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Abstract

Characterization of the human antibody (Ab) repertoire in mouse models of the human immune 

system is essential to establish their relevance in translational studies. Single human B-cells were 

sorted from bone marrow and periphery of humanized NOD/SCID γcnull mice at 8–10 months 

post-engraftment with human cord blood-derived CD34+ stem cells. Human immunoglobulin 

variable heavy (VH) and kappa (Vκ) genes were amplified, cognate VH-Vκ gene-pairs assembled 

as single-chain variable fragment-Fc antibodies (scFvFcs) and functional studies performed. 

Although overall distribution of VH genes approximated the normal human Ab repertoire, analysis 

of the VH-third complementarity determining regions (H-CDR3) in the mature B-cell subset 

demonstrated an increase in length and positive charges suggesting autoimmune characteristics. 

Additionally, >70% of Vκ sequences utilized Vκ4-1, a germline gene associated with 

autoimmunity. The mature B-cell subset-derived scFvFcs displayed the highest frequency of 

autoreactivity and polyspecificity, suggesting defects in checkpoint control mechanisms. 

Furthermore, these scFvFcs demonstrated binding to recombinant HIV envelope corroborating 

previous observations of poly/autoreactivity in anti-HIVgp140 antibodies. These data lend support 

to the hypothesis that anti-HIV BnAbs may be derived from auto/polyspecific Abs that escaped 

immune elimination and that the hNSG mouse could provide a new experimental platform for 

studying the origin of anti-HIV neutralizing Ab responses.
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Introduction

Advancement in high-throughput screening techniques has led to the recent discovery of 

several highly potent broadly neutralizing antibodies (BnAbs) against HIV1–4 and Influenza 

A5 recovered from peripheral blood (PB) derived B-cells of infected individuals; however, 

the occurrence of these BnAbs is extremely rare. This has spurred a renewed interest in 

‘rational vaccine design’ where it may be feasible to analyze the patient’s antibodyome in 

order to obtain insight into the ontogeny of the BnAbs.6 This information may then be used 

to design candidate vaccines in order to improve BnAb responses.4

Given the cost and ethical constraints of using human subjects for investigative vaccine 

studies, there is a growing need for a predictive and surrogate system to study human Ab 

evolution at the single-cell level. “Humanized” mouse models are increasingly being used to 

study human immunity, developmental and disease processes.7, 8 Newer mouse models 

deficient in the expression of the interleukin-2 receptor (IL2R) γ-chain (γcnull), including 

NOD/SCID γcnull (NSG), BALB/c-Rag2−/−γcnull and H2d- Rag2−/− γcnull mice support the 

development of a multi-lineage human hemato-lymphoid system following transplantation 

with fetal or adult hematopoietic stem cells (HSC). Additionally, these engrafted γcnull mice 

exhibit normal life spans, unlike previous models, thus enabling long-term studies.9 In spite 

of these favorable advances, the adaptive Ab responses of these animals are weak with 

barely detectable secondary responses including class switching and affinity maturation.7 

Growth factor supplementation with human BLyS10 and T cell-cytokines11 in order to 

support growth and differentiation of the transplanted cells has resulted in only marginal 

improvement. Treatment of these mice with human cytokines and other costimulatory/

growth factors delivered by a variety of techniques are being actively investigated to further 

improve human immune system development.12

Clonal diversity and immune tolerance are two major cornerstones of an effective Ab 

response that must also be considered in the evaluation of these mice as a relevant platform 

system to study human Ab responses. Several studies have evaluated immune repertoire 

complexity in hNSG mice by TCR CDR3 spectratyping,9 BCR H-CDR3 immunoscope 

analysis13 and multiplex PCR of V-J rearrangements of TCRβ and H-CDR314 and have 

concluded that both repertoires show levels of diversity comparable to those of humans. In 

addition, there have been two reports that analyzed the diversity of the IG repertoire with a 

focus on only the VH4 family in NOD/SCID and NOD/SCID/β2mnull mice.15, 16 However, a 

systematic study in which the diversity of the human B-cell repertoire is analyzed via 

genetic and functional analysis of the variable (V), diversity (D) and joining (J) gene 

segments of the IG heavy and light chain genes has not been performed in hNSG mice. 

Analysis of immune tolerance in hNSG mice by the evaluation of the physiologic 

checkpoint control mechanisms that are normally operative during B-cell development17, 18 

has also not been reported (see Mouquet et al17 for schema).

In the present study, analysis of VH and Vκ gene arrangements in hNSG-derived single 

human B-cells sorted at different developmental stages was performed. Nucleotide and 

amino acid sequence analysis of the heavy chain genes indicated the presence of a diverse 

antibody repertoire; however, characterization of H-CDR3 regions and a specific restriction 
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in the Vκ repertoire suggested an autoreactive potential. This was further confirmed by 

functional studies where scFvFcs cloned from single B-cells were found to exhibit binding 

to self-antigens. Intriguingly, many autoreactive clones also displayed affinity for HIV-1 

envelope protein gp140 (HIV-1gp140). These data lend support to the contemporary 

hypothesis that anti-HIV BnAbs may be derived from auto/polyspecific Abs that escaped 

immune elimination.19, 20 Thus, the defects in immune tolerance in these hNSG mice may 

provide a unique model to study the development of anti-HIV BnAbs where ancestral 

origins of antibodies can be determined and the existing HIV-reactive Ab clones can be 

modulated via experimental infection or immunization.

Results

B-cell development in long-term engrafted hNSG mice

Significant numbers (>10% of total lymphocytes) of human CD45+ (hCD45+) cells could be 

detected in the PB of hNSG mice between 1–2 months post HSC injection; however, total 

human CD3+ T cells remained low (<5% of total hCD45+ cells) during that time. At 6 

months post HSC injection, the hCD45+ frequency in the PB of the hNSG mice was 43.87 ± 

10.11% (n = 8) of total lymphocytes, of which 41.49 ± 22.75% stained for hCD3 (T cells) 

and 53.28% ± 21.5% for hCD19 (B-cells). Of the total CD19+ human B-cells, 53.64 ± 

12.69% expressed the CD5 surface antigen, which was higher than the reported level of 

circulating CD19+CD5+ cells (~15%) found in humans.21 Profiles of the different CD19+ B-

cell subpopulations in the hNSG mice at >6 months post HSC transplantation at the time of 

single B-cell sorting are shown in Figure 1. B-cells at all major stages of the developmental 

pathway (early immature, immature, new emigrant and mature naïve) were detected, but 

CD27+ B-cells, associated with a memory phenotype22 were notably absent. Overall, the 

data demonstrate that the human B-cell developmental pathway is recapitulated in the hNSG 

mice; however the memory B-cell compartment is not or only sparsely populated.

Analysis of human VH sequences

Table 1 summarizes the total data set analyzed in the present study. Single B-cells from 

different B-cell subpopulations were sorted, and IG gene sequences were obtained as 

described in Methods. In total, 257 and 264 sequences unique for human immunoglobulin 

(IG) heavy and light chains, respectively, were obtained and further analyzed. Intriguingly, 

in the first round PCR reactions to amplify kappa (Vκ) and lambda (Vλ) light chain genes, 

only those sequences that corresponded to kappa light chain gene segments were recovered. 

PCR mediated primer bias was ruled out by using the same primer mix to amplifyheavy and 

lightchain genes from single-sorted mature B-cells from a normal human donor. From a total 

of 192 single-sorted human PB B-cells, 137 VH, 44 Vκ and 33 Vλ unique and productive 

gene segments could be amplified (Supplementary Figure 1). The reason(s) for this observed 

exclusivity of the Vκ genes is currently under investigation and may include factors, such as 

Vλ transcript instability, greater Vλ variability and Vκ gene rearrangement bias in the hNSG 

mice.

Individual IG sequences were aligned with the International Immunogenetics Information 

System (IMGT) database, and the overall germline usage was determined. Human VH gene 
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segments are divided into 7 families, named VH1–7 with 51 known functional genes and 

>40% of the genes representing the VH3 family (IMGT). VH sequences from all except VH2 

and VH6 families were represented in the hNSG mice, and the sequence usage from 

different VH gene families across the B-cell subpopulations is shown in Figure 2, upper 

panel. In comparison to the human VH repertoire found in normal adults,23, 24 gene 

segments corresponding to the VH3 family were most frequently utilized followed by VH4 

in most of the B-cell subpopulations. An exception was observed in new emigrant B-cells 

where the VH3 usage (17.4%) was marginally lower than that of VH4 (22.5%). Additionally, 

VH7 gene segments were detected at a frequency higher than normally found (~2% in the 

human VH repertoire, IMGT), particularly in the early immature stage of B-cell 

development where it was ~12% of the total VH sequences (Supplementary Table 1). No 

other significant differences were found in the distribution of the VH gene families across 

the different B-cell subsets. These observations suggest that the VH repertoire in the hNSG 

mouse is quite diverse with 36 out of 51 known functional genes found at least once in the 

various subpopulations (Supplementary Table 1). Among individual gene segments, VH4–

34, VH3–30 and VH1–2 were utilized most often. VH4–34 was most frequently observed in 

the repertoire of all the B-cell subsets, except for the immature subpopulation where VH3–

30 had the highest occurrence.

Analysis of VH rearrangement and H-CDR3 composition

The complexity of the IG repertoire is enhanced by gene rearrangement of VH with DH and 

JH segments and Vκ/λ with Jκ/λ segment for the light chain. Therefore, the utilization of the 

DH and JH gene segments across the different B-cell subpopulations was analyzed next 

(Figure 2, middle and lower panels, respectively). The DH genes are classified into 7 

families, DH1–DH7. As reported for humans,25 the usage of the DH3 family in the hNSG 

mice was significantly more frequent than the other families (p<0.005, Exact Fisher-

Freeman-Halton Test). An increase in the usage of DH1 and DH2 segments along the CD5− 

B-cell developmental pathway was observed (early immature<immature<new 

emigrant<mature). There were differences between the mature CD5− and CD5+ B-cells in 

terms of DH gene segment usage, particularly with regards to the utilization of DH2 (lower 

in CD5+ B-cells), DH3 (higher in CD5+ B-cells) and DH5 gene segments (absent in CD5+ B-

cells). Rearrangement of DH gene segments may occur either through inversion or deletion 

processes which determines the DH reading frame utilized. An analysis of the usage of the 

DH reading frame (RF) indicated a significantly higher utilization of RF2, found on an 

average of 51% of all the sequences across all B-cell subsets in the hNSG mice (p<0.005, 

Fisher’s Exact Test, data not shown). This draws a parallel to that observed for normal 

human DH gene rearrangements where deletion was found to be the favored process along 

with a lower frequency of the use of RF3.25 The distribution of JH genes clearly showed a 

higher bias for JH4 usage (p<0.005, Fishers’ Exact Test). No significant difference was 

observed between the mature B-cell subsets (p>0.005, Fisher’s Exact Test). However, 

distribution of JH6 usage compared to all other JH segments (except JH3) was found to be 

significantly higher in the mature B-cell subsets (CD5+ and CD5−) compared to the BM-

derived B-cells (early immature and immature B-cells) (p<0.005, Fisher’s Exact Test).
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The H-CDR3 region is considered to be an important determinant that imparts antibody 

specificity as well as affinity. The overall composition of H-CDR3 regions in terms of 

length, positive charge content, N-nucleotide insertions and exonuclease activity was 

analyzed (Figure 3). Extremely long (>20 amino acids) H-CDR3 regions were more frequent 

in the CD5− mature B-cell subset, which may be explained by the higher utilization of the 

JH6 segment by this group of cells that results in longer CDR3.25 Additionally, this same B-

cell subset carried more cells with 2+ and 3+ positively charged residues in the H-CDR3 

compared to the CD5+ B subset. While increases in length and positive charges in the H-

CDR3 region are expected in the IG repertoire from BM-derived immature B-cell 

populations, these are less frequently observed when the B-cells mature and migrate to the 

periphery. Thus, the mature B-cell subset in the hNSG mice with longer and increased 

positive charges in their H-CDR3 regions is a major and previously unrecognized difference 

from their counterpart in normal humans. No significant difference in N-insertions and JH 

exonuclease activity between the B-cell subpopulations was observed (p<0.005, Fishers’ 

Exact Test) (Figure 3b). A bias in Tyrosine (Y) and Glycine (G) composition in the H-

CDR3 regions (40–50% of total residues) that is observed in normal humans 26 was 

recapitulated in the hNSG mice (Figure 3a).

Presence of hypermutated VH sequences

Hypermutation in the VH sequences was analyzed by comparing against the closest germline 

sequences, and the B-cell subpopulations were classified as those with identical or highly 

homologous (99–100% homology), moderately mutated (94–99%) and highly mutated 

(≤94%) sequences as described earlier for analysis of human IG VH repertoire24 (Table 2). 

Accumulation of hypermutated VH sequences (≤99%) was significantly lower in the mature 

B-cell subsets in the periphery compared to the earlier stages in development in the bone 

marrow (p<0.005, Fishers’ Exact Test). In contrast to an earlier report,24 where IgM+CD5+ 

human B cells were found to accumulate significantly higher number of mutations compared 

to the IgM+CD5− B cells, we did not observe a significant difference between the CD5− and 

CD5+ mature B-cell subsets (p<0.005, Fishers’ Exact Test). Moreover, the VH repertoire in 

the peripheral B cells were notably devoid of highly mutated sequences, e.g., displaying 

<94% homology to germline sequences. Analysis of the mutations in the Framework 

Regions (FR) and H-CDR3 both at the nucleotide and amino acid residue levels revealed the 

occurrence of both silent as well as replacement mutations (Table 2).

Potential VH replacement in hNSG mice

The cryptic recombination signal sequence (cRSS, TACTGTG)27 at the 3′-end of rearranged 

VH genes allowed the detection of potential VH replacement products. The cRSS is the 

binding motif for the recombinase activating gene (RAG) family of enzymes that mediate 

VH replacement, a process in which a secondary arrangement of an upstream VH sequence 

occurs in an already formed VH-DH-JH gene.27 Remarkably, 13 potential VH replacements 

in the 257 VH sequences were detected (Table 3). This secondary rearrangement process 

was not confined within the early stages of B-cell development and did not only involve 

VH4 genes as reported earlier. 28, 29 In order to confirm the validity of the sequences scored 

as the products of VH replacement, a similar scan was performed on the DH-JH junction of 

the VH sequences. One major criteria of such replacement products, as shown in Table 3, is 
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that they often encode highly charged amino acid residues (R/D/E).30 No such sequences 

were identified in the DH-JH region of the VH genes.

Analysis of human Vκ sequences and cognate VH-Vκ pairs

Figure 4a presents an analysis of the Vκ sequences recovered from the different human B-

cell subsets obtained in the hNSG mice. The human κ locus contains 44 functional gene 

segments divided into 5 gene families: Vκ1–Vκ5 (IMGT). Only a single member is known 

for each of the Vκ4 and Vκ 5 families, Vκ 4-1 and Vκ 5-2 respectively (IMGT). At least 24 

unique Vκ gene segments, representing 4 out of 5 Vκ gene families in the B-cell 

subpopulations, were detected with a distinct bias towards the utilization of Vκ 4-1 

(Supplementary Table 2). Notably, the Vκ 4-1 gene segment is located most proximally in 

the human κ locus on chromosome 2; however, the significance of this location with regards 

to the overutilization of this gene in the hNSG mice is presently unclear. Vκ5 family genes 

remained undetected in the hNSG mice, which may be attributed to the limited sample size. 

An analysis of the Jκ sequences demonstrated the utilization of all known Jκ segments in the 

human IG repertoire (Jκ1–Jκ5) with an overrepresentation of the Jκ4 gene segments across 

all B-cell subpopulations (Figure 4a).

VH-Vκ pairs derived from single B-cells were interrogated for the frequency of pairing of 

individual heavy and light chains across different cell subsets (Figure 4b), and a complete 

list of the pairings is shown in Supplementary Figure 2. Given that each VH-Vκ pair 

represents a unique Ab, the profile of heavy and light chain pairing across the different B-

cell subsets can provide information on antibody evolution, clonality, editing and other 

physiological processes that shape the IG repertoire. Interestingly, as represented in Figure 

4b, a significant decrease in VH -pairing with Vκ 4-1 in mature B-cells (CD5+ and CD5−) 

was found when compared to BM-derived B-cell subsets (p<0.005, Fishers’ Exact Test). 

Given that the usage of Vκ 4-1 has been associated with autoreactivity and anti-DNA auto-

antibodies,31 the decreasing frequency of Vκ4-1 usage with increasing B-cell maturation 

suggests that checkpoint control mechanism(s), which are associated with peripheral 

tolerance, are at least partially intact.

Immunoglobulin levels and auto/polyreactive antibodies in hNSG mice

Total human IgM and IgG concentrations in hNSG mouse serum ranged between 15–50 and 

20–90 μg/ml, respectively, which were ~10–50 and ~100–200 fold lower than normal 

human serum IgM and IgG levels. By comparison, in newborns the antibody levels 

approximate that found in adults, albeit they increase with time, plateauing at ~1 year for 

IgM and ~5–6 years for IgG. 32 It has also shown that in human bone marrow transplants, 

serum IG levels return within normal levels by day 90 post transplant.33

The physiological presence of auto/polyreactive antibodies was next tested by analyzing the 

binding of serum IgM and IgG antibodies by ELISA to a panel of antigens, including 

cardiolipin, insulin, ssDNA, dsDNA and LPS, and the overall reactivity was compared to 

normal human sera. As shown in Figure 5, the hNSG mice sera showed significantly higher 

binding levels over that of normal human sera to all antigens tested, and this auto/

polyreactivity was almost entirely restricted to the IgM fraction (p<0.005, Mann Whitney 
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Test). An increased level of binding to LPS by both normal human IgG and IgM may be 

attributed to ‘natural antibodies’ present in the serum.34

To investigate this auto/polyreactivity in more detail, additional studies were performed on 

recombinant Abs recovered from single B-cells. As shown in Table 1, 176/219 cognate VH-

Vκ pairings representing all different human B-cell subsets were successfully assembled into 

scFvs (80% efficiency), expressed as scFvFcs and purified for functional studies. To 

determine the autoreactivity of these Abs, HEp-2 (human epidermoid cancer cell) ELISA 

which is a standard clinical assay for detection of anti-nuclear antibodies (ANAs) was 

performed. As shown in Figure 6a, autoreactive ANAs were detected in all B-cell subsets. 

Circa 50% of the scFvFcs from all B-cell subsets were scored as autoreactive, with the 

exception of the CD5− mature B-cell subset where autoreactivity was observed in a 

significantly higher percentage of the Abs (80.7%) compared to the other B-cell subsets 

(p<0.005, Mann Whitney Test). The reactivity of all 176 scFvFcs against each antigen is 

shown in Figure 6b. There was a significant increase in the median reactivity levels of 

antigen binding in the mature B-cell subsets when compared to that observed for the B-cells 

at earlier stages in development (p<0.005, Mann Whitney Test). No significant difference 

was observed between the CD5+ and CD5− mature B-cell subsets. All polyreactive Abs also 

scored positive in the ANA assay. Additionally, scFvFcs demonstrating high level reactivity 

to one antigen also bound strongly to other antigens. Thus, the results of both the serologic 

and single B-cell derived binding studies provide evidence for the retention of a substantial 

pool of auto/polyreactive B-cell clones centrally in the bone marrow and particularly in the 

periphery, suggesting that the first two checkpoint control steps (between early immature to 

immature and new emigrant to mature) involved in clearance of autoreactive clones are 

impaired.17 ELISA binding studies using a comparable mouse cell line to test scFvFc 

autoreactivity to mouse ANA antigens, may provide additional information on autoreactivity 

given the development of these human B-cells in the murine host.

A total of 22 scFvFcs were scored based on their absolute MSD values (>3 fold background 

as obtained from reactivity of buffer alone to antigen coated wells) as low, medium, and 

highly polyreactive based on the relative reactivity of 4E10 to the same antigens (<20%, ≥ 

20–60%, and ≥60% of 4E10 scFvFc reactivity, respectively). Of these 22, 2 were from the 

early immature B-cell subset, 1 from immature, 2 from new emigrant, 13 from the CD5− 

mature B-cells and 4 from CD5+ B-cells. To identify any common features between the 22 

polyreactive scFvFcs in terms of sequence composition, the respective VH and Vκ families 

and H-CDR3 length and positive charge composition were compared (Supplementary Table 

3); however, except the fact that the majority of the light chain sequences corresponded to 

Vκ 4-1, no other obvious similarities was observed.

Polyreactivity extends to HIV-1gp140 binding

Previous studies have reported that several anti-HIV-1 envelope directed BnAbs including 

2F5 and 4E10 show promiscuous binding to multiple auto-antigens, which raises the 

hypothesis that their rare appearance may be due to escape from immune tolerance.35, 36 A 

more recent study demonstrated that 75% of all anti-HIV antibodies isolated from infected 

individuals showed polyreactivity against ssDNA, dsDNA, cardiolipin, LPS and keyhole 
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limpet hemocyanin by ELISA.19 Given the auto/polyreactive binding profiles above, both 

serum and the hNSG-derived scFvFcs were tested for reactivity to HIV-1 envelope. As 

shown in Figure 7a, sera samples from hNSG mice displayed significantly higher reactivity 

to HIV gp140 compared to human serum controls with most of the reactivity restricted to the 

IgM fraction. Given that the IgG content in normal human serum is 100–200 folds higher 

than that in hNSG sera, the apparently higher reactivity of normal human IgG is most likely 

a concentration effect rather than antigen specificity. Furthermore, in a similar pattern to that 

described earlier, the scFvFcs derived from the mature B-cells displayed significantly higher 

binding to HIV-1 envelope protein compared to the scFvFcs derived from B-cells earlier in 

developmental pathway (Figure 7b).

Kinetic analysis of two random scFvFcs displaying high (N1M10-1, isolated from CD5+ B-

cell subset) and medium reactivity (NM10-1, isolated from CD5− mature B-cells) for 

binding to HIVgp140 trimer protein was performed using Biolayer Interferometry, and kon, 

koff and KD values of the scFvFcs (b12 and 4E10 IgG used as positive controls) were 

measured. The sensorgrams of each antibody-binding (which were immobilized on Protein 

A sensors) to a series of different concentrations of HIV envelope protein in solution are 

shown in Figure 7c. The association rates (kon) of the scFvFcs were comparable to that of 

b12 and 4E10 [kon(1/Ms) values were 4.69 x 106 and 5.54 x 105 for N1M10-1 and NM10-1, 

respectively, whereas it was 2.89 x 105 and 2.55 x 105 for b12 and 4E10 respectively)]; 

however, the scFvFcs dissociated from the target protein at a faster rate [koff (1/s) values 

were 2.68 x 10−2 and 2.40 x 10−2 for N1M10-1 and NM10-1, respectively, whereas it was 

4.19 x 10−5 and 1.42 x 10−4 for b12 and 4E10 respectively)]. Intriguingly, the equilibrium 

dissociation constant (KD, in M) values of the scFvFcs obtained from naïve hNSG mice 

closely approximated those of the HIV BnAbs, with KD values of 5.72 x 10−9 for both 

N1M10-1 and NM10-1, and 1.45 x 10−10 and 5.56 x 10−10 for b12 and 4E10 respectively. 

Although these Abs displayed substantial affinity to HIV envelope protein, they did not 

show neutralizing activity to HIV-1 or compete with target binding of b12 or 4E10 (data not 

shown) most likely due to their fast dissociation rates.

Auto/polyreactivity is still present in “humanized” BLT and GTL mice

To address the question of whether T cells affect the antibody repertoire as suggested 

earlier,37 similar studies were performed with humanized BLT and GTL mice. Although 

both the BLT38 as well as the GTL mice display a rapid development of human T cells 

(human T:B cell levels in these mice approximate that found in normal adults) as a result of 

co-engraftment of human thymic tissue in addition to CD34+ stem cells, preimmune serum 

antibody levels of human IgM and IgG were not improved over that observed for the hNSG 

mice. Following similar methods as described for the hNSG mice, single human B-cell 

sorting of mature splenic B-cells (CD19+IgM+CD10−), Ab gene recovery and scFvFc 

assembly were performed from a single BLT and GTL mice 16–20 weeks post tissue 

transplantation. A total of 59 and 37 scFvFcs was assembled from mature human B-cells 

isolated from the spleen of a BLT and GTL mouse, respectively. The gene usage profile for 

heavy and light chain variable regions was comparable to that observed for the hNSG mice, 

including the lack of somatic hypermutations in the VH sequences, sole recovery of Vκ 

genes and an overutilization of Vκ4-1 (data not shown). A majority of the scFvFcs, ~75% 
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and ~78%, from the BLT and GTL mice respectively, also displayed auto- and 

polyreactivity as shown in Supplementary Figure 3. These results suggest that the 

polyreactive IG repertoire is not exclusive to the hNSG model, and it is likely that other 

“humanized” mouse models may share common deficiencies in peripheral tolerance 

mechanisms.

Discussion

In this study, we performed an in depth analyses and characterization of the human antibody 

repertoire in the humanized NSG mouse model. The hNSG mice supported the development 

of a multilineage human hematopoietic system following transplantation with human 

hematopoietic stem cells, and at 8–10 months post-transplantation, phenotypic 

characterization indicated a normal B-cell developmental pathway with immature B-cells 

residing predominantly in the bone marrow and the mature cells in the periphery. However, 

several deviations were noted, some of which have been reported earlier, e.g., slow 

development of human T cells9 and a higher than normal frequency of CD19+CD5+ B-cells 

in the periphery.38, 39 Additionally, the current work provides evidence for the first time that 

the human antibody repertoire that develops in the hNSG and other humanized mouse 

models is largely auto- and polyreactive.

The human VH diversity in the hNSG mice appears to closely approximate to that of the 

normal adult IG repertoire in terms of germline gene usage, but with an unexpectedly high 

level of positively charged, long H-CDR3s in the mature CD5- population that displayed 

increased auto/polyreactivity. There was also an abnormal high contribution to the 

rearranged VH gene pool from the CD5+ B cells in the periphery (Figure 6A). It has been 

previously shown that increased numbers of CD5+ B cells are found in the cord blood which 

display auto/polyreactivity.40, 41 It is doubtful that the source of human stem cells induces 

the development of CD5+ B cells in the humanized mice, since CD5+ B cells have also been 

shown to develop in the hNSG mice when engrafted with stem cells derived from the adult 

bone marrow or mobilized peripheral blood.39 In early life, a restricted VH repertoire 

resulting from limited IG diversity has been observed which coincides with the observed 

autoreactivity in the B cell clones isolated from fetal liver and cord blood.42, 43 In addition, 

in fetal liver B cells there is skewing in the distribution of VH genes which are 

chromosomally located closer to the DH-JH-CH locus. 44 Recently, next-generation 

sequencing (NGS) of expressed antibody repertoires from human cord blood cells have 

shown comparable frequencies of VH germline gene usage to those present in adult IgM 

repertoire except for the high frequency of VH1–2 germline gene that was preferentially 

expressed in the cord blood cells. As expected lower degree of somatic mutation in the CDR 

and framework regions was observed in the cord blood cells.45 While our genetic analyses 

show both similarities and differences compared to the different VH repertoires discussed 

above, the auto/polyreactivity of the hNSG antibodies set their functional maturity at an 

early stage.

The observations of a large pool of auto/polyreactive antibodies in the humanized mice 

made in this study raise two inter-related questions; 1, why are the autoreactive B cell clones 

retained in the periphery; and 2, are the auto/polyreactive antibodies in the humanized mice 
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akin to normal circulating ‘natural antibodies’ found in both men and mice.46 During normal 

course of B-cell development, a majority of the self-reactive B-cell clones are eliminated by 

checkpoint control mechanisms as characterized by Wardemann and colleagues.18 A 

‘central’ checkpoint occurs in the BM during the development of immature B-cells from the 

previous early immature stage and a ‘peripheral’ checkpoint between the new emigrant and 

the mature phase of B-cell development. A third checkpoint has also been predicted that 

eliminates residual autoantibodies from the IgM+ memory B-cells.47 These checkpoint 

controls result in a significant reduction in H-CDR3 length and positive charge content from 

B clones isolated at the immature and mature naïve stages when compared to the 

corresponding early immature and new emigrant B-cell stages. Our data support that the 

peripheral checkpoint control mechanism in the hNSG mice may be impaired given the 

significant increase in the number of mature B-cells carrying long and highly charged H-

CDR3 regions. The factors regulating these checkpoint control steps have not been 

identified, and human B-cell ontogeny in a xenogeneic environment adds to the complexity. 

Autoreactive B-cells are thought to be selected for elimination by their reactivity to self-

antigens by deletion and receptor editing. In the hNSG BM, human B-cell development 

conceivably occurs by selection against both donor (human) as well as self (mouse) antigens 

and additionally, the distribution of these antigens may be varied in different compartments 

(e.g., bone marrow vs. periphery). This may result in improperly ‘educated’ human B-cells, 

particularly in the periphery where self-antigens predominate and the peripheral checkpoint 

control mechanism(s), designed to eliminate autoreactive clones, could be more impaired. 

Despite the apparent autoreactivity in the periphery, these mice did not display any apparent 

signs of autoimmunity, i.e. symptoms of graft-versus-host disease (GvHD), e.g., anorexia, 

wasting, alopecia, etc.

We verified to a great extent, that the predominance of Vκ sequences, particularly Vκ 4-1 

gene segment, as the exclusive light chain partner in all assembled antibodies was not a PCR 

induced bias. The fact that cloned and serum antibodies alike displayed autoreactivity and 

polyspecific responses to multiple antigens provide a strong correlation with Vκ 4-1 

prevalence. These results also illustrate an apparent defect or insufficiency in one of the 

major mechanisms of silencing self-reactive B-cells; light chain receptor editing which is 

mostly mediated by Vλ genes.48 Polyreactive antibodies have also been detected in the IgG+ 

memory B-cell pools from normal human subjects, and these have been described as a by-

product of extensive somatic hypermutation occurring during antigen-induced B-cell 

differentiation.47 This observation is, however, irrelevant to the current study, as neither a 

memory phenotype nor a high level of hypermutation was observed in all the B-cell clones 

studied.

Natural antibodies secreted by B cells are predominantly of the IgM subclass, but are also 

represented by IgG and IgA isotypes. These antibodies have been characterized extensively 

in mice49 and are present during early human life.50 A distinct B cell subset, called B-1 

cells, characterized by surface expression of the CD5 marker has been found to be the major 

producer of natural antibodies in mice. In addition to displaying low affinity interactions 

with self-antigens, these antibodies have also been found to play a major role in early 

protective responses against pathogens.34 Further studies remain to be performed to 

understand the nature of the auto/polyreactive human antibodies that develop in the hNSG 
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mice under pathogen-free conditions and whether the CD5+ human B cells represent the 

murine equivalent.

A number of anti-HIV envelope BnAbs have shown characteristics of auto/polyreactive 

antibodies and thus, it has been proposed that the rare emergence of such antibodies in the 

vaccinated or infected host may be due to physiologic tolerance mechanisms that are 

operative during B cell development.51 Recently, it was also shown that HIV envelope 

reactive antibodies isolated from ‘elite controllers’ of infection were polyreactive and that 

heteroligation to gp120 and self-antigen can increase the apparent affinity of the antibodies 

for HIV.19 The preponderance of peripheral auto/polyreactive antibodies in naïve and germ-

free hNSG mice that also show binding to HIV envelope proteins may provide a model in 

which the generation and origins of protective antibody responses against HIV can be 

investigated. Indeed, since many of these antibodies already display binding to the HIV 

envelope, their potency could be further enhanced by experimental infection or 

immunization. Therefore, the hNSG and other similar mouse models may provide a novel 

experimental system in which the breakdown in physiologic tolerance mechanisms can be 

exploited to further investigate the role that auto/polyreactivity may play in the development 

and evolution of HIV BnAbs. This knowledge will be of critical importance to current and 

future HIV/AIDS vaccine efforts.

Materials and methods

Construction of humanized mice

Male NSG mice, 6 wk of age (Jackson Laboratory, Bar Harbor, ME), were housed under 

BSL-2 conditions at the Animal Research Facility (ARF), Dana-Farber Cancer Institute 

(DFCI, Boston, MA). Mice received autoclaved food and Baytril (fluoroquinolone) -treated 

water. CD34+ HSC were isolated from human umbilical cord blood, obtained from Brigham 

and Women’s Hospital (BWH, Boston, MA), using immunomagnetic column purification 

techniques (MiniMACS) per the manufacturer’s protocol (Miltentyi, Auburn, CA). At ~8 

wk of age, mice were sublethally irradiated with 325 cGy (Gammacell-40, Best 

Theratronics, Ottawa, Canada) and then injected with 2.5 × 105 HSC resuspended in 200 μl 

of phosphate buffered saline (PBS) via the tail vein. NOD/SCID-thy/liv (also called BLT) 

and NSG-thy/liv (GTL) mice were also constructed as previously described.38 Briefly, 6–8 

week old NOD/SCID or NSG female mice were ‘humanized’ following implantation of 

human fetal liver and thymus tissues under the kidney capsule along with an intravenous 

delivery of fetal liver-derived autologous CD34+ stem cells. All fetal tissues (17–20 weeks 

of gestational age) were obtained from Advanced Bioscience Resources, Alameda, CA. 

Tissues were also screened for the presence of HIV-1 and 2 and Hepatitis B virus and 

determined to be negative.

Mice were bled monthly via the mandibular route, and engraftment levels were determined 

by flow cytometry analysis of human CD45+ cells in the peripheral blood. All studies 

involving human tissues were approved by the Institutional Review Boards at both DFCI 

and BWH.
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Flow cytometry

Analysis of human immune reconstitution following CD34+ HSC delivery was performed 

by flow cytometry (supplemental methods). Cell isolation techniques and criteria for single 

cell sorting from different human B-cell subsets were adopted from a previous report52 with 

modifications as described in Supplementary Methods. Single cell sorting from NSG mice 

was performed on early immature and immature B-cell subsets from the bone marrow (BM) 

and new emigrant/transitional and mature B-cell subsets (both CD5− and CD5+) from the 

peripheral blood (PB).

Single cell RT-PCR and analysis of Ig heavy and light chain gene segments

RT-PCR reactions were performed as described earlier (Supplementary Methods).18, 52

Expression and purification of scFvFc

Cognate variable heavy and light chain gene segments amplified from single B-cells were 

assembled following cloning into a human IgG1-Fc expressing vector, transiently 

transfected in 293FT cells (Invitrogen). The expressed single chain antibody fragments 

(scFvFc) were purified as described in Supplementary Methods.

Detection of self (auto)-reactive and polyspecific antibodies

QUANTA Lite™ ANA (anti-nuclear antibody) ELISA (INOVA Diagnostics, San Diego, 

CA) was used to test self-reactivity of the antibodies. 4E10 scFvFc and sera from patients 

and healthy individuals (manufacturer provided) were used as the positive or negative 

controls in this assay. Purified antibodies were tested at 50 μg/ml, and reactive samples were 

further confirmed at 25 μg/ml. The cutoff at OD450 for positive reactivity was calculated at 

≥80% of the absorbance reading obtained for the manufacturer provided low positive 

control.

The electrochemiluminescent (ECL) based MSD platform (Meso Scale Discovery, 

Gaithersburg, MD) was used to evaluate the auto- and polyreactivity of hNSG-derived 

scFvFcs. Human single- and double stranded DNA (ssDNA and dsDNA), recombinant 

insulin, cardiolipin, lipopolysaccharide (LPS, Sigma, St. Louis, MO) at 10 μg/ml and 

recombinant HIV-1 gp140-trimer from YU2 strain38 at 5 μg/ml were used as polyreactive 

antigens in this assay. Each well in MSD 384-well High Bind MULTI-ARRAY® plates was 

coated with 5 μl of polyreactive antigens in PBS (cardiolipin in 20% alcohol) at 4°C 

overnight. The plates were blocked with 35 μl of 10% FBS/PBS for 1 h with shaking at 800 

rpm on the microplate shaker. After washing with 35 μl PBST, purified scFvFcs were added 

at 5 μg/ml, and the plates were incubated at room temperature for 2 h with shaking. 4E10 

scFvFc was used as a positive control. Goat anti-human IgG-Fc Ab with SULFO-Tag (15 μl 

at 1 μg/ml in 1% FBS/PBS) was used as the detection antibody, and the plates were read on 

the MSD Sector Imager 2400 according to the manufacturer’s protocol. Routine ELISA 

(Supplementary Methods) was also performed to analyze auto/polyreactivity in hNSG and 

normal human serum samples. 4E10 IgG (NIH, AIDS Research and Reference Reagent 

Program) was used as a positive control to estimate the level of autoreactivity.
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Affinity measurements by Biolayer Interferometry (BLI)

Kinetic analysis of the hNSG-derived scFvFcs, b12-IgG and 4E10 IgG was performed by 

measuring binding affinity to recombinant HIVgp140 trimeric protein. Analysis was 

performed by BLI using the Octet Red instrument (Forte Bio, Menlo Park, CA) 

(Supplementary Methods).

Statistical analysis

To analyze differences in distribution of various gene segments across different B-cell 

subsets, non-parametric statistical methods were used since the data were not normally 

distributed. Differences were assessed for statistical significance by the Fisher-Freeman-

Halton test. Monte Carlo estimation (10 000 samples) was used to approximate the exact 

tests. Significant differences in the H-CDR3 length and N1 and N2 insertion across B-cell 

subsets were determined by fitting one-way analysis of variance using SAS PROC GLM 

(SAS, Cary, NC). Differences in the utilization of individual gene segments were analyzed 

by one sample binomial test. Differences in utilization of particular gene segments between 

mature and immature B-cell subsets were analyzed by using a two-sample test for equality 

of proportions with continuity correction. Mann-Whitney U tests (two-tailed) (Graph Pad, 

La Jolla, CA) were performed to determine statistically significant differences between 

median values of each ELISA data set. P values < 0.005 were considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sorting criteria of human B cell subsets from humanized NOD/SCID γcnull (hNSG) mice. 

(a) Single cell suspension was prepared from the bone marrow of a representative single 

hNSG mouse and cells in the lymphoid gate (not shown) were further gated for CD19+CD5− 

expression (left). Cells were then plotted for surface IgM (sIgM) and CD10 expression 

(right), and single B cells from the early immature (sIgM− CD10+) and immature 

(sIgM+CD10+) subsets were sorted. (b) PBMCs were prepared from 3 hNSG mice, all 

transplanted with the same donor and were gated for lymphoid population (not shown). 

These lymphocytes were gated on IgM+ cells (middle left) and further characterized as 

CD19+CD5− or CD19+CD5+. Sorting was performed in the CD19+CD5− gate to obtain 

single B cells from the new emigrant (CD10+CD27−) and mature (CD10+CD27−) B cell 

subsets (lower left). Similarly the CD5+CD19+ gated cells were single sorted to obtain CD5+ 

mature B cells (CD10+CD27−) (lower right). Single cell sortings were performed between 
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8–10 months post engraftment of the hNSG mice. All antibodies used were specific for 

human cell surface markers.
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Figure 2. 
Analysis of the human immunoglobulin VH repertoire in hNSG mice. The frequency of 

utilization of the different VH gene families (upper panel), DH (middle) and JH (lower) gene 

families across the different B cell subpopulations (indicated above pie charts) is shown. 

The number in the center of each pie chart indicates the total sample size for the particular B 

cell subset. Any significant difference in the overall usage of specific gene families in each 

B cell populations was assessed by Fisher’s test. Usage of VH3 family was significantly 

higher in all cell subsets (p<0.005) except the new emigrant B cells. Sequence identities and 

categorizations into different VH gene families were performed using the IMGT database.
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Figure 3. 
Composition of the third complementarity region in the human immunoglobulin heavy chain 

(H-CDR3) regions. (a) The pie charts indicate length (amino acid residues) (upper panel), 

total positive charge content (middle) and percentage composition of total Y and G residues 

in each H-CDR3 region analyzed (lower). The different B-cell subpopulations from which 

the samples were derived are indicated above each pie chart. The number in the center of 

each pie chart indicates the total sample size for the particular B cell subset. (b) Average N-

nucleotide insertions and JH exonuclease activity across the different B cell subsets are 

listed. All analyses were performed using the IMGT database.
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Figure 4. 
Analysis of the Vκ repertoire and VH- Vκ pairing in human B cells from hNSG mice. (a) 

The frequency of utilization of the different Vκ (upper panel) and Jκ (lower) gene families 

across the different B cell subpopulations as indicated above each pie chart is shown. The 

number in the center of each pie chart indicates the total sample size for the particular B cell 

subset. (b) VH-Vk pairs were classified into two groups – VH/non Vκ4-1 pairings and VH/

Vκ4-1 pairings, their percentages over total number of VH-Vk pairing in a particular B cell 

subset were calculated and plotted as shown. A significant decrease in the incidence of 

VH/Vκ4-1 pairings (or conversely, an increase in VH/non Vκ4-1 pairings) was observed in 

the mature B cell subsets (CD5− and CD5+ subsets, combined) in comparison to the bone 

marrow derived B cell (early immature and immature subsets, combined) (Fisher’s Test, 

p<0.005).
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Figure 5. 
Polyreactivity in the sera of hNSG mice. Sera from 5 hNSG mice at 10 months post 

engraftment and 5 normal human subjects were tested by ELISA for binding to different 

antigens as listed above each graph. Antigens were coated on 96 well plates, and each serum 

sample was tested in two sets of duplicates, each set scored for human IgM or IgG (x-axis) 

mediated antigen binding using the appropriate detection antibody, i.e. anti-human IgM and 

anti-human IgG, respectively both conjugated to HRP. All serum samples were used at 

1:100 dilution. Total human IgM and IgG content were 10–50 and 100–200 fold higher 

respectively, in the human sera compared to the hNSG sera. Sera from unengrafted hNSG 

mice showed no reactivity (not shown). Each dot represents an individual hNSG mouse or 

human subject as indicated on the x-axis, and a scatter plot along with the mean for each 

group is shown. The horizontal dashed line represent the level of reactivity by 4E10 IgG (5 

μg/ml) used as a positive control. Significant differences in reactivity between data sets as 

indicated (*p<0.005) were calculated using the Mann-Whitney unpaired t-test.
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Figure 6. 
Auto and polyreactivity analysis of the hNSG derived scFvFcs. (a) Hep-2 ELISA was 

performed with scFvFcs assembled and expressed from each B cell subset and that were 

purified from 293FT cell culture supernatants by Protein A chromatography. ELISA was 

performed using commercially available QUANTA Lite™ ANA ELISA plates. The assay 

was performed twice once with 50 μg/ml and repeated with 25 μg/ml of the scFvFcs. The 

horizontal dashed line represents the low positive control (manufacturer provided) cut-off 

and the numbers below each scatter plot represent the total number and percentage of the 

scFvFcs those were scored as reactive in the Hep-2 assay. Each dot represents a single 

scFvFcs, and the horizontal bar represents mean reactivity for each cell subset. A single 
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scFvFc determined to be polyreactive (see Figure 6b) in each B cell subset has been color 

coded (red dot) for correlation between autoreactivity and polyspecificity. Autoreactivity 

was significantly higher in the mature B cell (median reactivity in Mature vs. Early 

immature/Immature/New emigrant and Mature CD5+ vs. Early immature/Immature/New 

emigrant, p<0.005). (b) Polyreactivity of the scFvFcs isolated from the different B cell 

subsets (indicated on the x-axis) was tested using the MSD platform. 384-well plates were 

coated with the different antigens as listed above each plot. scFvFcs were tested at a 

concentration of 5 μg/ml, and all samples were tested in duplicates. The mean value in MSD 

raw numbers (y-axis) as obtained in the MSD Sector Imager was plotted. 4E10 scFvFc was 

used as positive control represented as the horizontal dashed line in each plot and readings 

obtained with PBS binding to antigen coated wells was considered as background. Each dot 

represents the binding of individual scFvFcs, and the horizontal bar represents mean 

reactivity for each cell subset. A single scFvFc in each B cell subset was color coded (red 

dot) for correlation of polyspecificity across different antigens. Polyspecificity was 

significantly higher in the mature B cell subsets (median reactivity in Mature vs. Early 

immature/Immature/New emigrant and Mature CD5+ vs. Early immature/Immature/New 

emigrant, p<0.005). Differences in median reactivity between the scFvFcs of each B cell 

subset were calculated using the Mann-Whitney unpaired t-test.
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Figure 7. 
Binding of hNSG Abs to recombinant HIV-1gp140. (a) Sera from 5 hNSG mice and 5 

normal human subjects were tested by ELISA for binding to recombinant HIV-1gp140 

coated at a concentration of 5 μg/ml per well. Each serum sample was tested in two sets of 

duplicates, each set scored for human IgM or IgG (x-axis) mediated antigen as described 

previously (see Figure 5). All serum samples were used at 1:100 dilution. The horizontal 

dashed line represent the level of reactivity by 4E10 IgG (5 μg/ml) used as a positive 

control. Significant differences in reactivity between data sets as indicated (*p<0.005) was 

calculated using the Mann-Whitney unpaired t-test. (b) HIV-1gp140 reactivity of the 

scFvFcs isolated from the different B cell subsets (indicated on the x-axis) was tested using 

the MSD platform. HIV envelope protein was coated at a concentration of 5 μg/ml per well. 

All samples were tested in duplicates, and the mean value in MSD raw numbers (y-axis) as 

obtained in the MSD Sector Imager was plotted. 4E10 scFvFc was used as positive control 

(represented as the horizontal dashed line), and readings obtained with PBS binding to 

antigen coated wells was considered as background. Each dot represents the binding of an 

individual scFvFcs, and the horizontal bar represents mean reactivity for each cell subset. 

The same scFvFcs in each B cell subset has been color coded (red dot) as in Figure 6. 

Reactivity to HIV-1gp140 was significantly higher in the mature B cell subsets (median 

reactivity in Mature vs. Early immature/Immature/New emigrant and Mature CD5+ vs. Early 

immature/Immature/New emigrant, p<0.005). Differences in median reactivity between the 
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scFvFcs of each B cell subset were calculated using the Mann-Whitney unpaired t-test. (c) 

Affinity measurements of the hNSG derived scFvFcs to HIV-1gp140 were obtained using 

Biolayer interferometry. Representative sensorgrams of two HIV BnABs (b12-IgG and 

4E10-IgG) and two randomly selected polyreactive scFvFcs (NM10-1 and N1M10-1, color 

coded in Figure 6) binding to different concentrations of recombinant HIVgp140 trimer are 

shown. Antibodies were loaded on Protein A sensors which were dipped into recombinant 

HIVgp140 in solution to determine association followed by dissociation in PBS. Traces 

were obtained for antibody binding to a range of HIVgp140 trimer concentrations. 

Dissociation was performed for up to 1800 s, but steady state was attained by 600 s which is 

shown here. Binding responses to <10 nM HIV envelope protein were negative in case of 

the scFvFcs; therefore only the binding traces obtained for 50 nM and 16.6 nM and 5.6 nM 

of HIVgp140 are shown. Experiments were repeated at least three times with different lots 

of proteins. Affinity measurement values for each antibody are described in Results.
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Table 3

Potential VH replacement analysis of the human IG sequences from various B cell subsets1

1
Nucleotide sequence nomenclature used in the table is from IMGT. The listed sequences start from the first nucleotide of the cryptic 

recombination signal sequence (indicated in upper case), through the V-D junction into the DH region. The VH donor family, DH family, JH 
family and Replacement (Recipient) family (R Fam) designations are listed as well. The bold and underlined nucleotides and amino acids in the V-

D (N1) region match the 3′-end of the VH germline of the replacement family and the charged amino acids are shown in red. VH replacement 

sequences represent 5% of the total number of Abs analyzed. Italics in the VH donor column represent gene segments that are downstream to the 

recipient and thus correspond to a potential non-conventional VH replacement process.
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