Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Bis(tetraethylammonium) bis(dimethylformamide)tetrakis( $\mu$ -N,2-dioxidobenzene-1-carboximidato)pentacopper(II)

#### Jacob Herring,<sup>a</sup> Matthias Zeller<sup>b</sup> and Curtis M. Zaleski<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, USA, and <sup>b</sup>Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA Correspondence e-mail: cmzaleski@ship.edu

Received 21 February 2011; accepted 2 March 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (Cu–O) = 0.003 Å; disorder in main residue; R factor = 0.043; wR factor = 0.104; data-to-parameter ratio = 13.2.

The title compound,  $(C_8H_{20}N)_2[Cu_5(C_7H_4NO_3)_4(C_3H_7NO)_2]$ , abbreviated as (TEA)<sub>2</sub>[Cu<sup>II</sup>(12-MC<sub>Cu<sup>II</sup>N(shi)</sub>-4](DMF)<sub>2</sub> [where TEA is tetraethylammonium, shi<sup>3-</sup> is salicylhydroximate (or N,2-dioxidobenzene-1-carboximidate) and DMF is N,Ndimethylformamide], contains five Cu<sup>II</sup> ions. Four of the Cu<sup>II</sup> ions are members of a metallacrown ring (MC), while the fifth Cu<sup>II</sup> is bound in a central cavity. Two of the ring Cu<sup>II</sup> ions are five-coordinate with distorted square-pyramidal geometry. The coordination sphere is composed of two shi<sup>3-</sup> ligands and one DMF molecule. The other two ring Cu<sup>II</sup> ions and the central Cu<sup>II</sup> ion are four-coordinate with square-planar geometry. The coordination spheres of these ions are only composed of shi<sup>3-</sup> ligands. The charge of the [Cu<sup>II</sup>(12- $MC_{Cu^{II}N(shi)}$ -4]<sup>2-</sup> unit is balanced by two uncoordinated TEA<sup>+</sup> countercations. The structure shows severe static disorder with the metallacrown, the tetraethylammonium cations and the DMF solvent molecule all disordered over each of two mutually exclusive sites, with occupancy rates for the major moieties of 0.6215 (6) for the metallacrown, 0.759 (3) for the tetraethylammonium ion and 0.537 (6) for the DMF molecules. The metallacrown unit is located on a crystallographic inversion center and disordered about a noncrystallographic twofold axis. The DMF molecule and the tetraethylammonium ion are disordered about a non-crystallographic twofold axis and pseudo-inversion center, respectively.

#### **Related literature**

For a general review of metallacrowns, see: Mezei *et al.* (2007); Pecoraro (1989); Pecoraro *et al.* (1997). For related [Cu(12- $MC_{Cu^{II}N(ligand)}$ -4)]<sup>2-</sup> structures, see: Gibney *et al.* (1994). For structure analysis of a two-dimensional chiral solid based on a Cu<sup>II</sup>[12-MC<sub>Cu<sup>II</sup></sub>-4)]<sup>2+</sup> complex, see: Bodwin & Pecoraro (2000). For single-crystal X-ray structure analysis of related  $Mn^{II}(OAc)_2[12-MC_{Mn^{III}N(shi)}-4]$ , where <sup>-</sup>OAc is acetate, see: Lah *et al.* (1989). For an explanation on how to calculate  $\tau$ , see: Addison *et al.* (1984).



#### **Experimental**

Crystal data

 $\begin{array}{l} (C_8H_{20}N)_2[Cu_5(C_7H_4NO_3)_4-\\ (C_3H_7NO)_2]\\ M_r = 1325.74\\ Orthorhombic, Pbca\\ a = 16.641 \ (3) \ {\rm \AA}\\ b = 13.616 \ (2) \ {\rm \AA}\\ c = 23.238 \ (4) \ {\rm \AA} \end{array}$ 

#### Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (APEX2; Bruker, 2009) T<sub>min</sub> = 0.588, T<sub>max</sub> = 0.746

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$  $wR(F^2) = 0.104$ S = 1.128316 reflections 631 parameters  $V = 5265.4 (15) \text{ Å}^3$  Z = 4Mo K\alpha radiation  $\mu = 2.06 \text{ mm}^{-1}$  T = 100 K $0.45 \times 0.40 \times 0.29 \text{ mm}$ 

51635 measured reflections 8316 independent reflections 6387 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.055$ 

 $\begin{array}{l} 101 \mbox{ restraints} \\ H\mbox{-atom parameters constrained} \\ \Delta \rho_{max} = 0.47 \mbox{ e } \mbox{ } \mbox{A}^{-3} \\ \Delta \rho_{min} = -0.35 \mbox{ e } \mbox{ } \mbox{A}^{-3} \end{array}$ 

Data collection: *APEX2* (Bruker, 2009); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008), *Mercury* Macrae *et al.* (2006) and *Ortep-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was funded by the Shippensburg University CFEST Teaching and Research Excellence Program and the Shippensburg University Foundation (grant No. UG 2540-11 to JH and CMZ). The diffractometer was funded by NSF grant No. 0087210, by the Ohio Board of Regents grant No. CAP-491 and by YSU.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2076).

#### References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

Bodwin, J. J. & Pecoraro, V. L. (2000). Inorg. Chem. 39, 3434-3435.

Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840–4849. Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.

Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). *Chem. Rev.* **107**, 4933–5003. Pecoraro, V. L. (1989). *Inorg. Chim. Acta*, **155**, 171–173.

Pecoraro, V. L., Stemmler, A. J., Gibney, B. R., Bodwin, J. J., Wang, H., Kampf, J. W. & Barwinski, A. (1997). *Progress in Inorganic Chemistry*, edited by K. D. Karlin, pp. 83–177. New York: Wiley.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

#### Acta Cryst. (2011). E67, m419-m420 [doi:10.1107/S1600536811007975]

### Bis(tetraethylammonium) bis(dimethylformamide)tetrakis(#-N,2-dioxidobenzene-1carboximidato)pentacopper(II)

#### J. Herring, M. Zeller and C. M. Zaleski

#### Comment

Since the identification of metallacrowns (MC) in 1989 (Pecoraro, 1989), these inorganic crown ether analogues have proved to be very diverse molecules (Mezei *et al.*, 2007; Pecoraro *et al.*, 1997). Metallacrowns can behave as single-molecule magnets, have potential use as MRI contrast agents, and can selectively bind cations or anions (Mezei *et al.*, 2007). In addition to being inorganic structural and functional analogues of crown ethers, the naming scheme for the two molecules is very similar. For example, the name 12-MC-4 indicates that there are 12 atoms in the metallacrown ring and there are 4 oxygen atoms in the ring that can potentially bind to a central metal ion. A complete nomenclature description for metallacrowns can be found in Pecoraro *et al.* (1997).

Copper(II) 12-MC-4 structures are common (Mezei *et al.*, 2007), and the structures tend to be fairly planar. The planar structures are generated by placing the ring Cu<sup>II</sup> ions at 90<sup>o</sup> relative to each other. This placement is typically achieved by selection of a ligand, such as salicylhydroxamic acid, that can form fused five- and six-membered chelate rings. However, planar structures have been observed for other sized fused chelate rings (Mezei *et al.*, 2007). One planar Cu<sup>II</sup>[12-MC<sub>Cu</sub><sup>II</sup>-4]<sup>2+</sup> has been used to build a two-dimensional chiral solid (Bodwin & Pecoraro, 2000).

Herein we report the synthesis, IR data, and the single-crystal X-ray structure of the title compound,  $C_{28}H_{16}Cu_5N_4O_{12}$ , 2( $C_8H_{20}N$ ), 2( $C_3H_7NO$ ) abbreviated as (TEA)<sub>2</sub>[Cu(12—MC<sub>Cu</sub><sup>II</sup><sub>N(shi</sub>)-4](DMF)<sub>2</sub>, (1), where TEA is tetraethylammonium, shi<sup>3-</sup> is salicylhydroximate, and DMF is *N*,*N*-dimethylformamide. The single-crystal X-ray structure of a related molecule, (TMA)<sub>2</sub>[Cu(12—MC<sub>Cu</sub><sup>II</sup><sub>N(shi</sub>)-4]<sup>-</sup>DMF (2, where TMA is tetramethylammonium), has previously been reported by Gibney *et al.* (1994), and the synthesis of another related molecule, (TEA)<sub>2</sub>[Cu(12—MC<sub>Cu</sub><sup>II</sup><sub>N(d2shi</sub>)-4)]<sup>-</sup>2DMF<sup>-</sup>H<sub>2</sub>O (where d<sub>2</sub>shi is 3,5-dideuteriosalicylhydroximate), has been described by Gibney *et al.* (1994).

Compound **1** is fairly planar, which is typical of Cu<sup>II</sup> 12-MC-4 structures (Fig. 1–3; Macrae *et al.*, 2006). The structure consists of a [Cu<sup>II</sup>—N—O] repeat unit around the MC ring, and the MC binds a Cu<sup>II</sup> in the central cavity. Cu1 is located in the central cavity and is four-coordinate with square planar geometry. Cu2, Cu3, Cu2<sup>i</sup> and Cu3<sup>i</sup> compose the MC ring (symmetry operator (i): -x + 1, -y + 1, -z + 1). Cu2 is five-coordinate with distorted square pyramidal geometry with  $\tau$  equal to 0.02 ( $\tau = 0$  for square pyramidal geometry and  $\tau = 1$  for trigonal bipyramidal geometry (Addison *et al.*, 1984). The basal portion of the geometry is composed of two shi<sup>3-</sup> ligands that bind with oxygen and nitrogen atoms. The apical position is filled by a DMF molecule which binds with an oxygen atom (O7 and O7b). The Cu2—O7 bond distance is 2.763 (14) Å, and the Cu2—O7b bond distance is 2.696 (17) Å. Cu3 is four-coordinate with square planar geometry, and the coordination is composed of two shi<sup>3-</sup> ligands that bind with oxygen atom. An uncoordinated TEA countercation is located in the lattice. In addition, the structure of **1** shows severe static disorder as the metallacrown, TEA, and DMF are disordered over two mutually exclusive sites (Figs. 4–6, Farrugia, 1997).

Compounds 1 and 2 are similar planar 12-MC-4 molecules. Compound 2 also consist of a  $[Cu^{II}-N-O]$  repeat unit with a Cu<sup>II</sup> ion bound in the central cavity (Gibney *et al.*, 1994). However, in 2 all of the ring Cu<sup>II</sup> ions are four-coordinate with square planar geometry. The geometry about the ring Cu<sup>II</sup> ions in 2 is different compared to 1. In 1 the DMF molecules are bound to two of the ring Cu<sup>II</sup> ions, which gives these Cu<sup>II</sup> ions a distorted square pyramidal geometry (Fig. 2). In 2 the DMF molecule does not bind to any of the Cu<sup>II</sup> ions, but instead the DMF is present only in the lattice (Gibney *et al.*, 1994).

#### Experimental

Copper(II) acetate monohydrate (99+%) was purchased from Sigma-Aldrich, salicylhydroxamic acid (H<sub>3</sub>shi, 99%) was purchased from Alfa Aesar, tetraethylammonium acetate (99%) was purchased from Acros Organics, absolute diethyl ether was purchased from EMD Chemicals, and *N*,*N*-dimethylformamide (ACS grade) was purchased from Fisher Scientific. All reagents were used as received and without further purification.

Copper(II) acetate monohydrate (0.625 mmol), salicylhydroxamic acid (0.5 mmol), and tetraethylammonium acetate (1.0 mmol) were mixed in 10 mL of DMF. Upon mixing the solution turned a dark green color. After stirring overnight, the solution was gravity filtered. No precipitate was observed, and the filtrate remained a dark green color. X-ray quality crystals were grown *via* diffusion of diethyl ether at 277 K (4  $^{o}$ C). The product was a dark green diamond-shaped crystal, and after washing the filtered product with cold DMF, the percent yield was 36% (0.0607 g) based on copper(II) acetate monohydrate. Elemental analysis for C<sub>50</sub>H<sub>70</sub>Cu<sub>5</sub>N<sub>8</sub>O<sub>14</sub> [FW = 1325.74 g/mol] found % (calculated); C 45.21 (45.33); H 5.33 (5.33); N 8.37 (8.46).

#### Refinement

The structure of **1** shows severe static disorder. The anionic metallacrown, the tetraethylammonium and the solvent DMF molecules all show disorder over each two mutually exclusive sites with different occupancy ratios. The refined values are 0.6215 (6) to 0.3785 (6) for the metallacrown, 0.759 (3) to 0.241 (1) for the tetraethylammonium ions and 0.537 (6) to 0.463 (6) for the DMF molecules. The metallacrown is disordered by a non-crystallographic two-fold axis, as is the DMF molecule. The tetraethylammonium is disordered by a pseudo-inversion center. Equivalent bonds in disordered sections of the molecules were restrained to be similar (standard deviation 0.02 Å). The atom O7 and O7b were restrained to be approximately isotropic (standard deviation 0.01 Å<sup>2</sup>), and the ADPs of the atoms C18*b* and C22, O7 and O7b, and N4 and N4b were each constrained to be the same. Aromatic benzene rings were constrained to resemble ideal hexagons with C—C distances of 1.39 Ångstroms.

Hydrogen atoms were placed in calculated positions with C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methylene) and were refined with Uĩso~(H) = 1.5  $U_{eq}(C)$  for methyl H atoms and 1.2  $U_{eq}(C)$  for methylene and aromatic moieties.

Figures







Fig. 2. Single-crystal X-ray structure (side view) of **1**. The DMF is coordinated to Cu2 with a Cu<sup>II</sup>—O7 distance of 2.763 (14) Å. The thermal ellipsoid plot of **1** is at a 50% probability level with the disordered portions of the molecule shown only at the higher occupancy positions. Cu2 and O7 are labeled to highlight the DMF molecules bonded to the metallacrown. Hydrogen atoms and the lattice TEA have been omitted for clarity (symmetry operator (i): -*x* + 1, -*y* + 1, -*z* + 1).



Fig. 3. Packing diagram of 1 along the *c* axis. The thermal ellipsoid plot of 1 is at a 50% probability level with the disordered portions of the molecule shown only at the higher occupancy positions. Hydrogen atoms have been omitted for clarity.



Fig. 4. Single-crystal X-ray structure (top view) of 1. The thermal ellipsoid plot of 1 is at a 50% probability level. All disordered atoms of the MC are shown. The metallacrown is disordered over two mutually exclusive sites by a non-crystallographic twofold axis. The refined occupancy ratio is 0.6215 (6) to 0.3785 (6). All copper atoms are labeled. Hydrogen atoms, the DMF molecules, and the lattice TEA have been omitted for clarity (symmetry operator (i): -x + 1, -y + 1, -z + 1).



Fig. 5. Single-crystal X-ray structure of the TEA countercation with all disordered atoms shown. The thermal ellipsoid plot is at a 50% probability level. The tetraethylammonium is disordered over two mutually exclusive sites by a pseudo-inversion center. The refined occupancy ratio is 0.759 (3) to 0.241 (1). Hydrogen atoms have been omitted for clarity.



Fig. 6. Single-crystal X-ray structure of the DMF molecule with all disordered atoms shown. The thermal ellipsoid plot is at a 50% probability level. The DMF is disordered over two mutually exclusive sites by a non-crystallographic twofold axis. The refined occupancy ratio is 0.537 (6) to 0.463 (6). Hydrogen atoms have been omitted for clarity.

# $Bis(tetraethylammonium) \ bis(dimethylformamide) tetrakis(\mu-N,2-\ dioxidobenzene-1-carboximidato) pentacopper(II)$

F(000) = 2732 $D_x = 1.672 \text{ Mg m}^{-3}$ 

 $\theta = 2.4-28.2^{\circ}$   $\mu = 2.06 \text{ mm}^{-1}$  T = 100 KBlock, black

 $0.45 \times 0.40 \times 0.29 \text{ mm}$ 

Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 9969 reflections

#### Crystal data

| $(C_8H_{20}N)_2[Cu_5(C_7H_4NO_3)_4(C_3H_7NO)_2]$ |
|--------------------------------------------------|
| $M_r = 1325.74$                                  |
| Orthorhombic, Pbca                               |
| Hall symbol: -P 2ac 2ab                          |
| a = 16.641 (3) Å                                 |
| b = 13.616 (2) Å                                 |
| c = 23.238 (4)  Å                                |
| $V = 5265.4 (15) \text{ Å}^3$                    |
| Z = 4                                            |

#### Data collection

| 8316 independent reflections                                              |
|---------------------------------------------------------------------------|
| 6387 reflections with $I > 2\sigma(I)$                                    |
| $R_{\rm int} = 0.055$                                                     |
| $\theta_{\text{max}} = 31.4^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ |
| $h = -24 \rightarrow 24$                                                  |
| $k = -19 \rightarrow 19$                                                  |
| $l = -31 \rightarrow 33$                                                  |
|                                                                           |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                  |
|---------------------------------|---------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                            |
| $R[F^2 > 2\sigma(F^2)] = 0.043$ | Hydrogen site location: inferred from neighbouring sites                        |
| $wR(F^2) = 0.104$               | H-atom parameters constrained                                                   |
| <i>S</i> = 1.12                 | $w = 1/[\sigma^2(F_0^2) + (0.P)^2 + 7.2598P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| 8316 reflections                | $(\Delta/\sigma)_{\rm max} = 0.002$                                             |
| 631 parameters                  | $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$                       |

101 restraints3 constraints

### $\Delta \rho_{min} = -0.35 \text{ e} \text{ Å}^{-3}$

#### Special details

**Experimental**. The structure of **1** shows severe static disorder. The anionic metallacrown, the tetraethylammonium, and the solvent DMF molecules all show disorder over each two mutually exclusive sites with different occupancy ratios. The refined values are 0.6215 (6) to 0.3785 (6) for the metallacrown, 0.759 (3) to 0.241 (1) for the tetraethylammonium ions and 0.537 (6) to 0.463 (6) for the DMF molecules. The metallacrown is disordered by a non-crystallographic two fold axis, as is the DMF molecule. The tetraethyl-ammonium is disordered by a pseudo-inversion center. Equivalent bonds in disordered sections of the molecules were restrained to be similar (standard deviation 0.02 Å). The atom O7 and O7b were restrained to be approximately isotropic (standard deviation 0.01 Å<sup>2</sup>), and the ADPs of the atoms C18*b* and C22, O7 and O7b, and N4 and N4b were each constrained to be the same. Aromatic benzene rings were constrained to resemble ideal hexagons with C—C distances of 1.39 Å.

IR bands (cm<sup>-1</sup>): 1605(*s*), 1572(*s*), 1526(*s*), 1437(*m*), 1389(*s*), 1319(*s*), 1254(*s*), 1097(*m*), 1024(*m*), 943(*m*), 742(*m*), 684(*m*), 657(*m*), 582(*m*), 476(*m*).

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | у            | Z             | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1)  |
|-----|--------------|--------------|---------------|-------------------------------|------------|
| Cu1 | 0.5000       | 0.5000       | 0.5000        | 0.02182 (9)                   |            |
| Cu2 | 0.57625 (3)  | 0.41430 (3)  | 0.616568 (19) | 0.02373 (11)                  | 0.6215 (7) |
| 01  | 0.41463 (15) | 0.57229 (17) | 0.46572 (10)  | 0.0221 (5)                    | 0.6215 (7) |
| N1  | 0.3913 (12)  | 0.6588 (11)  | 0.4928 (5)    | 0.0215 (16)                   | 0.6215 (7) |
| C1  | 0.3635 (2)   | 0.7238 (3)   | 0.45496 (15)  | 0.0231 (7)                    | 0.6215 (7) |
| O2  | 0.36367 (16) | 0.7058 (2)   | 0.40009 (11)  | 0.0269 (5)                    | 0.6215 (7) |
| C2  | 0.33280 (17) | 0.81957 (17) | 0.4762 (2)    | 0.0211 (8)                    | 0.6215 (7) |
| C3  | 0.3010 (2)   | 0.8806 (3)   | 0.43404 (12)  | 0.0292 (10)                   | 0.6215 (7) |
| Н3  | 0.3017       | 0.8607       | 0.3949        | 0.035*                        | 0.6215 (7) |
| C4  | 0.2680 (3)   | 0.9708 (3)   | 0.44919 (16)  | 0.0366 (14)                   | 0.6215 (7) |
| H4  | 0.2463       | 1.0125       | 0.4204        | 0.044*                        | 0.6215 (7) |
| C5  | 0.2669 (3)   | 0.9999 (2)   | 0.50651 (19)  | 0.0390 (15)                   | 0.6215 (7) |
| Н5  | 0.2444       | 1.0616       | 0.5169        | 0.047*                        | 0.6215 (7) |
| C6  | 0.2988 (3)   | 0.9389 (3)   | 0.54869 (12)  | 0.0290 (9)                    | 0.6215 (7) |
| H6  | 0.2980       | 0.9588       | 0.5879        | 0.035*                        | 0.6215 (7) |
| C7  | 0.33169 (17) | 0.8487 (2)   | 0.53355 (16)  | 0.0240 (8)                    | 0.6215 (7) |
| O3  | 0.35984 (17) | 0.7964 (2)   | 0.57879 (12)  | 0.0292 (6)                    | 0.6215 (7) |
| Cu3 | 0.41466 (3)  | 0.67697 (3)  | 0.573321 (18) | 0.02160 (11)                  | 0.6215 (7) |
| O4  | 0.49116 (17) | 0.57526 (19) | 0.56729 (11)  | 0.0294 (6)                    | 0.6215 (7) |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| 212  | 0.51(2.(0)   | 0.5244 (12)  | 0 (010 (5)   | 0.024 (2)    | 0 (015 (7) |
|------|--------------|--------------|--------------|--------------|------------|
| N2   | 0.5163 (9)   | 0.5344 (12)  | 0.6212 (5)   | 0.024 (2)    | 0.6215 (7) |
| C8   | 0.4843 (2)   | 0.5834 (3)   | 0.66324 (15) | 0.0240 (7)   | 0.6215 (7) |
| 05   | 0.43610 (16) | 0.65689 (19) | 0.65495 (11) | 0.0265 (5)   | 0.6215 (7) |
| C9   | 0.5018 (2)   | 0.5490 (3)   | 0.72258 (11) | 0.0232 (8)   | 0.6215 (7) |
| C10  | 0.4681 (2)   | 0.6052 (2)   | 0.7663 (2)   | 0.0293 (11)  | 0.6215 (7) |
| HIO  | 0.4391       | 0.6633       | 0.7572       | 0.035*       | 0.6215 (7) |
| CII  | 0.4768 (3)   | 0.5765 (3)   | 0.82335 (16) | 0.0412 (16)  | 0.6215 (7) |
| H11  | 0.4538       | 0.6149       | 0.8532       | 0.049*       | 0.6215 (7) |
| C12  | 0.5193 (3)   | 0.4915 (4)   | 0.83670 (10) | 0.0396 (17)  | 0.6215 (7) |
| H12  | 0.5252       | 0.4719       | 0.8757       | 0.047*       | 0.6215 (7) |
| C13  | 0.5530 (2)   | 0.4353 (2)   | 0.7930 (2)   | 0.0305 (10)  | 0.6215 (7) |
| H13  | 0.5819       | 0.3773       | 0.8021       | 0.037*       | 0.6215 (7) |
| C14  | 0.54424 (19) | 0.4641 (3)   | 0.73593 (15) | 0.0265 (8)   | 0.6215 (7) |
| 06   | 0.58043 (19) | 0.4037 (2)   | 0.69748 (12) | 0.0336 (6)   | 0.6215 (7) |
| Cu2B | 0.39897 (4)  | 0.64754 (5)  | 0.42099 (3)  | 0.02356 (18) | 0.3785 (7) |
| O1B  | 0.5618 (2)   | 0.4844 (3)   | 0.56838 (16) | 0.0223 (8)   | 0.3785 (7) |
| N1B  | 0.5321 (13)  | 0.5252 (18)  | 0.6190 (8)   | 0.022 (3)    | 0.3785 (7) |
| C1B  | 0.5508 (3)   | 0.4708 (4)   | 0.6645 (2)   | 0.0225 (11)  | 0.3785 (7) |
| O2B  | 0.5924 (3)   | 0.3906 (3)   | 0.6598 (2)   | 0.0304 (10)  | 0.3785 (7) |
| C2B  | 0.5244 (3)   | 0.5036 (5)   | 0.72271 (17) | 0.0189 (12)  | 0.3785 (7) |
| C3B  | 0.5475 (4)   | 0.4426 (3)   | 0.7677 (3)   | 0.0265 (16)  | 0.3785 (7) |
| H3B  | 0.5775       | 0.3847       | 0.7600       | 0.032*       | 0.3785 (7) |
| C4B  | 0.5269 (6)   | 0.4664 (5)   | 0.8240 (2)   | 0.037 (3)    | 0.3785 (7) |
| H4B  | 0.5427       | 0.4247       | 0.8547       | 0.045*       | 0.3785 (7) |
| C5B  | 0.4830 (6)   | 0.5511 (6)   | 0.83522 (17) | 0.038 (3)    | 0.3785 (7) |
| H5B  | 0.4689       | 0.5673       | 0.8737       | 0.045*       | 0.3785 (7) |
| C6B  | 0.4598 (4)   | 0.6121 (4)   | 0.7902 (3)   | 0.0236 (14)  | 0.3785 (7) |
| H6B  | 0.4299       | 0.6700       | 0.7979       | 0.028*       | 0.3785 (7) |
| C7B  | 0.4805 (3)   | 0.5883 (4)   | 0.7340 (2)   | 0.0212 (12)  | 0.3785 (7) |
| O3B  | 0.4532 (3)   | 0.6525 (3)   | 0.69378 (19) | 0.0265 (9)   | 0.3785 (7) |
| Cu3B | 0.45480 (4)  | 0.63044 (5)  | 0.61447 (3)  | 0.02077 (18) | 0.3785 (7) |
| O4B  | 0.4357 (3)   | 0.5941 (3)   | 0.53712 (17) | 0.0242 (8)   | 0.3785 (7) |
| N2B  | 0.394 (2)    | 0.6670 (17)  | 0.5039 (8)   | 0.021 (3)    | 0.3785 (7) |
| C8B  | 0.3775 (3)   | 0.7426 (4)   | 0.5357 (2)   | 0.0235 (11)  | 0.3785 (7) |
| O5B  | 0.3936 (3)   | 0.7458 (3)   | 0.58976 (17) | 0.0247 (9)   | 0.3785 (7) |
| C9B  | 0.3388 (3)   | 0.8271 (3)   | 0.5066 (3)   | 0.0192 (12)  | 0.3785 (7) |
| C10B | 0.3119 (4)   | 0.9002 (5)   | 0.54365 (16) | 0.0270 (16)  | 0.3785 (7) |
| H10B | 0.3188       | 0.8932       | 0.5840       | 0.032*       | 0.3785 (7) |
| C11B | 0.2749 (5)   | 0.9836 (5)   | 0.5216 (3)   | 0.036 (2)    | 0.3785 (7) |
| H11B | 0.2565       | 1.0336       | 0.5469       | 0.044*       | 0.3785 (7) |
| C12B | 0.2647 (5)   | 0.9939 (4)   | 0.4625 (3)   | 0.032 (2)    | 0.3785 (7) |
| H12B | 0.2394       | 1.0509       | 0.4474       | 0.039*       | 0.3785 (7) |
| C13B | 0.2916 (4)   | 0.9207 (4)   | 0.42551 (17) | 0.0266 (14)  | 0.3785 (7) |
| H13B | 0.2847       | 0.9277       | 0.3851       | 0.032*       | 0.3785 (7) |
| C14B | 0.3286 (3)   | 0.8373 (3)   | 0.4476 (3)   | 0.0206 (12)  | 0.3785 (7) |
| O6B  | 0.3489 (3)   | 0.7691 (3)   | 0.40768 (19) | 0.0322 (10)  | 0.3785 (7) |
| N3   | 0.80044 (11) | 0.22899 (15) | 0.27205 (9)  | 0.0278 (4)   |            |
| C15  | 0.85084 (18) | 0.2867 (2)   | 0.31451 (14) | 0.0294 (7)   | 0.759 (3)  |
| H15A | 0.8953       | 0.2444       | 0.3282       | 0.035*       | 0.759 (3)  |
|      | 0.0700       | ·            | 0.0202       | 0.000        | 0.107 (0)  |

| H15B | 0.8751       | 0.3434      | 0.2942       | 0.035*      | 0.759 (3) |
|------|--------------|-------------|--------------|-------------|-----------|
| C16  | 0.8052 (4)   | 0.3239 (9)  | 0.3657 (3)   | 0.0357 (17) | 0.759 (3) |
| H16A | 0.7610       | 0.3660      | 0.3528       | 0.054*      | 0.759 (3) |
| H16B | 0.8414       | 0.3619      | 0.3905       | 0.054*      | 0.759 (3) |
| H16C | 0.7835       | 0.2682      | 0.3874       | 0.054*      | 0.759 (3) |
| C17  | 0.73347 (18) | 0.2923 (2)  | 0.24704 (16) | 0.0324 (8)  | 0.759 (3) |
| H17A | 0.7047       | 0.2535      | 0.2175       | 0.039*      | 0.759 (3) |
| H17B | 0.6946       | 0.3072      | 0.2781       | 0.039*      | 0.759 (3) |
| C18  | 0.7599 (3)   | 0.3870 (4)  | 0.2205 (2)   | 0.0417 (12) | 0.759 (3) |
| H18A | 0.7867       | 0.4275      | 0.2496       | 0.063*      | 0.759 (3) |
| H18B | 0.7130       | 0.4222      | 0.2055       | 0.063*      | 0.759 (3) |
| H18C | 0.7975       | 0.3735      | 0.1890       | 0.063*      | 0.759 (3) |
| C19  | 0.85842 (19) | 0.1995 (3)  | 0.22333 (15) | 0.0349 (8)  | 0.759 (3) |
| H19A | 0.8831       | 0.2598      | 0.2074       | 0.042*      | 0.759 (3) |
| H19B | 0.9021       | 0.1591      | 0.2399       | 0.042*      | 0.759 (3) |
| C20  | 0.8199 (4)   | 0.1429 (4)  | 0.1748 (3)   | 0.0452 (13) | 0.759 (3) |
| H20A | 0.7895       | 0.0875      | 0.1905       | 0.068*      | 0.759 (3) |
| H20B | 0.8617       | 0.1183      | 0.1488       | 0.068*      | 0.759 (3) |
| H20C | 0.7835       | 0.1863      | 0.1535       | 0.068*      | 0.759 (3) |
| C21  | 0.7619 (2)   | 0.1412 (2)  | 0.29905 (17) | 0.0368 (8)  | 0.759 (3) |
| H21A | 0.7276       | 0.1084      | 0.2700       | 0.044*      | 0.759 (3) |
| H21B | 0.7266       | 0.1635      | 0.3307       | 0.044*      | 0.759 (3) |
| C22  | 0.8207 (6)   | 0.0671 (5)  | 0.3226 (3)   | 0.0457 (15) | 0.759 (3) |
| H22A | 0.8544       | 0.0421      | 0.2913       | 0.069*      | 0.759 (3) |
| H22B | 0.7912       | 0.0126      | 0.3402       | 0.069*      | 0.759 (3) |
| H22C | 0.8547       | 0.0986      | 0.3517       | 0.069*      | 0.759 (3) |
| C15B | 0.7458 (6)   | 0.1682 (8)  | 0.2338 (4)   | 0.030(2)    | 0.241 (3) |
| H15C | 0.7221       | 0.1141      | 0.2566       | 0.035*      | 0.241 (3) |
| H15D | 0.7014       | 0.2100      | 0.2195       | 0.035*      | 0.241 (3) |
| C16B | 0.7909 (12)  | 0.1255 (15) | 0.1830 (7)   | 0.042 (4)   | 0.241 (3) |
| H16D | 0.8144       | 0.1789      | 0.1602       | 0.064*      | 0.241 (3) |
| H16E | 0.7537       | 0.0877      | 0.1589       | 0.064*      | 0.241 (3) |
| H16F | 0.8338       | 0.0823      | 0.1969       | 0.064*      | 0.241 (3) |
| C17B | 0.8620 (6)   | 0.1601 (8)  | 0.3017 (5)   | 0.032 (2)   | 0.241 (3) |
| H17C | 0.8985       | 0.1344      | 0.2717       | 0.038*      | 0.241 (3) |
| H17D | 0.8948       | 0.2005      | 0.3282       | 0.038*      | 0.241 (3) |
| C18B | 0.830 (2)    | 0.0743 (18) | 0.3351 (12)  | 0.0457 (15) | 0.241 (3) |
| H18D | 0.7952       | 0.0979      | 0.3660       | 0.069*      | 0.241 (3) |
| H18E | 0.8753       | 0.0376      | 0.3518       | 0.069*      | 0.241 (3) |
| H18F | 0.7997       | 0.0312      | 0.3094       | 0.069*      | 0.241 (3) |
| C19B | 0.7420 (6)   | 0.2669 (7)  | 0.3214 (4)   | 0.029(2)    | 0.241 (3) |
| H19C | 0.7018       | 0.3114      | 0.3040       | 0.035*      | 0.241 (3) |
| H19D | 0.7126       | 0.2098      | 0.3374       | 0.035*      | 0.241 (3) |
| C20B | 0.7826 (14)  | 0.320 (3)   | 0.3702 (11)  | 0.036 (5)   | 0.241 (3) |
| H20D | 0.8125       | 0.2728      | 0.3938       | 0.055*      | 0.241 (3) |
| H20E | 0.7421       | 0.3528      | 0.3939       | 0.055*      | 0.241 (3) |
| H20F | 0.8199       | 0.3690      | 0.3546       | 0.055*      | 0.241 (3) |
| C21B | 0.8441 (6)   | 0.3090 (8)  | 0.2448 (5)   | 0.036 (2)   | 0.241 (3) |
| H21C | 0.8844       | 0.2807      | 0.2182       | 0.043*      | 0.241 (3) |
|      |              |             |              |             | (-)       |

| H21D | 0.8736      | 0.3457      | 0.2749     | 0.043*      | 0.241 (3) |
|------|-------------|-------------|------------|-------------|-----------|
| C22B | 0.7923 (9)  | 0.3799 (13) | 0.2118 (8) | 0.043 (4)   | 0.241 (3) |
| H22D | 0.7521      | 0.3434      | 0.1896     | 0.064*      | 0.241 (3) |
| H22E | 0.8259      | 0.4185      | 0.1856     | 0.064*      | 0.241 (3) |
| H22F | 0.7650      | 0.4241      | 0.2388     | 0.064*      | 0.241 (3) |
| O7   | 0.4383 (10) | 0.3329 (7)  | 0.5707 (5) | 0.046 (2)   | 0.537 (7) |
| C23  | 0.4581 (3)  | 0.2485 (4)  | 0.5501 (2) | 0.0402 (15) | 0.537 (7) |
| H23  | 0.4947      | 0.2087      | 0.5711     | 0.048*      | 0.537 (7) |
| N4   | 0.4289 (7)  | 0.2151 (9)  | 0.5002 (5) | 0.0320 (13) | 0.537 (7) |
| C24  | 0.3656 (4)  | 0.2678 (5)  | 0.4701 (4) | 0.0466 (16) | 0.537 (7) |
| H24A | 0.3179      | 0.2259      | 0.4672     | 0.070*      | 0.537 (7) |
| H24B | 0.3842      | 0.2852      | 0.4314     | 0.070*      | 0.537 (7) |
| H24C | 0.3522      | 0.3277      | 0.4914     | 0.070*      | 0.537 (7) |
| C25  | 0.4551 (4)  | 0.1234 (4)  | 0.4765 (4) | 0.0528 (19) | 0.537 (7) |
| H25A | 0.4099      | 0.0772      | 0.4756     | 0.079*      | 0.537 (7) |
| H25B | 0.4983      | 0.0963      | 0.5003     | 0.079*      | 0.537 (7) |
| H25C | 0.4749      | 0.1339      | 0.4372     | 0.079*      | 0.537 (7) |
| O7B  | 0.4483 (11) | 0.3087 (10) | 0.5815 (6) | 0.046 (2)   | 0.463 (7) |
| C23B | 0.4126 (4)  | 0.3086 (5)  | 0.5331 (4) | 0.052 (2)   | 0.463 (7) |
| H23B | 0.3855      | 0.3664      | 0.5210     | 0.062*      | 0.463 (7) |
| N4B  | 0.4120 (9)  | 0.2298 (11) | 0.4988 (6) | 0.0320 (13) | 0.463 (7) |
| C24B | 0.4578 (4)  | 0.1433 (6)  | 0.5139 (4) | 0.0451 (18) | 0.463 (7) |
| H24D | 0.4937      | 0.1260      | 0.4820     | 0.068*      | 0.463 (7) |
| H24E | 0.4211      | 0.0886      | 0.5215     | 0.068*      | 0.463 (7) |
| H24F | 0.4898      | 0.1568      | 0.5484     | 0.068*      | 0.463 (7) |
| C25B | 0.3773 (6)  | 0.2329 (10) | 0.4413 (4) | 0.069 (3)   | 0.463 (7) |
| H25D | 0.3255      | 0.1988      | 0.4414     | 0.104*      | 0.463 (7) |
| H25E | 0.4138      | 0.2007      | 0.4141     | 0.104*      | 0.463 (7) |
| H25F | 0.3693      | 0.3015      | 0.4297     | 0.104*      | 0.463 (7) |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$     | $U^{22}$     | U <sup>33</sup> | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|-----|--------------|--------------|-----------------|--------------|---------------|---------------|
| Cu1 | 0.02558 (18) | 0.02169 (17) | 0.01818 (17)    | 0.00622 (14) | -0.00229 (14) | -0.00452 (14) |
| Cu2 | 0.0274 (2)   | 0.0264 (2)   | 0.0174 (2)      | 0.00638 (17) | -0.00076 (17) | -0.00123 (16) |
| 01  | 0.0262 (12)  | 0.0207 (11)  | 0.0193 (12)     | 0.0034 (9)   | 0.0006 (10)   | -0.0032 (9)   |
| N1  | 0.024 (2)    | 0.020 (3)    | 0.021 (4)       | 0.003 (2)    | 0.005 (3)     | -0.005 (3)    |
| C1  | 0.0205 (15)  | 0.0266 (17)  | 0.0222 (17)     | 0.0000 (13)  | -0.0007 (13)  | 0.0018 (13)   |
| O2  | 0.0312 (13)  | 0.0285 (14)  | 0.0210 (13)     | 0.0084 (11)  | -0.0037 (10)  | 0.0003 (11)   |
| C2  | 0.0214 (17)  | 0.0212 (17)  | 0.021 (2)       | 0.0031 (13)  | 0.0021 (19)   | -0.003 (2)    |
| C3  | 0.027 (2)    | 0.030 (3)    | 0.030 (2)       | 0.008 (2)    | -0.0025 (17)  | 0.0045 (19)   |
| C4  | 0.035 (3)    | 0.034 (3)    | 0.041 (3)       | 0.008 (2)    | 0.002 (2)     | 0.014 (3)     |
| C5  | 0.034 (3)    | 0.024 (2)    | 0.059 (4)       | 0.0123 (19)  | 0.004 (3)     | -0.003 (3)    |
| C6  | 0.033 (2)    | 0.024 (2)    | 0.030 (2)       | 0.008 (2)    | 0.0035 (18)   | -0.002 (2)    |
| C7  | 0.0216 (18)  | 0.022 (2)    | 0.029 (3)       | 0.0071 (15)  | 0.0063 (16)   | -0.0052 (16)  |
| O3  | 0.0387 (15)  | 0.0248 (13)  | 0.0243 (14)     | 0.0118 (12)  | -0.0002 (11)  | -0.0041 (11)  |
| Cu3 | 0.0256 (2)   | 0.0206 (2)   | 0.0186 (2)      | 0.00376 (16) | 0.00108 (16)  | -0.00308 (16) |
| O4  | 0.0437 (16)  | 0.0300 (13)  | 0.0145 (12)     | 0.0152 (12)  | -0.0006 (11)  | -0.0010 (10)  |

| N2   | 0.030 (6)   | 0.030(2)    | 0.012 (2)   | 0.008 (3)    | 0.000(2)     | -0.0020 (19) |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C8   | 0.0219 (16) | 0.0274 (17) | 0.0227 (17) | -0.0002 (13) | 0.0011 (13)  | -0.0028 (14) |
| 05   | 0.0326 (14) | 0.0301 (13) | 0.0168 (13) | 0.0083 (11)  | 0.0012 (10)  | -0.0073 (10) |
| С9   | 0.019 (2)   | 0.034 (3)   | 0.0162 (18) | 0.0028 (16)  | 0.0008 (15)  | -0.0052 (19) |
| C10  | 0.0193 (19) | 0.040 (2)   | 0.028 (3)   | -0.0006 (16) | 0.004 (2)    | -0.007 (2)   |
| C11  | 0.027 (3)   | 0.066 (4)   | 0.031 (3)   | -0.001 (3)   | 0.008 (2)    | -0.018 (3)   |
| C12  | 0.026 (3)   | 0.074 (5)   | 0.019 (2)   | -0.006 (3)   | -0.0004 (18) | 0.003 (3)    |
| C13  | 0.022 (2)   | 0.048 (3)   | 0.022 (2)   | 0.0043 (17)  | -0.001 (2)   | 0.001 (2)    |
| C14  | 0.0218 (19) | 0.041 (3)   | 0.017 (2)   | -0.0017 (18) | -0.0054 (16) | 0.0034 (17)  |
| O6   | 0.0455 (17) | 0.0390 (16) | 0.0162 (14) | 0.0137 (13)  | -0.0015 (12) | -0.0011 (11) |
| Cu2B | 0.0292 (4)  | 0.0255 (3)  | 0.0160 (3)  | 0.0097 (3)   | -0.0015 (3)  | -0.0015 (3)  |
| O1B  | 0.027 (2)   | 0.026 (2)   | 0.0142 (18) | 0.0063 (16)  | 0.0035 (15)  | -0.0003 (15) |
| N1B  | 0.018 (7)   | 0.031 (7)   | 0.017 (4)   | -0.002 (4)   | 0.006 (3)    | -0.009 (3)   |
| C1B  | 0.022 (3)   | 0.028 (3)   | 0.018 (3)   | 0.002 (2)    | -0.003 (2)   | -0.003 (2)   |
| O2B  | 0.038 (3)   | 0.030 (2)   | 0.023 (2)   | 0.0163 (19)  | -0.0105 (19) | -0.0007 (18) |
| C2B  | 0.022 (3)   | 0.028 (4)   | 0.006 (3)   | 0.004 (3)    | -0.002 (2)   | 0.003 (3)    |
| C3B  | 0.025 (3)   | 0.032 (3)   | 0.023 (4)   | 0.008 (2)    | -0.016 (4)   | 0.003 (4)    |
| C4B  | 0.040 (5)   | 0.042 (5)   | 0.030 (5)   | -0.004 (4)   | -0.014 (4)   | 0.015 (5)    |
| C5B  | 0.026 (5)   | 0.076 (7)   | 0.011 (3)   | -0.014 (5)   | 0.005 (3)    | -0.012 (4)   |
| C6B  | 0.017 (3)   | 0.034 (3)   | 0.019 (4)   | 0.003 (2)    | 0.000 (3)    | 0.000 (3)    |
| C7B  | 0.016 (3)   | 0.033 (4)   | 0.015 (4)   | 0.003 (2)    | 0.001 (2)    | -0.009 (3)   |
| O3B  | 0.033 (2)   | 0.025 (2)   | 0.022 (2)   | 0.0069 (17)  | 0.0005 (18)  | -0.0056 (17) |
| Cu3B | 0.0239 (3)  | 0.0214 (3)  | 0.0170 (3)  | 0.0056 (3)   | -0.0010 (3)  | -0.0019 (3)  |
| O4B  | 0.032 (2)   | 0.0220 (19) | 0.019 (2)   | 0.0105 (16)  | -0.0009 (16) | 0.0014 (16)  |
| N2B  | 0.030 (5)   | 0.016 (5)   | 0.017 (6)   | 0.011 (4)    | 0.004 (5)    | 0.000 (4)    |
| C8B  | 0.025 (3)   | 0.024 (3)   | 0.022 (3)   | 0.004 (2)    | -0.001 (2)   | 0.004 (2)    |
| O5B  | 0.033 (2)   | 0.022 (2)   | 0.019 (2)   | 0.0075 (18)  | 0.0000 (17)  | -0.0046 (16) |
| C9B  | 0.024 (3)   | 0.016 (3)   | 0.018 (3)   | 0.009 (2)    | 0.004 (3)    | -0.006 (3)   |
| C10B | 0.036 (4)   | 0.027 (4)   | 0.018 (3)   | 0.012 (3)    | 0.004 (3)    | -0.010 (3)   |
| C11B | 0.047 (6)   | 0.032 (5)   | 0.030 (4)   | 0.005 (4)    | 0.006 (4)    | -0.016 (4)   |
| C12B | 0.030 (4)   | 0.016 (3)   | 0.050 (6)   | 0.013 (3)    | -0.007 (4)   | 0.002 (4)    |
| C13B | 0.032 (4)   | 0.023 (4)   | 0.025 (3)   | 0.008 (3)    | 0.001 (3)    | -0.003 (3)   |
| C14B | 0.022 (3)   | 0.026 (3)   | 0.014 (3)   | 0.005 (2)    | -0.003 (3)   | 0.002 (2)    |
| O6B  | 0.047 (3)   | 0.028 (2)   | 0.021 (2)   | 0.015 (2)    | -0.0022 (19) | -0.0002 (18) |
| N3   | 0.0189 (8)  | 0.0309 (10) | 0.0337 (11) | 0.0012 (7)   | -0.0027 (8)  | -0.0086 (8)  |
| C15  | 0.0238 (14) | 0.0309 (15) | 0.0336 (17) | -0.0045 (12) | -0.0062 (12) | -0.0050 (13) |
| C16  | 0.037 (4)   | 0.036 (3)   | 0.034 (3)   | 0.003 (3)    | -0.003 (3)   | -0.008 (2)   |
| C17  | 0.0210 (14) | 0.0342 (16) | 0.0420 (19) | 0.0067 (12)  | -0.0070 (13) | -0.0128 (14) |
| C18  | 0.043 (3)   | 0.040 (2)   | 0.042 (3)   | 0.013 (2)    | -0.005 (2)   | -0.0051 (18) |
| C19  | 0.0244 (15) | 0.0441 (19) | 0.0361 (19) | 0.0099 (13)  | 0.0027 (13)  | -0.0090 (15) |
| C20  | 0.053 (4)   | 0.044 (3)   | 0.038 (3)   | 0.007 (2)    | 0.000 (2)    | -0.014 (2)   |
| C21  | 0.0337 (17) | 0.0285 (16) | 0.048 (2)   | -0.0082 (13) | 0.0070 (15)  | -0.0092 (15) |
| C22  | 0.056 (3)   | 0.0320 (18) | 0.050 (4)   | 0.0023 (16)  | -0.003(3)    | -0.002 (2)   |
| C15B | 0.020 (4)   | 0.035 (5)   | 0.034 (5)   | 0.003 (4)    | -0.009 (4)   | -0.006 (4)   |
| C16B | 0.058 (12)  | 0.048 (9)   | 0.021 (6)   | -0.011 (8)   | 0.006 (7)    | -0.008 (5)   |
| C17B | 0.024 (5)   | 0.037 (5)   | 0.035 (6)   | 0.011 (4)    | -0.001 (4)   | 0.003 (4)    |
| C18B | 0.056 (3)   | 0.0320 (18) | 0.050 (4)   | 0.0023 (16)  | -0.003 (3)   | -0.002 (2)   |
| C19B | 0.025 (4)   | 0.028 (5)   | 0.034 (5)   | 0.008 (4)    | -0.001 (4)   | -0.006 (4)   |
| C20B | 0.042 (13)  | 0.032 (7)   | 0.036 (8)   | -0.014 (12)  | 0.007 (9)    | -0.016 (6)   |

| C21B | 0.029 (5) | 0.042 (6) | 0.037 (6)   | -0.006 (4) | -0.009 (4) | 0.004 (5)  |
|------|-----------|-----------|-------------|------------|------------|------------|
| C22B | 0.039 (9) | 0.043 (8) | 0.045 (9)   | -0.003 (7) | -0.005 (8) | 0.012 (7)  |
| 07   | 0.040 (4) | 0.053 (5) | 0.046 (4)   | -0.009 (4) | 0.006 (3)  | -0.013 (3) |
| C23  | 0.030 (2) | 0.049 (3) | 0.041 (3)   | -0.012 (2) | 0.009 (2)  | 0.007 (2)  |
| N4   | 0.015 (5) | 0.041 (4) | 0.0400 (15) | 0.004 (2)  | 0.006 (2)  | -0.005 (2) |
| C24  | 0.033 (3) | 0.051 (4) | 0.055 (4)   | -0.007 (2) | -0.010 (3) | -0.006 (3) |
| C25  | 0.037 (3) | 0.042 (3) | 0.079 (6)   | 0.000(2)   | 0.010 (3)  | -0.018 (3) |
| O7B  | 0.040 (4) | 0.053 (5) | 0.046 (4)   | -0.009 (4) | 0.006 (3)  | -0.013 (3) |
| C23B | 0.036 (4) | 0.044 (4) | 0.075 (6)   | -0.009 (3) | 0.026 (4)  | 0.005 (4)  |
| N4B  | 0.015 (5) | 0.041 (4) | 0.0400 (15) | 0.004 (2)  | 0.006 (2)  | -0.005 (2) |
| C24B | 0.035 (3) | 0.045 (4) | 0.056 (5)   | -0.005 (3) | 0.005 (3)  | 0.002 (3)  |
| C25B | 0.059 (5) | 0.110 (9) | 0.039 (5)   | -0.014 (5) | -0.014 (4) | 0.017 (5)  |
|      |           |           |             |            |            |            |

### Geometric parameters (Å, °)

| Cu1—O4 <sup>i</sup>  | 1.875 (2)  | C12B—C13B | 1.3900     |
|----------------------|------------|-----------|------------|
| Cu1—O4               | 1.875 (2)  | C12B—H12B | 0.9500     |
| Cu1—O4B              | 1.879 (4)  | C13B—C14B | 1.3900     |
| Cu1—O4B <sup>i</sup> | 1.879 (4)  | C13B—H13B | 0.9500     |
| Cu1—O1               | 1.903 (2)  | C14B—O6B  | 1.355 (5)  |
| Cu1—O1 <sup>i</sup>  | 1.903 (2)  | N3—C21B   | 1.454 (11) |
| Cu1—O1B              | 1.905 (4)  | N3—C21    | 1.495 (4)  |
| Cu1—O1B <sup>i</sup> | 1.905 (4)  | N3—C15    | 1.515 (3)  |
| Cu2—O6               | 1.887 (3)  | N3—C15B   | 1.517 (9)  |
| Cu2—N2               | 1.919 (12) | N3—C17    | 1.524 (4)  |
| Cu2—O1 <sup>i</sup>  | 1.927 (2)  | N3—C19    | 1.541 (4)  |
| Cu2—O2 <sup>i</sup>  | 1.956 (3)  | N3—C17B   | 1.550 (10) |
| O1—N1                | 1.390 (12) | N3—C19B   | 1.590 (10) |
| O1—Cu2 <sup>i</sup>  | 1.927 (2)  | C15—C16   | 1.499 (7)  |
| N1—C1                | 1.331 (14) | C15—H15A  | 0.9900     |
| N1—Cu3               | 1.927 (11) | C15—H15B  | 0.9900     |
| C1—O2                | 1.298 (4)  | C16—H16A  | 0.9800     |
| C1—C2                | 1.485 (4)  | C16—H16B  | 0.9800     |
| O2—Cu2 <sup>i</sup>  | 1.956 (3)  | C16—H16C  | 0.9800     |
| C2—C3                | 1.3900     | C17—C18   | 1.496 (6)  |
| C2—C7                | 1.3900     | С17—Н17А  | 0.9900     |
| C3—C4                | 1.3900     | С17—Н17В  | 0.9900     |
| С3—Н3                | 0.9500     | C18—H18A  | 0.9800     |
| C4—C5                | 1.3900     | C18—H18B  | 0.9800     |
| C4—H4                | 0.9500     | C18—H18C  | 0.9800     |
| C5—C6                | 1.3900     | C19—C20   | 1.509 (6)  |
| С5—Н5                | 0.9500     | С19—Н19А  | 0.9900     |
| C6—C7                | 1.3900     | С19—Н19В  | 0.9900     |
| С6—Н6                | 0.9500     | C20—H20A  | 0.9800     |
| С7—О3                | 1.354 (4)  | C20—H20B  | 0.9800     |
| O3—Cu3               | 1.868 (3)  | C20—H20C  | 0.9800     |
| Cu3—O4               | 1.886 (3)  | C21—C22   | 1.508 (9)  |

| Cu3—O5                | 1.949 (3)  | C21—H21A  | 0.9900     |
|-----------------------|------------|-----------|------------|
| O4—N2                 | 1.432 (12) | C21—H21B  | 0.9900     |
| N2—C8                 | 1.298 (12) | C22—H22A  | 0.9800     |
| C8—O5                 | 1.297 (4)  | С22—Н22В  | 0.9800     |
| C8—C9                 | 1.485 (4)  | С22—Н22С  | 0.9800     |
| C9—C10                | 1.3900     | C15B—C16B | 1.514 (13) |
| C9—C14                | 1.3900     | C15B—H15C | 0.9900     |
| C10-C11               | 1.3900     | C15B—H15D | 0.9900     |
| C10—H10               | 0.9500     | C16B—H16D | 0.9800     |
| C11—C12               | 1.3900     | C16B—H16E | 0.9800     |
| C11—H11               | 0.9500     | C16B—H16F | 0.9800     |
| C12—C13               | 1.3900     | C17B—C18B | 1.499 (15) |
| C12—H12               | 0.9500     | C17B—H17C | 0.9900     |
| C13—C14               | 1.3900     | C17B—H17D | 0.9900     |
| С13—Н13               | 0.9500     | C18B—H18D | 0.9800     |
| C14—O6                | 1.355 (4)  | C18B—H18E | 0.9800     |
| Cu2B—O6B              | 1.879 (4)  | C18B—H18F | 0.9800     |
| Cu2B—O1B <sup>i</sup> | 1.928 (4)  | C19B—C20B | 1.505 (14) |
| Cu2B—N2B              | 1.946 (19) | C19B—H19C | 0.9900     |
| Cu2B—O2B <sup>i</sup> | 1.953 (5)  | C19B—H19D | 0.9900     |
| O1B—N1B               | 1.391 (18) | C20B—H20D | 0.9800     |
| O1B—Cu2B <sup>i</sup> | 1.928 (4)  | C20B—H20E | 0.9800     |
| N1B—C1B               | 1.329 (19) | C20B—H20F | 0.9800     |
| N1B—Cu3B              | 1.928 (18) | C21B—C22B | 1.505 (12) |
| C1B—O2B               | 1.297 (7)  | C21B—H21C | 0.9900     |
| C1B—C2B               | 1.492 (6)  | C21B—H21D | 0.9900     |
| O2B—Cu2B <sup>i</sup> | 1.953 (5)  | C22B—H22D | 0.9800     |
| C2B—C3B               | 1.3900     | C22B—H22E | 0.9800     |
| С2В—С7В               | 1.3900     | C22B—H22F | 0.9800     |
| C3B—C4B               | 1.3900     | O7—C23    | 1.288 (11) |
| СЗВ—НЗВ               | 0.9500     | C23—N4    | 1.337 (9)  |
| C4B—C5B               | 1.3900     | С23—Н23   | 0.9500     |
| C4B—H4B               | 0.9500     | N4—C25    | 1.434 (9)  |
| C5B—C6B               | 1.3900     | N4—C24    | 1.454 (8)  |
| C5B—H5B               | 0.9500     | C24—H24A  | 0.9800     |
| C6B—C7B               | 1.3900     | C24—H24B  | 0.9800     |
| С6В—Н6В               | 0.9500     | C24—H24C  | 0.9800     |
| C7B—O3B               | 1.357 (5)  | C25—H25A  | 0.9800     |
| O3B—Cu3B              | 1.867 (4)  | C25—H25B  | 0.9800     |
| Cu3B—O4B              | 1.891 (4)  | C25—H25C  | 0.9800     |
| Cu3B—O5B              | 1.958 (4)  | O7B—C23B  | 1.272 (13) |
| O4B—N2B               | 1.434 (19) | C23B—N4B  | 1.338 (11) |
| N2B—C8B               | 1.297 (18) | C23B—H23B | 0.9500     |
| C8B—O5B               | 1.286 (7)  | N4B—C24B  | 1.446 (10) |
| C8B—C9B               | 1.481 (6)  | N4B—C25B  | 1.455 (11) |
| C9B—C10B              | 1.3900     | C24B—H24D | 0.9800     |
| C9B—C14B              | 1.3900     | C24B—H24E | 0.9800     |
| C10B—C11B             | 1.3900     | C24B—H24F | 0.9800     |

| C10B—H10B                              | 0.9500      | C25B—H25D      | 0.9800    |
|----------------------------------------|-------------|----------------|-----------|
| C11B—C12B                              | 1.3900      | C25B—H25E      | 0.9800    |
| C11B—H11B                              | 0.9500      | C25B—H25F      | 0.9800    |
| O4 <sup>i</sup> —Cu1—O4                | 179.997 (1) | O5B—C8B—C9B    | 120.7 (5) |
| O4 <sup>i</sup> —Cu1—O4B               | 143.14 (14) | N2B—C8B—C9B    | 116.8 (9) |
| O4—Cu1—O4B                             | 36.86 (14)  | C8B—O5B—Cu3B   | 111.6 (3) |
| O4 <sup>i</sup> —Cu1—O4B <sup>i</sup>  | 36.86 (14)  | C10B—C9B—C14B  | 120.0     |
| O4—Cu1—O4B <sup>i</sup>                | 143.14 (14) | C10B—C9B—C8B   | 114.5 (5) |
| O4B—Cu1—O4B <sup>i</sup>               | 179.998 (1) | C14B—C9B—C8B   | 125.5 (5) |
| O4 <sup>i</sup> —Cu1—O1                | 89.55 (11)  | C11B—C10B—C9B  | 120.0     |
| O4—Cu1—O1                              | 90.45 (11)  | C11B—C10B—H10B | 120.0     |
| O4B—Cu1—O1                             | 54.15 (14)  | C9B—C10B—H10B  | 120.0     |
| O4B <sup>i</sup> —Cu1—O1               | 125.84 (14) | C10B—C11B—C12B | 120.0     |
| O4 <sup>i</sup> —Cu1—O1 <sup>i</sup>   | 90.45 (11)  | C10B—C11B—H11B | 120.0     |
| O4—Cu1—O1 <sup>i</sup>                 | 89.55 (11)  | C12B—C11B—H11B | 120.0     |
| O4B—Cu1—O1 <sup>i</sup>                | 125.84 (14) | C13B—C12B—C11B | 120.0     |
| O4B <sup>i</sup> —Cu1—O1 <sup>i</sup>  | 54.16 (14)  | C13B—C12B—H12B | 120.0     |
| O1—Cu1—O1 <sup>i</sup>                 | 179.998 (1) | C11B—C12B—H12B | 120.0     |
| O4 <sup>i</sup> —Cu1—O1B               | 126.32 (14) | C12B—C13B—C14B | 120.0     |
| O4—Cu1—O1B                             | 53.67 (14)  | C12B—C13B—H13B | 120.0     |
| O4B—Cu1—O1B                            | 90.03 (17)  | C14B—C13B—H13B | 120.0     |
| O4B <sup>i</sup> —Cu1—O1B              | 89.97 (17)  | O6B-C14B-C13B  | 114.7 (5) |
| O1—Cu1—O1B                             | 144.09 (13) | O6B—C14B—C9B   | 125.2 (5) |
| O1 <sup>i</sup> —Cu1—O1B               | 35.91 (13)  | C13B—C14B—C9B  | 120.0     |
| O4 <sup>i</sup> —Cu1—O1B <sup>i</sup>  | 53.68 (14)  | C14B—O6B—Cu2B  | 127.0 (4) |
| O4—Cu1—O1B <sup>i</sup>                | 126.33 (14) | C21B—N3—C21    | 174.9 (5) |
| O4B—Cu1—O1B <sup>i</sup>               | 89.97 (17)  | C21B—N3—C15    | 67.5 (5)  |
| O4B <sup>i</sup> —Cu1—O1B <sup>i</sup> | 90.03 (17)  | C21—N3—C15     | 112.3 (2) |
| O1—Cu1—O1B <sup>i</sup>                | 35.91 (13)  | C21B—N3—C15B   | 116.9 (6) |
| O1 <sup>i</sup> —Cu1—O1B <sup>i</sup>  | 144.09 (13) | C21—N3—C15B    | 63.4 (4)  |
| O1B—Cu1—O1B <sup>i</sup>               | 179.999 (1) | C15—N3—C15B    | 175.2 (4) |
| O6—Cu2—N2                              | 91.7 (3)    | C21B—N3—C17    | 77.0 (4)  |
| O6—Cu2—O1 <sup>i</sup>                 | 173.29 (12) | C21—N3—C17     | 107.4 (2) |
| N2—Cu2—O1 <sup>i</sup>                 | 90.9 (3)    | C15—N3—C17     | 111.1 (2) |
| O6—Cu2—O2 <sup>i</sup>                 | 96.57 (11)  | C15B—N3—C17    | 69.3 (4)  |
| N2—Cu2—O2 <sup>i</sup>                 | 171.8 (3)   | C21B—N3—C19    | 64.1 (5)  |
| $O1^{i}$ —Cu2— $O2^{i}$                | 80.94 (10)  | C21—N3—C19     | 111.6 (2) |
| N1—O1—Cu1                              | 117.2 (6)   | C15—N3—C19     | 105.5 (2) |
| N1—O1—Cu2 <sup>i</sup>                 | 113.0 (6)   | C15B—N3—C19    | 78.6 (4)  |
| Cu1—O1—Cu2 <sup>i</sup>                | 113.93 (12) | C17—N3—C19     | 109.0 (2) |
| C1—N1—O1                               | 111.1 (8)   | C21B—N3—C17B   | 108.5 (6) |
| C1—N1—Cu3                              | 128.8 (8)   | C21—N3—C17B    | 67.2 (4)  |
| 01—N1—Cu3                              | 119.5 (8)   | C15—N3—C17B    | 70.0 (4)  |

| O2—C1—N1               | 121.6 (6)   | C15B—N3—C17B   | 109.1 (6)  |
|------------------------|-------------|----------------|------------|
| O2—C1—C2               | 119.5 (3)   | C17—N3—C17B    | 174.1 (4)  |
| N1—C1—C2               | 118.9 (6)   | C19—N3—C17B    | 75.9 (4)   |
| C1—O2—Cu2 <sup>i</sup> | 110.7 (2)   | C21B—N3—C19B   | 112.1 (6)  |
| C3—C2—C7               | 120.0       | C21—N3—C19B    | 72.2 (4)   |
| C3—C2—C1               | 114.9 (3)   | C15—N3—C19B    | 72.6 (4)   |
| C7—C2—C1               | 125.0 (3)   | C15B—N3—C19B   | 103.5 (5)  |
| C4—C3—C2               | 120.0       | C17—N3—C19B    | 69.2 (4)   |
| С4—С3—Н3               | 120.0       | C19—N3—C19B    | 176.2 (4)  |
| С2—С3—Н3               | 120.0       | C17B—N3—C19B   | 106.2 (6)  |
| C3—C4—C5               | 120.0       | C16—C15—N3     | 114.3 (3)  |
| С3—С4—Н4               | 120.0       | C16—C15—H15A   | 108.7      |
| С5—С4—Н4               | 120.0       | N3—C15—H15A    | 108.7      |
| C6—C5—C4               | 120.0       | C16—C15—H15B   | 108.7      |
| С6—С5—Н5               | 120.0       | N3—C15—H15B    | 108.7      |
| С4—С5—Н5               | 120.0       | H15A—C15—H15B  | 107.6      |
| C7—C6—C5               | 120.0       | C18—C17—N3     | 115.4 (3)  |
| С7—С6—Н6               | 120.0       | С18—С17—Н17А   | 108.4      |
| С5—С6—Н6               | 120.0       | N3—C17—H17A    | 108.4      |
| O3—C7—C6               | 113.9 (3)   | C18—C17—H17B   | 108.4      |
| O3—C7—C2               | 126.1 (3)   | N3—C17—H17B    | 108.4      |
| C6—C7—C2               | 120.0       | H17A—C17—H17B  | 107.5      |
| C7—O3—Cu3              | 125.0 (2)   | C20-C19-N3     | 114.6 (3)  |
| O3—Cu3—O4              | 166.74 (13) | С20—С19—Н19А   | 108.6      |
| O3—Cu3—N1              | 94.6 (4)    | N3—C19—H19A    | 108.6      |
| O4—Cu3—N1              | 88.3 (4)    | C20—C19—H19B   | 108.6      |
| O3—Cu3—O5              | 98.35 (11)  | N3—C19—H19B    | 108.6      |
| O4—Cu3—O5              | 81.13 (11)  | H19A—C19—H19B  | 107.6      |
| N1—Cu3—O5              | 164.5 (5)   | N3—C21—C22     | 114.1 (4)  |
| N2—O4—Cu1              | 119.6 (6)   | N3—C21—H21A    | 108.7      |
| N2—O4—Cu3              | 114.7 (5)   | C22—C21—H21A   | 108.7      |
| Cu1—O4—Cu3             | 121.07 (14) | N3—C21—H21B    | 108.7      |
| C8—N2—O4               | 109.8 (8)   | С22—С21—Н21В   | 108.7      |
| C8—N2—Cu2              | 133.9 (8)   | H21A—C21—H21B  | 107.6      |
| O4—N2—Cu2              | 115.7 (7)   | C16B—C15B—N3   | 111.7 (10) |
| O5—C8—N2               | 122.6 (6)   | C16B—C15B—H15C | 109.3      |
| O5—C8—C9               | 120.2 (3)   | N3—C15B—H15C   | 109.3      |
| N2                     | 117.2 (6)   | C16B—C15B—H15D | 109.3      |
| C8—O5—Cu3              | 111.5 (2)   | N3—C15B—H15D   | 109.3      |
| C10-C9-C14             | 120.0       | H15C—C15B—H15D | 107.9      |
| C10—C9—C8              | 115.2 (4)   | C15B—C16B—H16D | 109.5      |
| C14—C9—C8              | 124.7 (4)   | C15B—C16B—H16E | 109.5      |
| C9—C10—C11             | 120.0       | H16D—C16B—H16E | 109.5      |
| C9—C10—H10             | 120.0       | C15B—C16B—H16F | 109.5      |
| С11—С10—Н10            | 120.0       | H16D—C16B—H16F | 109.5      |
| C10-C11-C12            | 120.0       | H16E—C16B—H16F | 109.5      |
| C10-C11-H11            | 120.0       | C18B—C17B—N3   | 118.0 (15) |
| C12—C11—H11            | 120.0       | C18B—C17B—H17C | 107.8      |
| C11—C12—C13            | 120.0       | N3—C17B—H17C   | 107.8      |

| C11—C12—H12                             | 120.0      | C18B—C17B—H17D | 107.8      |
|-----------------------------------------|------------|----------------|------------|
| C13—C12—H12                             | 120.0      | N3—C17B—H17D   | 107.8      |
| C14—C13—C12                             | 120.0      | H17C—C17B—H17D | 107.1      |
| C14—C13—H13                             | 120.0      | C17B—C18B—H18D | 109.5      |
| С12—С13—Н13                             | 120.0      | C17B—C18B—H18E | 109.5      |
| O6—C14—C13                              | 114.3 (4)  | H18D—C18B—H18E | 109.5      |
| O6—C14—C9                               | 125.7 (4)  | C17B—C18B—H18F | 109.5      |
| C13—C14—C9                              | 120.0      | H18D-C18B-H18F | 109.5      |
| C14—O6—Cu2                              | 126.5 (3)  | H18E—C18B—H18F | 109.5      |
| O6B—Cu2B—O1B <sup>i</sup>               | 173.0 (2)  | C20B—C19B—N3   | 115.1 (11) |
| O6B—Cu2B—N2B                            | 91.4 (6)   | C20B—C19B—H19C | 108.5      |
| O1B <sup>i</sup> —Cu2B—N2B              | 90.8 (6)   | N3—C19B—H19C   | 108.5      |
| O6B—Cu2B—O2B <sup>i</sup>               | 96.25 (18) | C20B—C19B—H19D | 108.5      |
| O1B <sup>i</sup> —Cu2B—O2B <sup>i</sup> | 81.39 (17) | N3—C19B—H19D   | 108.5      |
| N2B—Cu2B—O2B <sup>i</sup>               | 172.1 (6)  | H19C—C19B—H19D | 107.5      |
| N1B—O1B—Cu1                             | 117.9 (8)  | C19B—C20B—H20D | 109.5      |
| N1B—O1B—Cu2B <sup>i</sup>               | 112.6 (9)  | C19B—C20B—H20E | 109.5      |
| Cu1—O1B—Cu2B <sup>i</sup>               | 113.2 (2)  | H20D—C20B—H20E | 109.5      |
| C1B—N1B—O1B                             | 111.5 (13) | C19B—C20B—H20F | 109.5      |
| C1B—N1B—Cu3B                            | 127.9 (12) | H20D-C20B-H20F | 109.5      |
| O1B—N1B—Cu3B                            | 119.2 (12) | H20E-C20B-H20F | 109.5      |
| O2B—C1B—N1B                             | 121.9 (9)  | N3—C21B—C22B   | 114.6 (10) |
| O2B—C1B—C2B                             | 119.1 (5)  | N3—C21B—H21C   | 108.6      |
| N1B—C1B—C2B                             | 119.0 (9)  | C22B—C21B—H21C | 108.6      |
| C1B—O2B—Cu2B <sup>i</sup>               | 110.1 (4)  | N3—C21B—H21D   | 108.6      |
| C3B—C2B—C7B                             | 120.0      | C22B—C21B—H21D | 108.6      |
| C3B—C2B—C1B                             | 115.0 (6)  | H21C—C21B—H21D | 107.6      |
| C7B—C2B—C1B                             | 125.0 (6)  | C21B—C22B—H22D | 109.5      |
| C2B—C3B—C4B                             | 120.0      | C21B—C22B—H22E | 109.5      |
| C2B—C3B—H3B                             | 120.0      | H22D—C22B—H22E | 109.5      |
| C4B—C3B—H3B                             | 120.0      | C21B—C22B—H22F | 109.5      |
| C5B—C4B—C3B                             | 120.0      | H22D-C22B-H22F | 109.5      |
| C5B—C4B—H4B                             | 120.0      | H22E—C22B—H22F | 109.5      |
| C3B—C4B—H4B                             | 120.0      | O7—C23—N4      | 122.2 (8)  |
| C4B—C5B—C6B                             | 120.0      | O7—C23—H23     | 118.9      |
| C4B—C5B—H5B                             | 120.0      | N4—C23—H23     | 118.9      |
| C6B—C5B—H5B                             | 120.0      | C23—N4—C25     | 121.3 (7)  |
| C7B—C6B—C5B                             | 120.0      | C23—N4—C24     | 120.9 (7)  |
| С7В—С6В—Н6В                             | 120.0      | C25—N4—C24     | 117.7 (7)  |
| C5B—C6B—H6B                             | 120.0      | O7B—C23B—N4B   | 122.1 (10) |
| O3B—C7B—C6B                             | 114.5 (6)  | O7B—C23B—H23B  | 118.9      |
| O3B—C7B—C2B                             | 125.5 (6)  | N4B—C23B—H23B  | 118.9      |
| C6B—C7B—C2B                             | 120.0      | C23B—N4B—C24B  | 120.3 (9)  |
| C7B—O3B—Cu3B                            | 124.8 (4)  | C23B—N4B—C25B  | 121.8 (11) |
| O3B—Cu3B—O4B                            | 167.9 (2)  | C24B—N4B—C25B  | 117.1 (9)  |
| O3B—Cu3B—N1B                            | 94.3 (6)   | N4B—C24B—H24D  | 109.5      |
| O4B—Cu3B—N1B                            | 88.2 (6)   | N4B—C24B—H24E  | 109.5      |

| O3B—Cu3B—O5B                              | 98.81 (17)  | H24D—C24B—H24E                 | 109.5       |
|-------------------------------------------|-------------|--------------------------------|-------------|
| O4B—Cu3B—O5B                              | 80.99 (16)  | N4B—C24B—H24F                  | 109.5       |
| N1B—Cu3B—O5B                              | 163.5 (6)   | H24D—C24B—H24F                 | 109.5       |
| N2B—O4B—Cu1                               | 119.9 (9)   | H24E—C24B—H24F                 | 109.5       |
| N2B—O4B—Cu3B                              | 114.3 (7)   | N4B—C25B—H25D                  | 109.5       |
| Cu1—O4B—Cu3B                              | 121.3 (2)   | N4B—C25B—H25E                  | 109.5       |
| C8B—N2B—O4B                               | 110.2 (12)  | H25D—C25B—H25E                 | 109.5       |
| C8B—N2B—Cu2B                              | 132.9 (14)  | N4B—C25B—H25F                  | 109.5       |
| O4B—N2B—Cu2B                              | 114.8 (12)  | H25D—C25B—H25F                 | 109.5       |
| O5B—C8B—N2B                               | 122.6 (9)   | H25E—C25B—H25F                 | 109.5       |
| O4 <sup>i</sup> —Cu1—O1—N1                | -166.7 (10) | N1B—C1B—C2B—C7B                | 0.2 (15)    |
| 04—Cu1—O1—N1                              | 13.3 (10)   | C7B—C2B—C3B—C4B                | 0.0         |
| O4B—Cu1—O1—N1                             | 20.2 (10)   | C1B—C2B—C3B—C4B                | 179.5 (5)   |
| O4B <sup>i</sup> —Cu1—O1—N1               | -159.8 (10) | C2B—C3B—C4B—C5B                | 0.0         |
| O1B—Cu1—O1—N1                             | 15.5 (10)   | C3B—C4B—C5B—C6B                | 0.0         |
| O1B <sup>i</sup> —Cu1—O1—N1               | -164.5 (10) | C4B—C5B—C6B—C7B                | 0.0         |
| O4 <sup>i</sup> —Cu1—O1—Cu2 <sup>i</sup>  | -31.57 (14) | C5B—C6B—C7B—O3B                | 178.8 (5)   |
| O4—Cu1—O1—Cu2 <sup>i</sup>                | 148.43 (14) | C5B—C6B—C7B—C2B                | 0.0         |
| O4B—Cu1—O1—Cu2 <sup>i</sup>               | 155.3 (2)   | C3B—C2B—C7B—O3B                | -178.7 (5)  |
| O4B <sup>i</sup> —Cu1—O1—Cu2 <sup>i</sup> | -24.7 (2)   | C1B—C2B—C7B—O3B                | 1.9 (6)     |
| O1B—Cu1—O1—Cu2 <sup>i</sup>               | 150.7 (2)   | C3B—C2B—C7B—C6B                | 0.0         |
| O1B <sup>i</sup> —Cu1—O1—Cu2 <sup>i</sup> | -29.3 (2)   | C1B—C2B—C7B—C6B                | -179.4 (6)  |
| Cu1—O1—N1—C1                              | 149.6 (10)  | C6B—C7B—O3B—Cu3B               | -168.6 (4)  |
| Cu2 <sup>i</sup> —O1—N1—C1                | 14.0 (17)   | C2B—C7B—O3B—Cu3B               | 10.1 (6)    |
| Cu1—O1—N1—Cu3                             | -22.5 (17)  | C7B—O3B—Cu3B—O4B               | 84.7 (9)    |
| Cu2 <sup>i</sup> —O1—N1—Cu3               | -158.0 (9)  | C7B—O3B—Cu3B—N1B               | -17.2 (9)   |
| O1—N1—C1—O2                               | -3(2)       | C7B—O3B—Cu3B—O5B               | 172.8 (4)   |
| Cu3—N1—C1—O2                              | 167.9 (11)  | C1B—N1B—Cu3B—O3B               | 20 (2)      |
| O1—N1—C1—C2                               | 177.8 (9)   | O1B—N1B—Cu3B—O3B               | -174.6 (17) |
| Cu3—N1—C1—C2                              | -11 (2)     | O1B—N1B—Cu3B—O4B               | 17.3 (18)   |
| N1—C1—O2—Cu2 <sup>i</sup>                 | -8.9 (12)   | C1B—N1B—Cu3B—O5B               | 163.0 (9)   |
| C2-C1-O2-Cu2 <sup>i</sup>                 | 170.1 (2)   | O1B—N1B—Cu3B—O5B               | -32 (4)     |
| O2—C1—C2—C3                               | 4.3 (4)     | O1B—Cu1—O4B—Cu3B               | 0.2 (3)     |
| N1—C1—C2—C3                               | -176.7 (11) | O1B <sup>i</sup> —Cu1—O4B—Cu3B | -179.8 (3)  |
| O2—C1—C2—C7                               | -178.0 (3)  | O3B—Cu3B—O4B—N2B               | 93.2 (19)   |
| N1—C1—C2—C7                               | 1.1 (12)    | N1B—Cu3B—O4B—N2B               | -164.3 (19) |
| C7—C2—C3—C4                               | 0.0         | O5B—Cu3B—O4B—N2B               | 3.2 (17)    |
| C1—C2—C3—C4                               | 177.9 (3)   | O3B—Cu3B—O4B—Cu1               | -110.7 (8)  |
| C2—C3—C4—C5                               | 0.0         | N1B—Cu3B—O4B—Cu1               | -8.2 (8)    |
| C3—C4—C5—C6                               | 0.0         | O5B—Cu3B—O4B—Cu1               | 159.3 (3)   |
| C4—C5—C6—C7                               | 0.0         | Cu1—O4B—N2B—C8B                | -157.7 (16) |
| C5—C6—C7—O3                               | -179.5 (3)  | Cu3B—O4B—N2B—C8B               | -1(3)       |
| C5—C6—C7—C2                               | 0.0         | Cu1—O4B—N2B—Cu2B               | 8(3)        |
| C3—C2—C7—O3                               | 179.4 (3)   | Cu3B—O4B—N2B—Cu2B              | 164.5 (12)  |
| C1—C2—C7—O3                               | 1.7 (4)     | U6B—Cu2B—N2B—C8B               | -12 (3)     |
| C3—C2—C7—C6                               | 0.0         | O1B <sup>1</sup> —Cu2B—N2B—C8B | 175 (3)     |

| C1—C2—C7—C6                                                                                 | -177.7 (3)                                                                                           | O6B—Cu2B—N2B—O4B                                                                                                                                 | -173 (2)                                                                                            |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| C6—C7—O3—Cu3                                                                                | -175.1 (2)                                                                                           | O1B <sup>i</sup> —Cu2B—N2B—O4B                                                                                                                   | 14 (2)                                                                                              |
| C2—C7—O3—Cu3                                                                                | 5.5 (4)                                                                                              | O4B—N2B—C8B—O5B                                                                                                                                  | -3(3)                                                                                               |
| C7—O3—Cu3—O4                                                                                | 91.1 (6)                                                                                             | Cu2B—N2B—C8B—O5B                                                                                                                                 | -165 (2)                                                                                            |
| C7—O3—Cu3—N1                                                                                | -10.8 (7)                                                                                            | O4B—N2B—C8B—C9B                                                                                                                                  | 176.5 (15)                                                                                          |
| C7—O3—Cu3—O5                                                                                | 177.8 (3)                                                                                            | Cu2B—N2B—C8B—C9B                                                                                                                                 | 14 (4)                                                                                              |
| C1—N1—Cu3—O3                                                                                | 14.2 (18)                                                                                            | N2B—C8B—O5B—Cu3B                                                                                                                                 | 6(2)                                                                                                |
| O1—N1—Cu3—O3                                                                                | -175.2 (14)                                                                                          | C9B—C8B—O5B—Cu3B                                                                                                                                 | -173.9 (4)                                                                                          |
| C1—N1—Cu3—O4                                                                                | -152.8 (18)                                                                                          | O3B—Cu3B—O5B—C8B                                                                                                                                 | -172.4 (4)                                                                                          |
| O1—N1—Cu3—O4                                                                                | 17.7 (14)                                                                                            | O4B—Cu3B—O5B—C8B                                                                                                                                 | -4.7 (4)                                                                                            |
| C1—N1—Cu3—O5                                                                                | 160.7 (7)                                                                                            | N1B—Cu3B—O5B—C8B                                                                                                                                 | 45 (3)                                                                                              |
| O1—N1—Cu3—O5                                                                                | -29 (4)                                                                                              | O5B-C8B-C9B-C10B                                                                                                                                 | -8.9 (7)                                                                                            |
| O4B—Cu1—O4—N2                                                                               | 144.6 (8)                                                                                            | N2B-C8B-C9B-C10B                                                                                                                                 | 171.4 (19)                                                                                          |
| O4B <sup>i</sup> —Cu1—O4—N2                                                                 | -35.4 (8)                                                                                            | O5B-C8B-C9B-C14B                                                                                                                                 | 170.7 (4)                                                                                           |
| O1—Cu1—O4—N2                                                                                | 153.9 (8)                                                                                            | N2B-C8B-C9B-C14B                                                                                                                                 | -9(2)                                                                                               |
| O1 <sup>i</sup> —Cu1—O4—N2                                                                  | -26.1 (8)                                                                                            | C14B—C9B—C10B—C11B                                                                                                                               | 0.0                                                                                                 |
| O1B—Cu1—O4—N2                                                                               | -24.5 (8)                                                                                            | C8B—C9B—C10B—C11B                                                                                                                                | 179.6 (5)                                                                                           |
| O1B <sup>i</sup> —Cu1—O4—N2                                                                 | 155.5 (8)                                                                                            | C9B—C10B—C11B—C12B                                                                                                                               | 0.0                                                                                                 |
| O4B—Cu1—O4—Cu3                                                                              | -9.9 (2)                                                                                             | C10B-C11B-C12B-C13B                                                                                                                              | 0.0                                                                                                 |
| O4B <sup>i</sup> —Cu1—O4—Cu3                                                                | 170.1 (2)                                                                                            | C11B—C12B—C13B—C14B                                                                                                                              | 0.0                                                                                                 |
| O1—Cu1—O4—Cu3                                                                               | -0.56 (18)                                                                                           | C12B—C13B—C14B—O6B                                                                                                                               | 177.0 (5)                                                                                           |
| O1 <sup>i</sup> —Cu1—O4—Cu3                                                                 | 179.44 (18)                                                                                          | C12B—C13B—C14B—C9B                                                                                                                               | 0.0                                                                                                 |
| O1B—Cu1—O4—Cu3                                                                              | -178.9 (3)                                                                                           | C10B—C9B—C14B—O6B                                                                                                                                | -176.7 (6)                                                                                          |
| O1B <sup>i</sup> —Cu1—O4—Cu3                                                                | 1.1 (3)                                                                                              | C8B—C9B—C14B—O6B                                                                                                                                 | 3.7 (6)                                                                                             |
| O3—Cu3—O4—N2                                                                                | 94.1 (10)                                                                                            | C10B—C9B—C14B—C13B                                                                                                                               | 0.0                                                                                                 |
| N1—Cu3—O4—N2                                                                                | -163.4 (11)                                                                                          | C8B—C9B—C14B—C13B                                                                                                                                | -179.6 (6)                                                                                          |
| O5—Cu3—O4—N2                                                                                | 5.3 (8)                                                                                              | C13B—C14B—O6B—Cu2B                                                                                                                               | -179.7 (4)                                                                                          |
| O3—Cu3—O4—Cu1                                                                               | -110.3 (5)                                                                                           | C9B—C14B—O6B—Cu2B                                                                                                                                | -2.8 (7)                                                                                            |
| N1—Cu3—O4—Cu1                                                                               | -7.7 (7)                                                                                             | N2B—Cu2B—O6B—C14B                                                                                                                                | 4.8 (12)                                                                                            |
| O5—Cu3—O4—Cu1                                                                               | 160.95 (19)                                                                                          | O2B <sup>i</sup> —Cu2B—O6B—C14B                                                                                                                  | -176.9 (5)                                                                                          |
| Cu1—O4—N2—C8                                                                                | -161.1 (8)                                                                                           | C21B-N3-C15-C16                                                                                                                                  | 126.6 (8)                                                                                           |
| Cu3—O4—N2—C8                                                                                | -5.0 (15)                                                                                            | C21—N3—C15—C16                                                                                                                                   | -58.8 (6)                                                                                           |
| Cu1—O4—N2—Cu2                                                                               | 11.6 (13)                                                                                            | C17—N3—C15—C16                                                                                                                                   | 61.4 (6)                                                                                            |
| Cu3—O4—N2—Cu2                                                                               | 167.6 (6)                                                                                            | C19—N3—C15—C16                                                                                                                                   | 179.4 (6)                                                                                           |
| O6—Cu2—N2—C8                                                                                | -6.1 (16)                                                                                            | C17B—N3—C15—C16                                                                                                                                  | -112.4 (7)                                                                                          |
| O1 <sup>i</sup> —Cu2—N2—C8                                                                  | -179.9 (16)                                                                                          | C19B-N3-C15-C16                                                                                                                                  | 2.8 (7)                                                                                             |
| O6—Cu2—N2—O4                                                                                | -176.5 (10)                                                                                          | C21B-N3-C17-C18                                                                                                                                  | -5.5 (6)                                                                                            |
| O1 <sup>i</sup> —Cu2—N2—O4                                                                  | 9.7 (10)                                                                                             | C21—N3—C17—C18                                                                                                                                   | 177.0 (3)                                                                                           |
| O4—N2—C8—O5                                                                                 |                                                                                                      |                                                                                                                                                  |                                                                                                     |
| $C_{11}2$ —N2—C8—O5                                                                         | 1.0 (16)                                                                                             | C15—N3—C17—C18                                                                                                                                   | 53.9 (4)                                                                                            |
| Cu2 112 CO 05                                                                               | 1.0 (16)<br>-169.8 (10)                                                                              | C15—N3—C17—C18<br>C15B—N3—C17—C18                                                                                                                | 53.9 (4)<br>-131.2 (5)                                                                              |
| 04—N2—C8—C9                                                                                 | 1.0 (16)<br>-169.8 (10)<br>178.0 (7)                                                                 | C15—N3—C17—C18<br>C15B—N3—C17—C18<br>C19—N3—C17—C18                                                                                              | 53.9 (4)<br>-131.2 (5)<br>-61.9 (4)                                                                 |
| O4—N2—C8—C9<br>Cu2—N2—C8—C9                                                                 | 1.0 (16)<br>-169.8 (10)<br>178.0 (7)<br>7.2 (19)                                                     | C15—N3—C17—C18<br>C15B—N3—C17—C18<br>C19—N3—C17—C18<br>C19B—N3—C17—C18                                                                           | 53.9 (4)<br>-131.2 (5)<br>-61.9 (4)<br>114.6 (5)                                                    |
| O4—N2—C8—C9<br>Cu2—N2—C8—C9<br>N2—C8—C9                                                     | 1.0 (16)<br>-169.8 (10)<br>178.0 (7)<br>7.2 (19)<br>3.3 (10)                                         | C15—N3—C17—C18<br>C15B—N3—C17—C18<br>C19—N3—C17—C18<br>C19B—N3—C17—C18<br>C21B—N3—C19—C20                                                        | 53.9 (4)<br>-131.2 (5)<br>-61.9 (4)<br>114.6 (5)<br>-123.5 (6)                                      |
| 04—N2—C8—C9<br>Cu2—N2—C8—C9<br>N2—C8—O5—Cu3<br>C9—C8—O5—Cu3                                 | 1.0 (16)<br>-169.8 (10)<br>178.0 (7)<br>7.2 (19)<br>3.3 (10)<br>-173.6 (2)                           | C15—N3—C17—C18<br>C15B—N3—C17—C18<br>C19—N3—C17—C18<br>C19B—N3—C17—C18<br>C21B—N3—C19—C20<br>C21—N3—C19—C20                                      | 53.9 (4)<br>-131.2 (5)<br>-61.9 (4)<br>114.6 (5)<br>-123.5 (6)<br>59.4 (4)                          |
| O4_N2_C8_C9   Cu2_N2_C8_C9   N2_C8_O5_Cu3   C9_C8_O5_Cu3   O3_Cu3_O5_C8                     | 1.0 (16)<br>-169.8 (10)<br>178.0 (7)<br>7.2 (19)<br>3.3 (10)<br>-173.6 (2)<br>-171.2 (2)             | C15—N3—C17—C18<br>C15B—N3—C17—C18<br>C19—N3—C17—C18<br>C19B—N3—C17—C18<br>C21B—N3—C19—C20<br>C21—N3—C19—C20<br>C15—N3—C19—C20                    | 53.9 (4)<br>-131.2 (5)<br>-61.9 (4)<br>114.6 (5)<br>-123.5 (6)<br>59.4 (4)<br>-178.4 (4)            |
| O4-N2-C8-C9<br>Cu2-N2-C8-C9<br>N2-C8-O5-Cu3<br>C9-C8-O5-Cu3<br>O3-Cu3-O5-C8<br>O4-Cu3-O5-C8 | 1.0 (16)<br>-169.8 (10)<br>178.0 (7)<br>7.2 (19)<br>3.3 (10)<br>-173.6 (2)<br>-171.2 (2)<br>-4.6 (2) | C15—N3—C17—C18<br>C15B—N3—C17—C18<br>C19—N3—C17—C18<br>C19B—N3—C17—C18<br>C21B—N3—C19—C20<br>C21—N3—C19—C20<br>C15—N3—C19—C20<br>C15B—N3—C19—C20 | 53.9 (4)<br>-131.2 (5)<br>-61.9 (4)<br>114.6 (5)<br>-123.5 (6)<br>59.4 (4)<br>-178.4 (4)<br>4.2 (5) |

| O5—C8—C9—C10                                | -4.6 (4)    | C17B—N3—C19—C20   | 117.4 (6)   |
|---------------------------------------------|-------------|-------------------|-------------|
| N2-C8-C9-C10                                | 178.3 (9)   | C15—N3—C21—C22    | -61.4 (4)   |
| O5—C8—C9—C14                                | 171.6 (3)   | C15B—N3—C21—C22   | 120.9 (6)   |
| N2-C8-C9-C14                                | -5.5 (10)   | C17—N3—C21—C22    | 176.2 (4)   |
| C14—C9—C10—C11                              | 0.0         | C19—N3—C21—C22    | 56.8 (5)    |
| C8—C9—C10—C11                               | 176.4 (3)   | C17B—N3—C21—C22   | -6.4 (6)    |
| C9—C10—C11—C12                              | 0.0         | C19B—N3—C21—C22   | -123.3 (5)  |
| C10-C11-C12-C13                             | 0.0         | C21B—N3—C15B—C16B | 55.7 (13)   |
| C11—C12—C13—C14                             | 0.0         | C21—N3—C15B—C16B  | -118.6 (12) |
| C12-C13-C14-O6                              | 179.4 (3)   | C17—N3—C15B—C16B  | 118.3 (12)  |
| C12—C13—C14—C9                              | 0.0         | C19—N3—C15B—C16B  | 2.8 (11)    |
| C10—C9—C14—O6                               | -179.3 (4)  | C17B—N3—C15B—C16B | -67.7 (12)  |
| C8—C9—C14—O6                                | 4.7 (4)     | C19B—N3—C15B—C16B | 179.5 (11)  |
| C10-C9-C14-C13                              | 0.0         | C21B—N3—C17B—C18B | 177.3 (16)  |
| C8—C9—C14—C13                               | -176.0 (3)  | C21—N3—C17B—C18B  | -5.6 (15)   |
| C13—C14—O6—Cu2                              | 175.9 (2)   | C15—N3—C17B—C18B  | 120.6 (16)  |
| C9—C14—O6—Cu2                               | -4.7 (4)    | C15B—N3—C17B—C18B | -54.4 (17)  |
| N2—Cu2—O6—C14                               | 4.2 (6)     | C19—N3—C17B—C18B  | -126.8 (16) |
| O2 <sup>i</sup> —Cu2—O6—C14                 | -175.8 (3)  | C19B—N3—C17B—C18B | 56.6 (17)   |
| O4B—Cu1—O1B—N1B                             | 12.4 (13)   | C21B—N3—C19B—C20B | -60 (2)     |
| O4B <sup>i</sup> —Cu1—O1B—N1B               | -167.6 (13) | C21—N3—C19B—C20B  | 117 (2)     |
| O4B—Cu1—O1B—Cu2B <sup>i</sup>               | 146.8 (2)   | C15—N3—C19B—C20B  | -4.2 (19)   |
| O4B <sup>i</sup> —Cu1—O1B—Cu2B <sup>i</sup> | -33.2 (2)   | C15B—N3—C19B—C20B | 173 (2)     |
| Cu2B <sup>i</sup> —O1B—N1B—C1B              | 11 (2)      | C17—N3—C19B—C20B  | -126 (2)    |
| Cu1—O1B—N1B—Cu3B                            | -22 (2)     | C17B—N3—C19B—C20B | 58 (2)      |
| Cu2B <sup>i</sup> —O1B—N1B—Cu3B             | -156.3 (12) | C15—N3—C21B—C22B  | -124.4 (12) |
| O1B—N1B—C1B—O2B                             | 1(2)        | C15B—N3—C21B—C22B | 53.7 (13)   |
| Cu3B—N1B—C1B—O2B                            | 166.8 (13)  | C17—N3—C21B—C22B  | -4.8 (11)   |
| O1B—N1B—C1B—C2B                             | 179.5 (11)  | C19—N3—C21B—C22B  | 114.1 (12)  |
| Cu3B—N1B—C1B—C2B                            | -14 (3)     | C17B—N3—C21B—C22B | 177.5 (11)  |
| N1B—C1B—O2B—Cu2B <sup>i</sup>               | -11.7 (15)  | C19B—N3—C21B—C22B | -65.6 (12)  |
| C2B—C1B—O2B—Cu2B <sup>i</sup>               | 169.3 (4)   | O7—C23—N4—C25     | 176.5 (12)  |
| O2B—C1B—C2B—C3B                             | -0.2 (7)    | O7—C23—N4—C24     | -7(2)       |
| N1B—C1B—C2B—C3B                             | -179.2 (14) | O7B—C23B—N4B—C24B | -5(2)       |
| O2B—C1B—C2B—C7B                             | 179.2 (4)   | O7B—C23B—N4B—C25B | -174.3 (15) |
| Symmetry codes: (i) $-x+1, -y+1, -z+1$      | l.          |                   |             |







Fig. 2









Fig. 5



