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Abstract

Open modification searching (OMS) is a powerful search strategy to identify peptides with any 

type of modification. OMS works by using a very wide precursor mass window to allow modified 

spectra to match against their unmodified variants, after which the modification types can be 

inferred from the corresponding precursor mass differences. A disadvantage of this strategy, 

however, is the large computational cost, because each query spectrum has to be compared against 

a multitude of candidate peptides.

We have previously introduced the ANN-SoLo tool for fast and accurate open spectral library 

searching. ANN-SoLo uses approximate nearest neighbor indexing to speed up OMS by selecting 

only a limited number of the most relevant library spectra to compare to an unknown query 

spectrum. Here we demonstrate how this candidate selection procedure can be further optimized 

using graphics processing units. Additionally, we introduce a feature hashing scheme to convert 

high-resolution spectra to low-dimensional vectors. Based on these algorithmic advances, along 

with low-level code optimizations, the new version of ANN-SoLo is up to an order of magnitude 

faster than its initial version. This makes it possible to efficiently perform open searches on a large 

scale to gain a deeper understanding about the protein modification landscape. We demonstrate the 

computational efficiency and identification performance of ANN-SoLo based on a large data set of 

the draft human proteome.

ANN-SoLo is implemented in Python and C++. It is freely available under the Apache 2.0 license 

at https://github.com/bittremieux/ANN-SoLo.
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1 Introduction

As mass spectrometry (MS) instrumentation has matured over the last decade, the focus of 

proteomics experiments has shifted from identifying the peptides and proteins that are 

present in a biological sample to characterizing all proteoforms therein [1]. Detection of 

proteoforms yields additional biological insights relative to simple peptide or protein lists, 

because the proteoforms capture disparate sources of biological variation that alter the 

primary protein sequences, such as post-translational modifications (PTMs) and amino acid 

mutations.

Accordingly, detecting proteoforms in MS requires detecting PTMs, which can be 

challenging. In particular, appropriate search settings are needed to correctly identify spectra 

corresponding to modified peptides. A common approach is to specify the variable 

modifications that are expected to be present a priori. A downside of this approach, however, 

is that as the number of potential modifications increases the search space explodes, leading 

to long search times and reduced identification sensitivity. A compounding problem is that, 

besides modifications of biological interest, other modifications can be introduced during the 

various sample processing steps as well [2]. This can lead to challenges to untangle these 

artificial modifications from the interesting modifications.

An alternative to explicitly specifying a limited number of variable modifications is open 

modification searching (OMS) [3, 4]. OMS works by using a very wide precursor mass 

window, exceeding the delta mass induced by PTMs, to infer identifications of modified 

spectra from partial matches against their unmodified variants. Afterwards, the presence and 

types of the modifications can be inferred from the differences between the observed 

precursor masses and the masses of the unmodified peptides [5]. In this fashion, all possible 

modifications are implicitly considered, allowing an untargeted analysis of all modifications 

that are present.

A downside of using a very wide precursor mass window, however, is that the search space 

is considerably enlarged relative to a standard database search, rendering OMS 

computationally expensive. As a result, historically OMS has only been used to a limited 

extent and with severely restricted protein databases. Based on computational and 

algorithmic advances, however, recently several modern open search engines have been 

developed that can efficiently handle this large search space [6–12]. These tools make it 

possible to perform OMS on a proteome-wide scale, allowing researchers to gain a deeper 

understanding of the protein modification landscape.

Here we present an update to our Approximate Nearest Neighbor Spectral Library (ANN-

SoLo) tool for efficient open modification spectral library searching [8]. As described 

previously, ANN-SoLo uses approximate nearest neighbor (ANN) indexing to speed up 

OMS by selecting only a limited number of the most relevant library spectra to compare to 

an unknown query spectrum. This approach is combined with a cascade search strategy [13] 

to maximize the number of identified unmodified and modified spectra while strictly 

controlling the false discovery rate (FDR). Additionally, the shifted dot product score is used 

to sensitively match modified spectra to their unmodified counterparts by taking both 
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directly matching fragments and fragments that match according to the precursor mass 

difference into account [8].

We describe two major improvements to ANN-SoLo. First, we show how feature hashing is 

used to convert high-resolution tandem mass spectrometry (MS/MS) spectra to vectors with 

a limited dimensionality while closely capturing the high fragment resolution. Hashed 

spectrum vectors approximate the original spectra better compared to simply binning the 

spectra to vectors, leading to an improvement in accuracy of the ANN candidate selection 

step. Second, the spectral library candidate selection step is sped up by using specialized 

graphics processing unit (GPU) hardware. Whereas GPUs have previously been proposed to 

accelerate spectral matching [14–16], to our knowledge this work is the first application of 

GPUs to efficiently process large search spaces, such as during OMS. We show how these 

two developments increase the speed of ANN-SoLo by up to an order of magnitude, making 

it possible to perform OMS extremely efficiently. We demonstrate this high computational 

performance through an open search of a large data set of the draft human proteome and 

investigate human PTMs.

ANN-SoLo is implemented in Python and C++. It is freely available as open source under 

the permissive Apache 2.0 license at https://github.com/bittremieux/ANN-SoLo.

2 Methods

2.1 Feature hashing to vectorize high-resolution mass spectra

To build an ANN index to efficiently select candidates from the spectral library, spectra are 

vectorized to represent them as points in a multidimensional space. In previous work [8], we 

converted spectra to sparse vectors by dividing the mass range into equally spaced bins and 

assigning each peak’s intensity to the corresponding bin. When choosing the mass bin width 

two conflicting factors must be considered. First, the mass bins should be as small as 

possible, ideally corresponding to the fragment mass tolerance, to accurately capture the 

peak masses. Second, because the sensitivity of multidimensional indexing techniques 

decreases as the dimensionality increases, due to the curse of dimensionality [17], shorter 

vectors are preferred. Previously, we empirically found that mass bins of 1 Da represented a 

good trade-off between fragment mass resolution and vector dimensionality [8]. However, 

because such mass bins considerably exceed the fragment mass tolerance when dealing with 

high-resolution spectra, multiple distinct fragments occasionally get merged into the same 

mass bin. This merging leads to an overestimation of the spectral similarity when comparing 

two spectra with each other using their vector representations, because spurious matches 

between fragments can occur.

In this work, we employ a different vectorization scheme. Rather than binning spectra to 

vectors directly, we use feature hashing [18] to convert high-resolution spectra to low-

dimensional vectors (figure 1). The following two-step procedure is used to convert a high-

resolution MS/MS spectrum to a vector:

1. Convert the spectrum to a sparse vector using small mass bins to tightly capture 

fragment masses.
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2. Hash the sparse, high-dimensional vector to a lower-dimensional vector by using 

a hash function to map the mass bins to a limited number of hash bins.

More precisely, let h:ℕ 1, …, m  be a random hash function. Then h can be used to 

convert a vectorto x = x1, …, xn  to a vector x′ = x1′ , …, xm′ , with m ≪ n:

xi′ = ∑
j:h( j) = i

x j

It can be proven that under moderate assumptions feature hashing approximately conserves 

the Euclidean norm [19], and hence, the similarity between hashed vectors can be used to 

approximate the similarity between the original, high-dimensional vectors.

An important consideration in choosing hash function h is that it must be unbiased in order 

to minimize the number of hash collisions. Hash collisions occur when fragment peaks in 

multiple distinct mass bins are mapped to the same hash bin. This can happen because the 

number of hash bins is significantly lower than the number of original mass bins. Hash 

collisions cause unrelated fragment peaks to be matched with each other, leading to an 

inflated similarity between two spectrum vectors. To avoid a systematic hash collision bias 

hash function h has to be truly random. This is, for example, not the case for the classic 

multiply-modprime hashing scheme [20]. In this work, we instead use the MurmurHash3 

algorithm [21], a popular non-cryptographic hash function that essentially behaves as truly 

random hashing [20]. MurmurHash3 is an efficient, general-purpose hash function that uses 

multiplications, rotations, XOR operations, and bit shifts to convert an input key to a random 

hash value. Subsequently, the modulo operator is used to restrict the hash value to a user-

specified number of hash bins. The number of hash bins m, i.e. the length of the hashed 

vectors, directly influences the rate of collisions. The smaller m is, the more likely it is that 

two or more fragment peaks will be mapped to the same hash bin. Nevertheless, for a 

suitable value of m, because spectra contain only a small number of fragment peaks, the 

unhashed spectrum vectors are very sparse and can be converted to low-dimensional vectors 

without suffering too many hash collisions.

2.2 GPU-powered spectral library candidate selection

ANN-SoLo uses approximate nearest neighbor indexing to efficiently find the relevant 

candidate spectra in the spectral library that need to be matched against each query spectrum 

when performing an open search [8]. First, an ANN index is constructed using the 

vectorized library spectra. Subsequently, to identify an unknown query spectrum, a nearest 

neighbor search using the ANN index is performed to select a limited set of library 

candidates. Finally, the optimal match between the query spectrum and its library candidates 

is computed using the shifted dot product to accurately match modified spectra to their 

unmodified library counterparts.

Typically, during an open search each query spectrum has to be compared to most of the 

spectra in the library, imposing a significant computational burden. In contrast, ANN-SoLo 

massively speeds up open searches by using an ANN index to efficiently select only a 

limited number of relevant library candidates to be evaluated for each query spectrum. 
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Whereas previously the Annoy library [22] was used for ANN searching, this is now done 

using the Faiss library [23], developed by Facebook for web-scale similarity searching. A 

major advantage of Faiss is that it can use NVIDIA CUDA-enabled GPUs to accelerate 

ANN searching, resulting in significant speed-ups [24].

ANN searching in Faiss is based on the concept of an inverted index [25]. To construct the 

ANN index a representative set of vectors is selected by using the centroids of a k-means 

clustering operation. Next, for each of these centroids a list of references to the library 

spectra that are closest to it is stored in an inverted index file. Subsequently, during ANN 

querying, finding the candidates for a query spectrum no longer requires searching the entire 

spectral library. Instead, the query only needs to be compared against the small number of 

centroids in the inverted index to retrieve the closest library candidates. The accuracy and 

speed of ANN indexing is governed by two hyperparameters: the number of lists used to 

partition the spectral library during index construction and the number of lists to probe 

during querying. Using a higher number of lists results in a more fine-grained partitioning of 

the data space, whereas probing more lists during querying decreases the chance of missing 

the best library candidate at the expense of running time.

2.3 Miscellaneous improvements

In addition to the important algorithmic changes described above, we have implemented 

several additional, smaller improvements.

Spectral library reading—A significant part of the ANN-SoLo runtime consists of 

reading spectra from the spectral library file. Because library spectra are retrieved from disk 

in an indeterminate order, based on the query spectra that are being identified, a large 

number of random-access read operations are needed. To optimize spectral library reading 

Cython [26] is used to parse the spectral library file efficiently by avoiding overhead from 

the Python IO libraries. Additionally, C-style memory mapping is used to perform random-

access reads from binary spectral library files.

Spectrum preprocessing—To optimize the spectrum–spectrum match (SSM) scoring 

the query and library spectra are preprocessed to increase their signal-to-noise ratio. 

Spectrum preprocessing includes, for example, precursor peak and low-intensity noise peak 

removal, and fragment intensity scaling to de-emphasize overly dominant peaks. Although 

the previous spectrum preprocessing functionality was already implemented quite efficiently 

by making extensive use of the NumPy scientific Python library [27], it has been further 

optimized using Numba [28], a just-in-time compiler for Python. This preprocessing 

functionality has been extracted into the spectrum_utils software package [29] for general 

public use to preprocess and visualize MS/MS spectra.

Batch query processing—Rather than identifying each query spectrum individually and 

retrieving the candidate spectra from the ANN index for each query separately, the query 

spectra are now processed in batches. This makes it possible to exploit parallelism while 

querying the ANN index, optimally utilizing the GPU hardware to achieve a considerable 

speed-up.
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2.4 Data sets

The main data set used to evaluate the improvements made to ANN-SoLo was generated in 

the context of the 2012 study by the Proteome Informatics Research Group of the 

Association of Biomolecular Resource Facilities, whose goal was to assess the community’s 

ability to analyze modified peptides [30]. The biological sample for this study consisted of a 

mixture of synthetic peptides with biologically occurring modifications combined with a 

yeast whole cell lysate as background, and the spectra were measured using a TripleTOF 

instrument. For full details on the sample preparation and acquisition see the original 

publication by Chalkley et al. [30]. All data was downloaded from the MassIVE data 

repository (accession MSV000078492).

To search the iPRG2012 data set the human HCD spectral library compiled by the National 

Institute of Standards and Technology (version 2016/09/12) and a TripleTOF yeast spectral 

library from Selevsek et al. [31] were used. First, matches to decoy proteins were removed 

from the yeast spectral library, after which both spectral libraries were concatenated using 

SpectraST [32] version 5.0 while removing duplicates by retaining only the best replicate 

spectrum for each individual peptide ion. Next, decoy spectra were added in a 1:1 ratio using 

the shuffle-and-reposition method [33], resulting in a single spectral library file containing 1 

188 168 spectra.

Additionally, ANN-SoLo was used to reanalyze the human draft proteome data set by Kim 

et al. [34]. This large data set aims to cover the whole human proteome and consists of 30 

human samples in 2212 raw files, measured using LTQ–Orbitrap Velos and LTQ–Orbitrap 

Elite mass spectrometers. For full details on the sample preparation and acquisition see the 

original publication by Kim et al. [34]. Raw files were downloaded from the PRoteomics 

IDEntifications (PRIDE) database [35] (project PXD000561) and converted to MGF files 

using msconvert [36].

To search the Kim data set the MassIVE-KB peptide spectral library (version 2018/06/15) 

was used. This is a repository-wide human higher-energy collisional dissociation spectral 

library derived from over 30 TB of human MS/MS proteomics data. The original spectral 

library contained 2 154 269 MS/MS spectra, from which duplicates were removed using 

SpectraST [32] version 5.0 by retaining only the best replicate spectrum for each individual 

peptide ion, resulting in a spectral library containing 2 113 413 spectra. Next, decoy spectra 

were added in a 1:1 ratio using the shuffle-and-reposition method [33], resulting in a final 

spectral library containing 4 226 826 spectra.

All MS/MS data, spectral libraries, and identification results have been deposited to the 

ProteomeXchange Consortium [37] via the PRIDE partner repository [35] with the data set 

identifier PXD013641 and via the MassIVE repository with the data set identifier 

RMSV000000091.4.

2.5 Search settings

ANN-SoLo version 0.2 was used to produce all search results. Section 3.2 compares these 

results to those obtained using ANN-SoLo version 0.1.3, which was previously described by 

Bittremieux et al. [8].
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Spectrum preprocessing consisted of the removal of the precursor ion peak and noise peaks 

with an intensity below 1 % of the base peak intensity. If applicable, spectra were further 

restricted to their 50 most intense peaks. Spectra that contained fewer than 10 peaks 

remaining or with a mass range less than 250 m/z after peak removal were discarded. 

Finally, peak intensities were rank transformed to deemphasize overly dominant peaks.

The search settings for the iPRG2012 data set consist of a precursor mass tolerance of 20 

ppm for the first level of the cascade search, followed by a precursor mass tolerance of 300 

Da for the second level of the cascade search. The fragment mass tolerance was 0.02 Da. To 

evaluate the spectrum hashing performance a bin width between 0.02 Da and 1 Da and a 

hash length between 100 and 1600 were used. To evaluate the performance of the ANN 

index the number of lists was varied between 64 and 16 384 and the number of probes was 

varied between 1 and 1024. The number of candidates to retrieve from the ANN index was 

either 1024 (GPU) or 25 000 (CPU).

For the Kim data set a precursor mass tolerance of 10 ppm was used for the first level of the 

cascade search, followed by a precursor mass tolerance of 500 Da for the second level of the 

cascade search. The fragment mass tolerance was 0.05 Da. To vectorize spectra a bin width 

of 0.1 Da and a hash length of 800 were used. ANN searching was performed using 256 lists 

of which 128 were probed during searching, while retrieving 1024 candidates for each 

query.

All SSMs are reported at a 1 % FDR threshold.

2.6 Code availability

The ANN-SoLo spectral library search engine is available as a Python command-line tool. 

All code is released as open source under the permissive Apache 2.0 license and is available 

at https://github.com/bittremieux/ANN-SoLo. This web resource also includes detailed 

instructions on how to install and run ANN-SoLo, along with code notebooks to reproduce 

all analyses discussed next.

3 Results

3.1 Feature hashing converts high-resolution spectra to low-dimensional vectors

Feature hashing is used during ANN indexing to convert high-resolution MS/MS spectra to 

low-dimensional vectors while closely capturing their fine-grained mass resolution. 

Previously, 1 Da mass bins were used to vectorize the MS/MS spectra as a trade-off between 

fragment mass resolution and vector dimensionality [8]. However, this approach often 

results in multiple distinct peaks being merged into a single mass bin, leading the vector dot 

product to overestimate the actual spectral similarity (figure 2A, supplementary figures S1 

and S2). Instead, for high-resolution spectra small mass bins should be used to closely 

capture the fragment masses, after which feature hashing is used to obtain low-dimensional 

vectors that are amenable to nearest neighbor searching (figure 2B, supplementary figures 

S1 and S2).
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When feature hashing is employed, the dimensionality of the spectrum vectors is effectively 

disconnected from the bin width. This allows the bin width to be selected to optimally 

capture the fragment masses based on the operational parameters associated with the mass 

spectrometry run. Hashed vectors should be as short as possible to avoid the curse of 

dimensionality during nearest neighbor searching, while not being overly short to minimize 

the rate of hash collisions. Empirically, we have found that a hash length of 400 to 800 can 

capture the fragments in high-resolution spectra with a minimal loss of information 

(supplementary figures S1 and S2). Furthermore, while such hashed vectors capture the 

fragment resolution of high-resolution spectra more closely and enable the vector dot 

product to better approximate the spectral similarity, their dimensionality is actually lower 

than that of the original 1 Da binned vectors. Consequently, a secondary advantage of 

feature hashing is that these vectors require less disk space to be stored in the ANN index, 

and that their dot product can be computed slightly faster.

3.2 Highly efficient open modification searching using GPUs

To test the effectiveness of the speedups that we have introduced to ANN-SoLo, we profiled 

the previous and current versions of the software on the iPRG2012 data set. Although the 

previous version of ANN-SoLo already outperformed alternative spectral library search 

engines by an order of magnitude during open modification searching in terms of runtime 

[8], this analysis shows an additional speedup by up to an order of magnitude compared to 

the previously reported results (figure 3). Notably, the use of specialized GPU computing 

resources makes it possible to very efficiently select library candidates. The time spent 

during candidate selection has decreased by a factor of 30, reducing the average time 

required to select library candidates from 0.1222 s/query spectrum to 0.0036 s/query 

spectrum.

A drawback of the approximate nature of the candidate selection step is that there is a small 

risk of missing the optimal library candidate. First, it is not guaranteed that the exact nearest 

neighbor will be retrieved from the ANN index in all cases. Two hyper-parameters (the 

number of lists used during index construction and the number of probed lists during 

querying) can be used to control the ANN searching performance (figure 4, supplementary 

table S1). Second, there is a discrepancy between similarity scoring in the ANN index, 

which is done using a standard dot product between the spectrum vectors, and the shifted dot 

product score matching unmodified and modified spectra to each other to obtain the final 

SSM ranking. Because shifted peaks are not taken into account during ANN searching, 

library candidates are selected based on partial matches between unshifted peaks. 

Consequently, if an optimal SSM contains a large proportion of shifted peaks, the 

corresponding library candidate will not be found via ANN searching. To alleviate this 

problem, multiple library candidates are retrieved from the ANN index, and these candidates 

are then rescored using the shifted dot product (supplementary figure S3). The number of 

considered library candidates is an additional hyperparameter that can be used to control the 

performance of ANN-SoLo by limiting the number of spectrum–spectrum comparisons that 

have to be performed for each query spectrum, at the expense of missing the optimal library 

candidate in case it is heavily modified (supplementary figure S4). A limitation of the GPU 

search mode is that it allows at most 1024 candidates to be retrieved from the ANN index 
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due to GPU memory constraints. Alternatively, ANN-SoLo can be run in a CPU-only mode 

which does not have this limitation. This allows the user to trade off fast runtimes for a 

slightly higher number of identifications based on their requirements and available 

computational resources.

3.3 Large-scale investigation of the modified human proteome

The high computational efficiency of ANN-SoLo makes it possible to perform untargeted 

PTM profiling via open searches at an unprecedented scale. Here we have analyzed the draft 

human proteome data set by Kim et al. [34], containing approximately 25 million MS/MS 

spectra, in combination with a large human spectral library, containing over four million 

spectra. A brute-force open search of such a large search space would require billions, if not 

trillions, of spectrum–spectrum comparisons to match all query spectra against the spectral 

library, which would clearly be computationally infeasible. In contrast, ANN-SoLo only 

needs 281 hours to search this large data set (single instance wall time), corresponding to 

only 8 minutes of processing time per raw file on average.

ANN-SoLo identifies over 14 million SSMs out of the 25 million query spectra. Among 

these identifications, approximately 9.8 million SSMs were obtained during the first level of 

the cascade search, and hence correspond to direct matches between query spectra and 

library spectra. The remaining 4.3 million SSMs have a non-zero precursor mass difference 

and hence represent modified peptides (figure 5 and table 1). We can see that frequently 

occurring modifications can mostly be attributed to various sample processing steps or can 

be explained by amino acid substitutions. Modifications of potential biological interest, such 

as acetylation, phosphorylation, GlyGly, etc., are detected at lower rates. Because these 

modifications are less abundant than the modifications introduced during sample processing, 

typically only a handful of such PTMs will be set as variable modifications during searching 

to minimize an unnecessary search space explosion. In contrast, our results indicate that it is 

possible to detect various types of biologically relevant modifications across the whole 

human proteome using OMS.

4 Conclusions

We have presented an update to the ANN-SoLo spectral library search engine. ANN-SoLo 

uses ANN indexing to efficiently traverse the large search space encountered during OMS 

by selecting only a limited number of the most relevant library spectra for comparison to the 

unknown query spectra. We have demonstrated how specialized hardware resources, such as 

GPUs, can be used to optimize the candidate selection step and speed up OMS. Additionally, 

we have shown how feature hashing can be used to vectorize high-resolution MS/MS 

spectra. Feature hashing makes it possible to accurately capture the high fragment resolution 

of modern MS data using low-dimensional spectrum vectors.

To map mass bins in high-dimensional vectors to hash bins in low-dimensional vectors 

during feature hashing we have used the general-purpose MurmurHash algorithm. 

Alternatively, other hash functions can used as well, potentially incorporating domain 

knowledge. For example, a custom hash function that exploits the mass clustering effect for 

peptides, by not considering invalid mass values because peptides can only contain a limited 

Bittremieux et al. Page 9

J Proteome Res. Author manuscript; available in PMC 2020 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of distinct chemical elements, could be beneficial in reducing the number of hash 

collisions.

In this case the vectorized spectra after feature hashing were used for ANN searching to 

efficiently perform OMS. Via feature hashing the dimensionality of spectrum vectors can be 

kept low and their sparsity is reduced. As such, this technique might be used for various 

other downstream machine learning approaches on MS/MS spectra as well [39], because 

such approaches often require dense and short vectors as input.

We have demonstrated the computational efficiency and identification performance of ANN-

SoLo on a large data set of the draft human proteome in combination with a repository-wide 

spectral library. Using traditional search engines it would be unfeasible to perform OMS on 

such a large volume of data. In contrast, due to its advanced, GPU-powered ANN indexing 

to condense the search space, ANN-SoLo can perform this task in a matter of minutes per 

raw file. These algorithmic advances make it possible to do OMS on a routine basis, 

allowing researchers to investigate the protein modification landscape at an unprecedented 

scale and depth.

The ANN-SoLo spectral library search engine is freely available as open source. The source 

code and detailed instructions can be found at https://github.com/bittremieux/ANN-SoLo.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
High-resolution MS/MS spectra are first converted to sparse vectors using small mass bins 

to accurately capture the fragment masses. Next, these high-dimensional, sparse vectors are 

converted to lower-dimensional vectors through feature hashing.
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Figure 2: 
Comparison between the spectral similarity based on the spectrum shifted dot product and 

the vector dot product for SSMs from the iPRG2012 data set (1 % FDR). (A) The vector dot 

product is obtained by binning spectra using 1 Da mass bins. (B) The vector dot product is 

obtained by binning spectra using 0.04 Da mass bins hashed to vectors of length 800. When 

using 1 Da mass bins the vector dot product often overestimates the actual spectral similarity 

(A; SSMs above the diagonal), while small mass bins avoid spurious peak matches (B).
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Figure 3: 
ANN-SoLo performance improvements. Whereas an open search of the iPRG2012 data set 

using the previous version of ANN-SoLo took 50 min, the current version performs a similar 

search in under 6 min. Timing results were obtained on an Intel Xeon E5–2643 v3 processor 

for ANN-SoLo version 0.1.3, combined with an NVIDIA GeForce RTX 2080 GPU for 

ANN-SoLo version 0.2.
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Figure 4: 
Trade-off between search speed and the number of identified spectra for the iPRG2012 data 

set (up and to the right is better). The number of identifications is represented as the SSM 

recall compared to the results of a brute-force open search without using ANN indexing. 

Timing results were obtained on an Intel Xeon E5–2643 v3 processor with four threads for 

the ANN CPU and brute-force searches, combined with an NVIDIA GeForce RTX 2080 

GPU for the ANN GPU searches. Parallel execution (on the CPU or GPU) was limited to the 

candidate selection step. The multiple ANN results correspond to different hyperparameter 

configurations, with the settings that lie on the Pareto frontier shown. ANN indexing 

provides speed-ups of up to two orders of magnitude compared to the brute-force open 

search, approaching the speed of a standard search. The ANN hyperparameters can be set to 

achieve a higher SSM recall at the expense of a slight decrease in search speed, maximizing 

the number of identified spectra while still achieving a speed-up of an order of magnitude 

over a brute-force open search. Specific values of the ANN hyperparameters and the 

corresponding speed and identification performance are available in supplementary table S1.
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Figure 5: 
Precursor mass differences for the Kim data set (table 1). Only non-zero precursor mass 

differences are shown, whereas the majority of SSMs correspond to unmodified peptides 

with a zero precursor mass difference. The five most frequent precursor mass differences are 

annotated with their likely modifications.
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Table 1:

The most frequent precursor mass differences for the Kim data set and likely modifications sourced from 

Unimod [38] or isotopic variants corresponding to these precursor mass differences. The delta-mass column 

contains the median precursor mass difference of that SSM subgroup.

# SSMs Δm (Da) Potential modification

9 882 777 0.001

308 387 57.022 Carbamidomethyl / Ala → Gln / Gly → Asn / Addition of Gly

246 428 27.996 Formylation / Ser → Asp / Thr → Glu

219 006 0.994 First isotopic peak

211 927 15.995 Oxidation or hydroxylation / Ala → Ser / Phe → Tyr

163 269 −0.986 Amidation

133 020 14.016 Methylation / Asp → Glu / Gly → Ala / Ser → Thr / Val → Leu/Ile / Asn → Gln

129 687 −17.025 Pyro-glu from Q / loss of ammonia

111 075 −18.010 Dehydration / Pyro-glu from E

99 286 1.988 Second isotopic peak

J Proteome Res. Author manuscript; available in PMC 2020 October 04.


	Abstract
	Introduction
	Methods
	Feature hashing to vectorize high-resolution mass spectra
	GPU-powered spectral library candidate selection
	Miscellaneous improvements
	Spectral library reading
	Spectrum preprocessing
	Batch query processing

	Data sets
	Search settings
	Code availability

	Results
	Feature hashing converts high-resolution spectra to low-dimensional
vectors
	Highly efficient open modification searching using GPUs
	Large-scale investigation of the modified human proteome

	Conclusions
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Table 1:

