a 2D-ECG image;
5. Second, to adapt the environment of frequency domain this 2D-ECG image is converted into the

transformed domain by using curvelet transform;
6. After this from this frequency domain, the embedding domain is selected. As discussed coarse-level

coefficients maintain most of the energy of image to give more invisibility. The coarse-level
coefficients were designated as the embedding domain;

7. Now categorized the selected embedding domain into different clusters as discussed in
Section 3.4 above;

a. Find the dissimilarity matrix;
b. Calculate clustering;
c. Making the clusters by obtaining the values of centers and the radius of the cluster;

8. Then from these clusters set, select the cluster to hide the watermark. Let, it be group Ri to Rj.
Change name the particular cluster G1, G2 . . . Gk, where k = 2(I − j) + 2. For each cluster
Gi, the radii of the groups are radii1 = ci −max(Gi), radii2 = ci − min(Gi) as discussed in
Section 3.5 above;

9. Now, using Equations (5)–(8), to calculate the values of l0, l1, L0 and L1 set;
10. For each coefficient, if the coefficient belongs to the selected cluster Gi the watermark image bit

is inserted by modifying the coefficient value by using Equation (9). Otherwise find the group
number of subsequent coefficients of curvelet;

11. With these updated coefficients values the ECG image is converted into the time-domain by
applying the inverse curvelet transform. Then change the 2D-ECG image into 1D-ECG signal.
The resulted signal is a watermarked signal.

5.2. At Receiving: Reversible Blind Extraction

1. Read watermarked 1D-ECG signals that embedded with the patient’s information;
2. This watermarked ECG signals is altered into a 2D-ECG image as the procedure discussed

in Section 3.1;
3. To convert time-domain image into frequency domain curvelet transform was applied on 2-D

watermarked ECG image;
4. Then form this frequency domain the course level was selected. The selected scale’s coefficients

are classified into clusters as discussed in Section 3.4 above;
5. The selected clusters used in the embedding procedure numbered and treated as the key in the

extraction process;
6. Then for each selected cluster calculate l0(q), l1(q), L0(q), L1(q) by using Radii1, Radii2 as

discussed in Equations (5)–(7);
7. Then for each selected cluster extract bits of the watermark by using Equation (10). Now convert

these bits into the 2-D image to get the extracted watermark image, i.e., text data of patient
information in the form of an image.

6. Experimental Results

The demonstration of the presented work was assessed using parameters such as imperceptibility,
data loss and the effect of ability to diagnose. Peak signal to noise ratio (PSNR), normalized correlation
(NC), PRD and KL metrics were used to measure the imperceptibility and effect of ability to diagnose.
Data loss can be estimated using MSE, bit error rate (BER) and SSIM [27]. In this, Xc was the host ECG
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image and Xw was watermarked ECG, M × N was the size of image M = no. of rows and N = number
of columns.

A. Peak signal to noise ratio (PSNR): The PSNR is usually expressed in terms of the logarithmic
decibel scale. The following expression was used to calculate PSNR between two images.

PSNR = 20 log10

 max(Xc)√
1

M∗N
∑N

i=1[Xc −Xw]
2

 (11)

B. Normalized correlation (NC):

NC =

∑
i, j(Xc∗Xw)∑

i, j Xc2 (12)

C. Bit error rate (BER):

BER(w, w∗) =

∑
i, j Xc ⊕Xw

(M ∗N)
(13)

D. Percentage residual difference (PRD):

PRD% =

√√
∑N

i=1(Xc −Xw)
2∑N

i=1(Xc)
2

 ∗ 100 (14)

E. Kullback–Leibler divergence (KL):

D
(
pc, pw

)
=

∫
pc(x) log

pw(x)

pc(x)
dx (15)

where D = KL divergence, pw = probability x event in the watermarked, pc= probability of
the host signal

All other metrics are access information in time domain only KL divergence calculated in frequency
domain it will advantageous when the signals are frequency domain [28].

F. Structure similarity index measure (SSIM): PSNR was the traditional error summation approach
for evaluating the similarity, but PSNR matric only shows the difference between the image
intensity, it does not relate with the quality [29,30]. Hence, a new approach was developed by
Wang [29] to measure the comparison among the host and disturbing image.

SSIM =

(
2 ∂i∂ j +ω1

)(
2βj +ω2

)(
∂2

i + ∂2
j + c1

)(
β2

i + β
2
j +ω2

) (16)

where ∂i = 1
M

M∑
i=1

ii, ∂ j = 1
M

M∑
i=1

îi, βi =

√(
1
M

M∑
i
(ii − ∂xi)

2
)
, β j =

√(
1
M

M∑
i

(
îi − ∂i

)2
)
, ω1 =

(t1P)2,ω2 = (t2P)2. t1 = 0.01, t2 = 0.03, P = 255 (maximum value of host ECG).

The MIT-BIH arrhythmia database was used to collect the ECG signals [19] sampled at 128 Hz.
The original 1D-ECG signal is shown in Figure 1 whereas the 2D-ECG signal is shown in Figure 2.
The QRS complex attributes form the original ECG are shown in Figures 4 and 5 show the resulting
image of the proposed embedding procedure, i.e., watermarked ECG signal. The visual quality of the
original 1D-ECG signal is the same as watermarked 1D-ECG. The experimental result also concluded
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that the watermarked image preserved the attributes QRS complex. The original and information
embedded ECG, i.e., watermarked ECG both show a higher level of similarity.
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Figure 5. Watermarked ECG.

The performance of the proposed technique is analyzed by different ECG signals.
The same watermark as shown in Figure 3 is embedded into the curvelet coefficients of the ECG signal.
The selected clusters are 0–7, so the size of the watermark that embedded is 128 × 128. Table 1 shows
the performance of the proposed technique with different metrics. The Stego ECG does not affect the
ability to diagnose and as well as the signal disturbance is minimum. The PSNR is greater than 65 for
all ECG signals to verify the quality of the original and Stego ECG is very similar. The values of NC,
BER, MSE and SSIM show the comparative analysis of both Stego as original ECG. Values of KL and
PRD shows that the signal contains minimum disturbance.

The projected watermarked ECG has confirmed besides the dissimilar size of information and
the cluster size the experimental results are accessible in Table 2. The visual quality of the original
signal may be degraded by the size of embedded information. The discussed algorithm does not
reduce the visual quality it delivers a good imperceptibility to the hidden information. As well as
the discussed algorithm also takes care the embedded information will not modify the QRS attribute
as well as not affect the ability to diagnose the disease. The experimental results shown in Table 2
verified the performance of the technique. The technique was verified by embedding different sizes
of the watermark in different cluster sizes. In Table 2 the performance measures metrices KL, MSE,
PRD and BER confirm the superiority of the discussed technique. Table 2 verified the similarity of
the original ECG signal and watermarked ECG signal with reference to PSNR (which was above 65).
Further, the values of NC and SSIM are one or near to one.
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Table 1. Performance of proposed techniques (Peak signal to noise ratio (PSNR),Normalized correlation
(NC), Kullback–Leibler divergence (KL),Mean Square Error(MSE),Percentage residual difference
(PRD),Bit error rate (BER)„Structure similarity index measure (SSIM).
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The projected watermarked ECG has confirmed besides the dissimilar size of information and 
the cluster size the experimental results are accessible in Table 2. The visual quality of the original 
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Table 2. Performance of proposed techniques with different watermark sizes and clusters. 

Cluster 0–1 0, 1 0, 1, 2 0, 1, 2, 3 0–7 
Watermark Size 32 × 32 64 × 64 80 × 80 100 × 100 128 × 128 

PSNR 84.5131 79.7489 83.6277 74.2855 66.8254 
NC 1 1 1 1 1 
KL 2.00 × 10−5 2.15 × 10−5 0.0001 0.0007 0.0012 
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The quality of extracted information was furthermore compared with the original information. 
Figure 6 demonstrates the extracted patient information and whereas the performance of the 
extracted information was being compared by the embedded one. The values of PSNR, i.e., 65.31,  
NC = 1, SSIM = 0.991 and MSE = 1.864 × 104 verified the quality of extracted information was similar 
to embedded one. 
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Table 2. Performance of proposed techniques with different watermark sizes and clusters.

Cluster 0–1 0, 1 0, 1, 2 0, 1, 2, 3 0–7

Watermark Size 32 × 32 64 × 64 80 × 80 100 × 100 128 × 128
PSNR 84.5131 79.7489 83.6277 74.2855 66.8254

NC 1 1 1 1 1
KL 2.00 × 10−5 2.15 × 10−5 0.0001 0.0007 0.0012

MSE 7.67 × 10−5 7.26 × 10−5 0.0001 0.0005 0.0011
PRD 0.0421 0.0545 0.0494 0.0674 0.0967
BER 0 0 0 0.011 0.214

SSIM 1 1 1 1 1

The quality of extracted information was furthermore compared with the original information.
Figure 6 demonstrates the extracted patient information and whereas the performance of the extracted
information was being compared by the embedded one. The values of PSNR, i.e., 65.31, NC = 1,
SSIM = 0.991 and MSE = 1.864 × 104 verified the quality of extracted information was similar to
embedded one.



Sensors 2020, 20, 2941 11 of 15
Sensors 2020, 20, x 11 of 16 

 

 
Figure 6. Extracted patient information. 

Table 3 shows the quality of the extracted patient’s information. The text information of patients 
was converted into an image and embedded into the curvelet transform by using clustering. Table 3 
shows the visual quality of the patient’s information. The cluster was 0–7 and the size of the 
embedded information was 128 × 128. The quality of the extracted information was analyzed by 
PSNR, NC and SSIM metrics. The values of PSNR verify the visual quality of the extracted 
information was above 64. The values of NC are one for all ECG signals and values of SSIM are near 
to one that shows the similarity between the embedded and extracted images. 

Table 3. Quality of extracted patient’s information. 

Sr. 
No. 

ECG Signal Extracted Watermark 
PSN

R 
NC SSIM 

1 

 

 
 

 

65.3
1 

1 0.911 

2 

 

 
 

 

65.8
9 

1 0.934 

3 

 

 
 

 

64.9
83 

1 0.974 

Figure 6. Extracted patient information.

Table 3 shows the quality of the extracted patient’s information. The text information of patients
was converted into an image and embedded into the curvelet transform by using clustering. Table 3
shows the visual quality of the patient’s information. The cluster was 0–7 and the size of the embedded
information was 128 × 128. The quality of the extracted information was analyzed by PSNR, NC and
SSIM metrics. The values of PSNR verify the visual quality of the extracted information was above
64. The values of NC are one for all ECG signals and values of SSIM are near to one that shows the
similarity between the embedded and extracted images.

Table 3. Quality of extracted patient’s information.
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The implanted information may be affected by image-processing operations like rotation, 
filtering, cropping, compression, etc. To demonstrate the superiority against the image-processing 
operation, the technique also extracted the information from the noised, filtered, rotated, compressed 
and cropped ECG signals. Table 3 shows the values of the PSNR and MSE after compared the 
extracted and embedded information from distorted ECG. Table 4 verified the robustness of the 
technique because the extracted watermark was very similar to the original one. 

Table 4. Quality of extracted watermark after different image-processing operations. 

Operations 
Gaussian 

Noise 
(0.01) 

Salt & 
Pepper 
(0.01) 

Rotation 
(5°) 

Compression 
(5%) 

Median 
Filter (3 × 3) 

Cropping 
(5%) 

PSNR 43.6168 42.5698 41.49 38.2123 40.2738 32.1112 

MSE 2.10 × 10−3 6.10 × 
10−2 0.0421 0.0761 0.0213 0.1821 

BER 0.321 0.3786 0.4001 03,986 0.4543 0.5743 
NC 0.9992 0.9853 0.9798 0.9832 0.9783 0.9212 

SSIM 0.9732 0.9653 0.9422 0.9489 0.9183 0.8833 

Figure 7 shows the values of BER, NC and SSIM of extracted patient images and embedded 
images under different image-processing attacks. The values of BER was less than 0.5 in all cases even 
the values of NC and SSIM are near to one. The values of BER, SSIM and NS confirm the resistance 
of the image-processing attacks on the extracted watermark. Therefore, from Table 4 and Figure 7 
demonstrate the robustness of the presented technique against image-processing attacks (Y-Axis). 
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The implanted information may be affected by image-processing operations like rotation, filtering,
cropping, compression, etc. To demonstrate the superiority against the image-processing operation,
the technique also extracted the information from the noised, filtered, rotated, compressed and cropped
ECG signals. Table 3 shows the values of the PSNR and MSE after compared the extracted and
embedded information from distorted ECG. Table 4 verified the robustness of the technique because
the extracted watermark was very similar to the original one.

Table 4. Quality of extracted watermark after different image-processing operations.

Operations Gaussian Noise
(0.01)

Salt & Pepper
(0.01)

Rotation
(5◦)

Compression
(5%)

Median
Filter (3 × 3)

Cropping
(5%)

PSNR 43.6168 42.5698 41.49 38.2123 40.2738 32.1112

MSE 2.10 × 10−3 6.10 × 10−2 0.0421 0.0761 0.0213 0.1821

BER 0.321 0.3786 0.4001 03,986 0.4543 0.5743

NC 0.9992 0.9853 0.9798 0.9832 0.9783 0.9212

SSIM 0.9732 0.9653 0.9422 0.9489 0.9183 0.8833

Figure 7 shows the values of BER, NC and SSIM of extracted patient images and embedded
images under different image-processing attacks. The values of BER was less than 0.5 in all cases even
the values of NC and SSIM are near to one. The values of BER, SSIM and NS confirm the resistance
of the image-processing attacks on the extracted watermark. Therefore, from Table 4 and Figure 7
demonstrate the robustness of the presented technique against image-processing attacks (Y-Axis).
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Some authors [14–16] have used the curvelet transform for embedding the information into the ECG
signals as discussed above. In the adaptive threshold [15] and the quantization approach [16] authors
proposed the steganography ECG using curvelet. In their study, they followed the steganography
definition to make watermark invisible. Hence, these techniques first emphasized the imperceptibility
of embedding information. Further improvement for the robustness of the watermark was still a critical
parameter left in the previous work. Second, they used binary data as watermark. Binary data are
very fragile because any mirror change may lose the data or change the meaning. High levels of
false-positives were detected while using binary data as a watermark.

To highlight the superiority of the proposed technique, HH scale DWT-SVD [12], adaptive
threshold [15] and quantization approach [16] some latest ECG-watermarking techniques results were
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compared. In this technique, the author used clustering and some watermark-strength parameters
to make the watermark invisible, as well as robust. The algorithm performance metrics like KL,
PRD, MSE, etc., are being compared by existing ECG-watermarking techniques are shown in Table 5.
If the 67 × 67 size of information was embedded into the ECG signals the value of PSNR value of the
watermarked ECG was 78.0702 dB. Subsequently, the values of PSNR show the resemblance among
the host ECG signal and watermarked ECG signal. As the value of PSNR achieved by the quantization
approach was 73.75 dB, which can make a base when accompanied by the performance estimation.
However, comparing the PSNR values of HH scale DWT-SVD and adaptive threshold techniques
are simply 50.44 dB and 60.68 dB, respectively. Coefficients whose values are zero are exploited in
the quantization approach. However, the embedding capacity of the quantization approach was
very low; in this proposed technique further improvement to insert more watermarks bits with zero
values coefficient may be achieved. To locate the watermark, an n × n sequence was used in the
adaptive threshold method. In this method, the author also compromised with the embedding capacity.
The proposed technique was not restricted in terms of embedding capacity because the technique used
the property of clustering to hide the watermark. The collection of coefficients depends on the size of
the implanting watermark. Preferably, the coefficients with the smallest values are finest to insert the
patient’s information because they offers the best invisibility.

Table 5. Comparison of proposed technique with existing ECG techniques.

Performance Metric Watermark Size PSNR KL MSE BER PRD

HH Scale DWT-SVD
[12] 67 × 67 (4489 bits) 50.44 0.15 0 0 0.59

Adaptive Threshold
Method [15] 251 bytes (2008 bits) 60.68 0.0027 0.05 0 0.0018

Quantization
Approach [16] 251 bytes (2008 bits) 73.75 0.00023 0.002 0.04 0.04

Proposed Technique 67 × 67 (4489 bits) 78.0702 0.0000455 3.38 × 10−4 0 0.105

To embed the information the text information was transformed into binary in HH scale
DWT-SVD [12], adaptive threshold [15] and quantization approach [16] techniques. The whole
information of any patient may be changed if there any false positive detection because the information
was inserted into a binary form. However, in the projected technique image embedded into the ECG.
The text information was first transformed into the image and this image was inserted by modifying
the curvelet coefficients using a clustering approach. The benefit of embedding an image was that
false-positive detection will only change the pixel intensity that only degrades the image quality.
The process can be automated using deep learning [30]. However, the meaning of the entire embedded
information was not changed. The proposed ECG-watermarking technique that offers not only the
best invisibility of watermark as well as it also offers good robustness and secures ECG-watermarking.

7. Discussion

In this presented technique, the authors embedded patient information as a watermark into ECG
signals. As the coarse-level maintains most of the energy of image, this level was chosen to make
the watermark more robust. To obtain the coarse-level coefficients, clustering approaches were used.
To verify the strength of the cluster, the watermark was embedded into the ECG signal. Even when the
watermark was embedded as a text image, some false-positive occurred, that not only degraded the
quality of the extracted watermark, but also effected the robustness of the image. Hence, the text must
be the embedded as a single unit. The method applies to some biometric techniques like fingerprint,
MRI, CT-scan, etc. However, to obtain optimum results, the use of morphologic operators may be
different. Moreover, QRS waves are not used in all types of biometrics. Additionally, the work was
limited to images only, as it was applicable only for embedding the text watermark. So algorithm
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with steganography may need further dataset. Today, with everything digital for security reasons,
said methodology may be used for better encryption. To enhance the scope of the technique utilization
of deep learning, machine learning may be incorporated as a further improvement for automation.
In a nutshell, as a medical application, the work can be extended to medical video-watermarking,
voice-watermarking and online-content security, etc.

8. Conclusions

A curvelet transform-based ECG-watermarking approach using Euclidean and non-similarity
distance clustering technique was presented and a 1D-ECG was converted into a 2D-ECG image
by preserving the QRS complex. The curvelet transforms 2D-ECG results from a set of coefficients.
A Euclidean, non-similarity distance method was incorporated to make the clusters of the coefficients.
Patient information was transformed into the image and embedded into the selected cluster coefficients.
Keys were utilized to secure patient information from unauthorized access. The performance of the
proposed method was evaluated by metrics such as PSNR, NC, PRD, KL, BER, MSE and SSIM. As the
size of the patient’s information increase, the quality of the signal decreases, but this does not affect the
ability to diagnose disease from the ECG. It was verified by experimental results that the BER was
approximately zero, and the NC was zero by a two-fold increase in the patient information. Patient
information was also secure and robust from any geometric attacks. The proposed technique can be
easily implemented in wearable medical devices to transmission of the ECG. Hence, the proposed
technique has provided a better way to transfer patient information without affecting the ability to
diagnose, and provides a reliable, secure and robust ECG-watermarking technique. However, there is
always room for improvement. Deep learning and fuzzy logic may be applied for non-singularity and
varying levels of brightness/noise. The automation of the process can be improved at the early stages
for even better results.
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