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Simple Summary: Cancer cells travel to far away parts of the body before the original cancer can be
detected. Breast cancer cells travel mainly to the bone marrow, where they are kept in a quiet, non-
dividing, dormant state for many years by cells and proteins in the bone marrow. These metastatic
cancer cells wake up at a steady rate over the years and result in incurable disease. This paper
outlines how to study the interactions of cells that live in the bone marrow with cancer cells in the
laboratory. We describe how to grow mixtures of a variety of bone marrow-residing cells to generate
cell layers upon which cancer cells can be grown. Using this system, we can study their effects on
cancer cell growth or dormancy and the biology of the interactions. With this approach, we can study
how to either eliminate the cancer cells or prevent them from waking up.

Abstract: Cancers metastasize to the bone marrow before primary tumors can be detected. Bone
marrow micrometastases are resistant to therapy, and while they are able to remain dormant for
decades, they recur steadily and result in incurable metastatic disease. The bone marrow microen-
vironment maintains the dormancy and chemoresistance of micrometastases through interactions
with multiple cell types and through structural and soluble factors. Modeling dormancy in vitro can
identify the mechanisms of these interactions. Modeling also identifies mechanisms able to disrupt
these interactions or define novel interactions that promote the reawakening of dormant cells. The
in vitro modeling of the interactions of cancer cells with various bone marrow elements can generate
hypotheses on the mechanisms that control dormancy, treatment resistance and reawakening in vivo.
These hypotheses can guide in vivo murine experiments that have high probabilities of succeeding
in order to verify in vitro findings while minimizing the use of animals in experiments. This review
outlines the existing data on predominant stromal cell types and their use in 2D co-cultures with
cancer cells.

Keywords: dormancy; bone marrow stroma; micrometastases; dormancy models; mesenchymal
stem cells; bone marrow fibroblasts; osteoblasts; adipocytes; osteoclasts; endothelial cells

1. Introduction

Breast cancer (BC) kills more than 43,000 women a year in the United States [1], mostly
from metastatic disease. BC cells metastasize to distant organs, including the bone marrow,
before patients are diagnosed with local disease [2–5]. Micrometastases can lie dormant for
up to two decades but frequently recur and result in death [6–8]. Dormancy is characterized
specifically by the capacity of quiescent cells to awaken when factors that initiate dormancy
are withdrawn or when the cells are exposed to factors that can trigger an awakening [9].
Understanding the mechanisms governing dormancy and reawakening are important goals
for investigators and clinicians.

Studying the factors affecting the behavior of micrometastases in the bone marrow is
a complex undertaking in vivo. Animal experiments are expensive, are time consuming
and risk failure unless they test viable hypotheses of likely biological scenarios supported
by in vitro data. In turn, in vitro experiments must incorporate credible variables found
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in vivo. There are multiple reciprocal interactions and induced effects between the highly
complex spatially organized cellular and structural elements of the bone marrow microen-
vironments and disseminated cancer cells. The induction of dormancy occurs on multiple
levels at the single cell stage, the multicellular stage, and by immune suppression, in-
corporating a very large number of variables [10]. Modeling the interactions of specific
components of the bone marrow microenvironment with individual cancer cells in vitro
provides a platform to incorporate these variables found in vivo. This review outlines
how the contributions of various stromal elements to cancer cell behavior can be derived
from data on their interactions with a variety of malignant and non-malignant cells. These
lessons guide the construction of hybrid stromal cultures that have variable and modu-
lar components in order to study the cultures’ contributions to co-cultivated cancer cell
dormancy and reawakening.

2. Interactions of Disseminated Cancer Cells and Bone Marrow Cell Types in the
Dormant Niche

Disseminated tumor cells in the bone marrow interact with an extraordinary number
of combinations of cell types and with structural and soluble factors. Micrometastases
interact with bone marrow cells in various spatial localizations within the marrow, with
their subcellular structural segments, through multitudes of receptors and signal pathways,
exported molecules, soluble factors, inflammatory cytokines, variable oxygen tension and
structural proteins. Structural proteins initiate variable signaling modulated by a variety
of chemical modifications, splice variants and variable stiffnesses. Different contexts can
initiate opposing effects on disseminated tumor cells (DTCs), resulting in either death,
senescence, dormancy or proliferation. It is clear from the complexity of these interactions
that there is a necessity for in vitro systems to model them [11].

A number of three-dimensional (3D) and organotypic in vitro models have been devel-
oped to study cancer cell dormancy with variable components [12–21]. Three-dimensional
bone-mimicking scaffolds recapitulate rigidity and structural nuances [22–27]. Other mod-
els, including 3D models, mathematical models, biomaterials, microfluidics and bioreactors,
have been developed. These are reviewed expertly elsewhere [15,17,20,21,28] and will not
be discussed here. Much of what has been learned from tumor–stromal interactions was de-
rived from 3D models, and those mechanisms will be cited here. However, while 3D models
may be more complex and have some advantages over two-dimensional (2D) models, they
present a different set of challenges in getting them established and in assessing signaling
and molecular interactions with niche elements. The 2D stromal co-cultivation model is
relatively less complicated to construct and analyze. Stromal layers can be generated as
modular systems with interchangeable and variable niche cells alone or in combination,
structural and soluble stromal components, culture conditions and oxygen tensions with
the easy introduction of inhibitory antibodies, peptides, small molecules, siRNAs, gene
expressions or gene editing vectors. Multimodal analyses using standard molecular biology
and imaging techniques provide the necessary versatility to define specific interactions
between individual bone marrow elements and cancer cells [28]. Here we outline prior
uses of 2D co-cultures to model the dormancy and interactions of cancer cells with stromal
components of the bone marrow and propose methods for adding modules to investigate
their effects on, and interactions with, cancer cells. Once the interactions are characterized
in vitro, they can be validated in specific, focused in vivo hypothesis-driven experiments
with high probabilities of succeeding while minimizing the use of animals.

3. Components of 2D In Vitro Dormancy Models
3.1. Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) can be obtained and cultured from murine [29,30] or
human bone marrow [31]. They encompass a large heterogeneous population of cells that
is not well defined [32,33]. MSCs are able to differentiate into several mesenchymal tissues,
including bone, cartilage, fat, tendon, muscle and marrow stroma [34]. The minimal criteria
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that define MSCs were established by the International Society of Cellular Therapy [35].
These include three characteristics: (1) the cells must be plastic-adherent when maintained
in standard culture conditions; (2) they must express CD105, CD73 and CD90 and must
lack expressions of CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface
molecules and (3) the fibroblastoid cells must be able to differentiate into osteoblasts,
adipocytes and chondroblasts in vitro [35], which have their own distinct gene expression
signatures [36]. The cells also stain positive for nucleostemin, which declines with lineage
differentiations [37]. MSCs require forkhead box P1 (FOXP1) to maintain a self-renewal
capacity and to prevent senescence. FOXP1 expression declines with age in bone MSCs, a
trend inversely correlated with the senescence marker p16INK4a, the transcription of which
it directly represses [38]. FOXP1 regulates the cell-fate choices of MSCs through interactions
with the CEBPβ/δ complex and recombination signal binding protein for immunoglobulin
κ J region (RBPjκ), key modulators of adipogenesis and osteogenesis, respectively. As
FOXP1 is depleted, it results in an increased bone marrow adiposity, decreased bone mass
and impaired MSC self-renewal capacity in mice [38].

MSCs maintain their plasticity [39], stemness and self-renewing capacities in culture
medium through the inclusion of L-ascorbic acid 2-phosphate (Asc-2P) and fibroblast
growth factor-2 (FGF-2) [36,40]. Asc-2P acts through its role as an antioxidant and inducer
of hepatocyte growth factor (HGF) production [40]. FGF-2 promotes the self-renewal and in-
hibits the senescence of MSCs [41–45], effects mediated though FGF receptor 2 (FGFR2) [46].
The effects are also mediated through the activation of Akt and the inhibition of glycogen
synthase kinase-3β (GSK-3β), which is necessary for osteogenic differentiation [47] and
adipocyte differentiation [48]. The maintenance of the MSC self-renewal is also mediated
through increased levels of beta-catenin, transcriptions of c-myc and cyclin D1 through
the activation of the beta-catenin/T-cell factor (TCF) complex [46] and increased levels
of Wnt-5a [49]. While Wnt-5a promotes the maintenance of MSCs in the bone marrow,
it enhances osteogenesis in cultures [49]. FGF-2 increases both the osteogenic and chon-
drogenic differentiation potentials of MSCs by inactivating TGFβ and insulin-like growth
factor-I (IGF-I) signaling [50] through the induction of SOX2 [51] and of adipose stem
cells [52]. TGFβ induces senescence in MSCs through the production of reactive oxygen
species (ROS) [53]. FGF-2 also increases preadipocyte early differentiation [54,55] through
FGFR1 [56], MEK/ERK-mediated C/EBPα and peroxisome proliferator-activated receptor
gamma (PPARγ) activation [57]. Connective tissue growth factor (CTGF) induces MSC
fibroblast differentiation [58].

In vivo, endogenous factors, such as PPARγ2, Wnt, IGF-1, growth hormone (GH),
FGF-2, estrogen, the gp130 signaling cytokines, vitamin D, glucocorticoids, adipokines
(such as adiponectin and leptin, as well as adipose-derived estrogen [59]) and recombinant
parathormone [60] regulate the homeostatic maintenance of MSC differentiation toward
osteoblasts. Alternately, lower levels of IL-11, GH, IGF-1 and Wnt signaling tilt the balance
toward adipogenesis [59]. Signaling by Dexras1 [61], intracellular and extracellular calcium
ions [62] and c-Met [40] is also adipogenic.

On the way to adipogenic differentiation, MSCs first differentiate into preadipocytes
and then undergo a terminal differentiation into mature adipocytes [63]. Initially, Wnt/beta-
catenin signaling suppresses the differentiation and increases the MSC and preadipocyte
cell mass, but later, the role of Wnt switches to promoting osteogenesis [63]. TGFβ1
then induces osteogenic differentiation [64] and mediates the suppression of adipogenesis
by estradiol through CTGF induction [65]. Interestingly, the transcription factor Ebf-1
suppresses both osteogenesis and adipogenesis in the bone marrow [66].

Hypoxia dramatically increases bone marrow-derived MSC expressions of the hypoxia-
inducible factor (HIF) family of proteins and increases both the osteogenic and adipogenic
differentiation capacities of MSCs [67]. Hypoxia also enhances adipose-derived MSC (adi-
pose stromal cell, ASC) ERK- and Akt-dependent proliferation, associated with marked
increases in the binding of HIF-1α to FGF-2, and associated FGF-2 expression levels [68].
However, FGF-2 regulates the directionality of MSC differentiation by inhibiting adipo-
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genesis and promoting osteoblast differentiation [50]. The inhibition of FGF-2 signaling
by a lysyl oxidase propeptide promotes adipogenesis by FGF-2 by inhibiting and down-
regulating AKT and ERK1/2 and enhancing the PPARγ and the CCAAT-enhancer binding
protein (C/EBP)α, two markers of adipogenesis [69]. A low temperature also promotes
adipogenic differentiation of bone marrow MSCs in culture with resulting uncoupled respi-
ration and metabolic adaptations, and translocations of leptin to differentiated adipocyte
nuclei [70].

Differentiated MSCs retain their plasticity in vitro and are able to be reverted to
pluripotential cells that retain the capacity to differentiate in an alternate direction. Various
signaling pathways and mechanisms responsible for the alternate osteoblast/adipocyte
cell fate decisions have been expertly reviewed by Hu et al. [71].

Commercially available MSC lines, both human and mouse, can be used, but they
have some limitations, such as the ability to differentiate. Nevertheless, they have been
used for co-culture studies. A Nestin+ human MSC line can be obtained commercially from
Lonza (Basel, Switzerland) [12,13,16]. Murine MSC ST2 cells [72], mesenchymal progenitor
cell line C3H10T1/2 [73] and TBR31–2 cells [74] are also available commercially, but their
immortalized statuses significantly impair the maintenance of the MSC physiological
function, such as bone differentiation [36]. These cells can be cultured in low-glucose
DMEM/10% fetal bovine serum (FBS) with antibiotics [12,36].

Most bone marrow stroma-cancer cell co-cultivation experiments have been conducted
with primarily fibroblast-differentiated MSCs. However, different stromal cell types can
be mixed at various ratios to model stroma and deconvolute the contributions of their
individual and joint interactions with cancer cells, adhesion molecules, secreted factors
and signaling. MSCs can also be induced to differentiate to different quantifiable extents in
different directions to assess the phenotypic and molecular effects on co-incubated cancer
cells. The exceptional versatility of such individual and hybrid co-cultivation models can
provide an understanding of the specific mechanisms of the stromal effects impacting
cancer cell behavior and can generate valid hypotheses that can be confirmed in rationally
directed in vivo experiments.

3.2. Bone Marrow Stromal Fibroblasts

The most common bone marrow micrometastasis co-culture model systems have a
bone marrow MSC fibroblast-predominant cell type. These cells can be obtained from bone
marrow aspirates or murine long bone marrow flushed and cultured in several specific
medium types that allow stromal MSCs to differentiate into fibroblasts and populate the
bottom of a dish. Cultures through several passages can generate monolayer-covered
24-well plates for co-culture experiments, which can be conducted in cancer cell culture
medium once the proliferation of stroma is no longer required. Stroma become quiescent at
their confluence.

Single cell suspensions of bone marrow hematopoietic progenitors flushed from
mouse femurs [75,76] or buffy coats from human bone marrow aspirates obtained from
the posterior iliac crests of normal volunteers [16,77–79] can be cultured in 25 cm2 flasks in
Gartner’s Medium [79] or Eagle’s Minimum Essential Medium (alpha modified; αMEM),
supplemented with 12.5% fetal calf serum, 12.5% horse serum, 10−6 M hydrocortisone,
10−4 M 2-mercaptoethanol and 1.6 mM glutamine and antibiotics [77]. Alternately, cultures
can utilize 20% FBS, 2% penicillin/streptomycin, 0.2% gentamicin and 1 µg/L recombinant
human fibroblast growth factor at 1.5 to 3 × 106 cells/cm2 at 37 ◦C and 5% CO2 [16]. The
medium and non-adherent cells should be demi-depleted every 7 days and replaced with
fresh medium until adherent stroma reach approximately 50–75% confluence.

Fibroblasts have organ-specific gene expression patterns, making it important for the
model to use bone-marrow-derived fibroblasts [80]. Immortalized bone marrow MSCs have
been used by investigators in co-culture experiments when the primary interest has been un-
derstanding the effects of bone marrow stromal fibroblasts on cancer cells [12,13,16,72–74].
The model has exceptional versatility, and stromal fibroblasts from other organs, includ-
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ing the breast, as well as from primary tumors can be used to generate homogeneous
or heterogenous stromal layers to determine their molecular and phenotypic effects on
co-cultivated cancer cells. To investigate stromal effects, adding a specific stromal cell type
to mixed stromal cultures is sufficient to endow a novel phenotype to co-cultivated cancer
cells. Investigators can also target different compartments with toxic vectors, such as a
herpes simplex virus thymidine kinase (hsv-TK) vector, used with the prodrug ganciclovir
(GCV) or acyclovir, in order to selectively eliminate the effects of stromal construct com-
partments and demonstrate that they are individually necessary in modulating specific
phenotypic or trans effects in co-cultured cancer cells [81].

Stroma can be detached by using a trypsin treatment distributed into multi-well
tissue-culture-coated plates at 1–1.5 × 105 cells/cm2 and cultured to confluence. Primarily
fibroblasts differentiate from MSCs when cultured in these bone marrow media [75,77].
The use of non-bone-marrow-derived fibroblast lines can yield a variety of behaviors in co-
cultivated cancer cells, reflecting their organ-specific gene expressions [80]. Both estrogen
receptor/progesterone receptor+ (ER/PR+) cells [79] and ER/PR- human BC cell lines,
which have been selected to preferentially metastasize to bone [82], are inhibited from
proliferating on stromal fibroblast monolayers and form dormant single or oligocellular
clones when incubated at clonogenic density. Murine bone marrow stroma can suppress
the tumor-initiating content, proliferation, invasion and chemosensitivity of a bone marrow
tropic MDA-MB-231 BC cell line [82]. The effects can be achieved by direct contact as
well as through transwells by MSC culture-derived exosomes overexpressing miR-23b,
which suppress the target gene MARCKS, which in turn encodes a protein that promotes
cells cycle and motility [82]. Both the ER- MDA-MB-231 and ER+ T47D BC cell lines
can remain dormant in bone marrow stroma co-culture through a gap-junction-mediated
transfer of miR-127, −197, −222 and −223, which target C-X-C motif chemokine ligand
12 (CXCL12) [83,84]. Other BC cell lines of various metastatic tropisms have been used
in dormancy models [20,85]. The transfer of SDF-1α from bone marrow stroma to BC
cells in co-culture can down-regulate the expression of a truncated neurokinin-1 receptor
(NK1E-Tr) in MDA-MB-231 cells and induce quiescence when stromal cells outnumber BC
cells [86].

In our model, ER/PR+ cells establish a dormant state [79] mediated by dual signaling
from FGF-2, which is synthesized and exported by bone marrow fibroblasts [87], and by
stromal fibronectin, an integral member of the endosteal microenvironment [88]. Microen-
vironmental fibronectin suppresses the malignant phenotype [89,90] and helps establish
the premetastatic niche through integrin α5β1 [91], but fibronectin produced by cancer
cells that have reawakened may play a role in progression [92]. Exogenously presented
fibronectin contributes to dormancy signaling through integrin α5β1 [79,93]. Integrin α5β1
expression, which is lost with malignant de-differentiations in these cells, is up-regulated
by FGF-2 signaling through transmembrane FGF receptors in a positive feedback loop
to maintain cell dormancy [79]. ER- cells are not inhibited by FGF-2 and do not enter
dormancy in vitro in a fibronectin-FGF-2 dual signaling model [79] but are inhibited by
stromal MSCs by direct or transwell co-cultures through the transfer of miRNAs [82–84] or
SDF-1α [86].

Our lab has developed an in vitro model recapitulating the significant elements of
dormancy present in bone marrow stromal monolayers, comprised of a combination of (a)
FGF-2- and (b) fibronectin-initiated signaling in (c) ER+ human BC cells (d) incubated at
clonogenic density [79] (Figure 1). The latter aspect of the assay is key to ensure that cancer
cells interact with only the microenvironment and not each other [20,79]. Cells categorized
as dormant after a week of incubation on fibronectin-coated plates in the presence of
FGF-2 10 ng/mL [79,94] grow to only a two- to twelve-cell stage, become large, take on an
epithelial appearance [79,93], have an increased adherence to the substratum [95] and have
a decreased motility [76].

The cells’ appearance, increased adhesion and lack of motility are mediated by an FGF-
2-induced re-expression of integrin α5β1, which binds to fibronectin [79], with a consequent



Cancers 2022, 14, 3344 6 of 27

omnidirectional focal adhesion complex activation [93]. This results in enlarged, epithelial-
appearing flattened cells with increased cytoplasm to nucleus ratios and in a cortical actin
rearrangement [79,93]. The actin rearrangement is induced by the RhoGAP Graf-mediated
RhoAGTP down-regulation and is dependent on integrin α5β1-mediated signaling [93]. In
bone marrow stromal co-cultures, ER+ human cells lie dormant, with FGF-2 provided by
the stroma and survival dependent on the stromal fibronectin binding of integrin α5β1 [79].

The non- or hypo-proliferative state of the dormant ER+ BC cells is initiated by FGF-
2 [96,97] and is mediated by increased p21WAF1 [97,98], p27Kip1 and p15INK4b [98] through
intracellular TGFβ1 [98], resulting in G1 cyclin complex inhibition and Rb dephosphory-
lation [97]. FGF-2, on fibronectin-coated plates, also endows the cells with a resistance to
cytotoxic therapy mediated through PI3K [79,95]. The role of β1 integrins in providing
chemotherapy resistance in cancer has been demonstrated in a number of systems [21].
The process takes place in the setting of ERK pathway activation [96] and constitutive p38
activation by adherence to fibronectin [95].
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Figure 1. FGF-2 activates FGF receptors, inducing up-regulation of integrin α5β1, which in turn
binds stromal fibronectin [79]. FGF-2 induces cell cycle inhibition through increasing TGFβ1 [98],
up-regulation of cyclin-dependent kinase inhibitors p21Waf1/Cip1, p15INK4b and p27Kip1 [97,98], inac-
tivation of Cdk4 and 2 and dephosphorylation of Rb [97]. It induces survival and chemoresistance
through activation of PI3K and Akt [79,95]. It induces an epithelial-like dormant phenotype through
dual signaling with integrin α5β1 to induce omnidirectional focal adhesion complex activation and
increased adhesion [93,95]. FGF-2 and integrin α5β1, in combination, activate the RhoGAP Graf,
which is responsible for inactivation of RhoAGTP, causing cortical actin rearrangement and, together
with increased adhesion strength, decreased motility [76,93,95]. FGF-2 also activates a mesenchymal
program through decreasing E-cadherin and estrogen receptor α (ERα) and up-regulating N-cadherin
and SLUG [76]. However, the adhesion signaling suppresses the effects of the mesenchymal program
and results in a dormant phenotype [76].

While FGF-2, in conjunction with fibronectin signaling, induces a dormant phenotype
in ER+ human cells, it also induces a mesenchymal gene expression pattern, illustrated
by an up-regulation of SLUG and N-cadherin and down-regulation of E-Cadherin and
ERα [76]. The ERα down-regulation has been attributed to signaling from stroma, a primary
source of FGF-2 in the marrow niche [99]. This in vitro model, demonstrating an epithelial
appearance and lack of migration in the setting of an activated mesenchymal program,
corresponds to data from DTCs, which are also quiescent, lack the epithelial marker
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E-cadherin [100] and do not undergo a phenotypic epithelial-mesenchymal transition
(EMT) [101]. This supports the current understanding of the microenvironmental control
of metastases and provides insights into reconciling the dichotomy of a mesenchymal
program masked by an epithelial phenotype in DTCs [100,101].

3.3. Osteoblasts

Osteoblast precursors and osteoblasts have reciprocally impactful interactions with
cancer cells. Prostate cancer (PC) cells, through extracellular vesicles, enhance the viability
of osteoblasts, which, in turn, provide a greater supportive environment for PC cells co-
cultivated with them in Boyden chambers [102]. The content of these vesicles is enriched
in mRNAs associated with cell surface signaling, cell–cell interactions and translation
machinery proteins, which increase the rate of transcription in osteoblasts [102]. BC cells
induce Tenascin-W mRNA transcription in bone marrow osteoblasts in vivo, in co-cultures
and in transwells through TGFβ signaling [103]. This is mediated through the TGFβ1
receptor Alk5 and a SMAD-4 binding element in the promoter, supporting the migration
and proliferation of the cancer cells [103].

However, cancer cells depend on physical interactions with osteogenic cells through
gap junctions to increase their intracellular calcium levels [104]. The osteogenic cells serve
as a calcium reservoir for cancer cells to promote the formation of micrometastases [104]. Os-
teoblasts induce proliferation, migration and invasion through the production of hepatocyte
growth factor (HGF) in BALB/c-MC cancer cells, mediated by c-Met/HGF receptors [105].
This is a potential mechanism for promoting cancer cell migration from sinusoidal cap-
illaries to the bone marrow space [105]. Osteoblasts also support chemoresistance in
cancer cells [106]. MC3T3-E1 pre-osteoblasts and osteoblasts protect ER+ and ER- BC
cells from serum deprivation-induced and oxidation-induced cell death by direct contact
through integrins and gap junctions [106]. Osteoblasts and MDA-MB-231 co-conditioned
medium, with and without heat inactivation, also protect ER- cells but not MCF-7 cells
from oxidation-induced cell death, while pre-osteoblast CM alone does not [106]. The
induction of osteoblast senescence by p27Kip1 promotes metastatic seeding, tumor growth
and osteoclastogenesis mediated by IL-6 synthesis in mice [107].

An example of a mutual, sustained effect between osteoblasts and disseminated can-
cer cells occurs with osteoid-differentiated MC3T3-E1 osteoblasts co-cultured with bone
metastatic MDA-MB-231 cells, either in contact or not in contact, sharing a medium [108].
Differentiated osteoblasts induce invasive stimuli in BC cells using MMP13 mRNA and
protein, which in turn are induced in the osteoblasts by the cancer cells through soluble
factors, including oncostatin M, and the acute-response apolipoprotein serum amyloid A-3
(SAA3) [108]. The invasive effects of MMP13 on cancer cells can be mediated through six
novel targets, including the inactivation of chemokine C-C motif ligand 2 (CCL2) and CCL7,
activation of platelet-derived growth factor-C (PDGF-C) and cleavage of SAA3, osteoprote-
gerin (OPG), CutA and antithrombin III [108]. In turn, an MDA-MB-231 co-cultivation in
contact with MC3T3 pre-osteoblasts inhibits MC3T3 mineralization in response to ascorbic
acid and β-glycerol phosphate, serving as a model of the effects of metastases in the bone
marrow [109]

Pre-osteoblasts have a seminal role in harboring the quiescence and preservation
of hematopoietic stem cells while differentiated osteoblasts may not [110]. In terms of
the former’s interactions with micrometastases, data support a similar relationship of
the osteoblast niche with disseminated cancer cells [111–116]. Differentiated osteoblasts
connect with cancer cells through gap junctions, through which they increase the DTC
intracellular calcium and promote colonization [104,117].

Osteoblasts can be isolated from the calvaria of 1–4 day-old neonatal mouse pups
by subjecting dissected calvaria to sequential collagenase II or A digestions and culturing
the cells in a complete osteoprogenitor medium consisting of Dulbecco’s Modified Eagle
Medium (DMEM) and 20% heat-inactivated FBS with antibiotic additives [118–120]. Os-
teoblasts have also been isolated from mincing and collagenase I digesting long bones of
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adult mice after flushing and discarding bone marrow and from sterile sorting for a lin-
cd31- cd51+ sca- cell population, followed by characterizing the cells by using CXCL12(SDF-
1)-C-X-C chemokine receptor 4 (CXCR4) immunophenotyping [121]. Alternately, MSCs
can be obtained from bone marrow and differentiated in culture into pre-osteoblasts and
osteoblasts in αMEM/10% FBS, ascorbic acid-2-phosphate and glycerol-2-phosphate, as
noted above [16]. Osteoblast-differentiated MSCs maintain their plasticity along the initial
stages of differentiation, with pre-osteoblasts retaining their capability to efficiently convert
into adipocytes, and conversely, of adipocytes retaining their capability to convert into
pre-osteoblasts [122]. It is therefore important to maintain the cells in a differentiation
medium while they populate a dish bottom. Leptin and BMP promote osteoblast osteoid
differentiations of bone marrow MSCs in cultures [123], while BMP inhibits late adipogenic
differentiation [124]. In hybrid cultures, osteoblasts or bone matrices prevent the osteoblast
differentiation of MSCs and ensure a primarily fibroblast differentiation [125]. This serves
as an example of the utility of using hybrid cultures with added primary osteoblasts or
cell lines to determine their contributions to the behavior of co-cultured cancer cells. The
pre-osteoblast cell line MC3T3-E1 can be cultivated in its pre-osteoblast state or differen-
tiated into osteoid-producing cells [36,126] using ascorbic acid [126], ascorbic acid plus
dexamethasone and β-glycerol phosphate [36], BMP or leptin [123]. Following their differ-
entiation, cells can be analyzed by using alizarin red staining [36,127], alkaline phosphatase
staining [36,126] or a real-time polymerase chain reaction (RT PCR) to detect osteocalcin
and RunX-2 gene expressions [128]. Other immortalized osteoblast cell lines, the human
osteoblast cell line HS27A and the human fetal osteoblast cell line HFOB have been used in
cancer cell co-cultures [129].

In our model, we combined MC3T3-E1 pre-osteoblasts with human bone marrow
stroma fibroblasts and demonstrated the promotion of dormant cell survival by pre-
osteoblasts. Our observations of our human HR+ BC line in vitro dormancy model demon-
strate that the mouse pre-osteoblast cell line MC3T3-E1 mixed with human stroma at a ratio
of 1/10 enhances the support of dormant colonies (Figure 2). The data also show that these
pre-osteoblasts alone need exogenous FGF-2 to induce dormancy, while pre-osteoblasts
lining the endosteum in vivo express high levels of FGF-2 [130]. It will be important to
characterize the expression of FGF and growth factors in planning co-culture models.
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Figure 2. Mixing mouse MC3T3÷E1 osteoblasts with human stroma at a ratio of 1:10 increases the
capacity to support dormant MCF÷7 cell clones almost two-fold. FGF÷2 produced by stoma is
sufficient to support dormancy [79], with exogenous FGF÷2 having no additional effect on stroma or
mixing experiments (p > 0.05). However, exogenous FGF÷2 is necessary for dormancy on MC3T3÷E1
monolayers, suggesting they do not produce and export FGF-2. The dormancy support efficiency on
MC3T3÷E1 cells is greater than that of stroma by more than two-fold (p < 0.05). Error bars ±S.D.
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3.4. Adipocytes

BC cells and adipocytes have reciprocal metabolic effects on each other. Human BC
cell lines in transwell inserts can induce an increased lipolysis in co-cultivated adipocytes
differentiated from 3T3-L1 cells [131]. In turn, the adipocytes transfer newly produced free
fatty acids (FFAs) to the BC cells [131]. The production and transfer of FFAs in adipocytes
depend on fatty acid binding protein 4 (FABP4), which combines with FFAs and supports
BC cell transmigration. Fatty acids are not transferred to non-transformed MCF-10A
mammary epithelial cells, however [131]. Adipocytes contribute to the survival and growth
of BC but not of non-transformed cells by increasing the mitochondrial β-oxidation of the
transferred fatty acid [131]. This effect is more pronounced in triple-negative BC cells. In
human breast tissue, the expression of acyl-coA oxidase 1 (ACOX1) and carnitine palmitoyl
transferase 1a (CPT1a), enzymes involved in mitochondrial β-oxidation in BC cells, is
higher near adipose breast stroma than in cells near fibrous stroma [131]. Analogously, the
expression of FABP4 and hormone-sensitive lipase (HSL) in adipocytes is higher when they
are in contact with BC cells [131].

The preadipocyte fibroblast cell lines 3T3-L1 and 3T3-F442A can be obtained com-
mercially and differentiated into adipocytes for use in co-cultivation experiments with
cancer cells. The fibroblast lines can be cultured in DMEM/10% FBS to confluence and
differentiated into adipocytes 48 h later through the inclusion of 10 µg/mL (1.7 µM) of
insulin, 1 µM of dexamethasone, and 500 µM of 3-isobutyl-1-methylxanthine (IBMX) in the
culture medium with or without [131,132] indomethacin [16] for 2 days [132] or through
the inclusion of 50 nM of insulin alone for 7–14 days [133]. An alternative differentiation
medium consists of DMEM/9% horse serum, 250 nM of dexamethasone, 450 µM of IBMX,
1 µM of rosiglitazone and 5 µg/mL (0.9) µM of insulin [36] for 3–14 days. The medium can
be subsequently changed back to DMEM/10% FBS after differentiation [133,134].

Bone marrow MSCs can be differentiated in cultures using similar incubation methods
with MEM/10% FBS, 1 µM of dexamethasone, 500 µM of IBMX and 10 µg/mL (1.7 µM)
of insulin for 14 days [135]. Alternately, human primary adipocytes from reduction mam-
moplasties, mastectomies or lumpectomies [131,136], mouse mammary tumors [137] or
visceral, retroperitoneal, gonadal or subcutaneous white adipose tissue [138] can be used
to generate adipose-tissue-derived stromal cells (ASC) that can be differentiated into
adipocytes for co-cultures. In one report, adipose tissue was disrupted mechanically, di-
gested with collagenase type I (0.5 mg/mL) and 50 U/mL of dispase and centrifuged at
1000 rpm/mL Floating adipocytes were removed [139], and pelleted ASCs were differ-
entiated into osteoblasts or adipocytes [139]. For the adipocyte differentiation, confluent
cell layers were incubated in the adipocyte differentiation medium DMEM/10% FBS and
10 µg/mL (1.7 µM) of insulin, 500 µM of IBMX, 1 µM of dexamethasone and 200 µM of
indomethacin for 48–72 h [139], then switched to an adipogenic maintenance medium
consisting of DMEM/10% FBS and 10 µg/mL (1.7 µM) of insulin for 24 h. This induc-
tion/maintenance cycle was repeated three times, then the cell cultures were switched to a
maintenance medium for 10 days, which was changed twice weekly [139].

An adipogenic differentiation can be quantitated by fixing cells with 60% isopropanol,
rinsing them with water, staining them with oil red O and extracting them with iso-
propanol [132]. The optical density at 510 nm is then measured and normalized to counted
cell numbers [132]. Alternately, cultured cells can be fixed in 4% paraformaldehyde and
stained with oil red O, and the optical density of isoproterenol-eluted lipids can be mea-
sured at 490 nm [36]. Differentiation can be detected as well by assaying extracted proteins
by using a Western blot and staining them for the adipogenic markers prelipin-1, carnitine
palmitoyl transferase 1, hormone sensitive lipase, FABP4 and fatty acid synthase [131]. The
culturing of adipocytes from fat tissue can lead to significant gene expression changes that
must be considered and carefully controlled when establishing co-cultivation assays [136].

BC cell co-cultures with adipocytes can be established using several approaches.
BC cells can be co-cultured with adipocytes in transwell chambers in a high-glucose
DMEM/10% FBS with or without Matrigel to determine the effects of adipocyte-produced
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factors on the biology or behavior of cancer cells, including their proliferation, motility and
invasion [134,140], or in mixed 2D cultures [131].

Either ASCs [138] or differentiated ASCs can be used in co-cultivation assays with
BC cells [141]. These cells can be mixed with bone marrow stromal fibroblasts at various
ratios in 24-well culture dishes, grown to a confluence and then seeded with BC cells at a
clonogenic density of 1000 cells per well to simulate the bone marrow microenvironment.
The co-cultivation medium should not include differentiation additives for the 7–9 day
assays. Alternatively, MSCs can be grown to confluence in 24 well dishes and then differen-
tiated, as above. Then, the medium should be changed to a BC culture medium without
differentiation factors, and cancer cells should be added to the mixed cellular monolayer at
clonogenic density. The adipogenic differentiation time and completeness can be varied by
the number of days, and the extent of adipogenic differentiation should be quantitated in
control wells, as above. This will achieve a spectrum of differentiated adipose cells needed
to quantitate the differential effects of a partial adipose cell content on the co-cultivated BC
cell response. Immunofluorescence antibody studies can be conducted to determine the
mutual effects of co-cultured cells on each other.

3.5. Osteoclasts

The reawakening of dormant bone marrow micrometastases and the subsequent
regrowth of metastatic cancer cells results in the activation of osteoclasts, their maturation
and an active bone resorption that enables further cancer cell growth [142]. Most studies on
the interactions of osteoclast precursors co-cultivated with cancer cells address the effects
of the cancer cell on osteoclast biology [109,143–146]. However, information on the direct
effects of osteoclasts on dormant cancer cells in the bone marrow niche is limited, although
the indirect effects on cancer growth through bone erosion and release of growth factors
and calcium in the “vicious cycle” in vivo are well known [147]. The establishment of
appropriate hybrid stromal co-culture techniques with clonal-density BC cells will enable
the study of the effects of osteoclasts on dormancy and reawakening.

Osteoclasts originate in the hematopoietic system from the mononuclear phagocyte
lineage, and their maturation entails a fusion of mononuclear cell precursors that express a
monocyte/macrophage antigenic immunophenotype [148,149]. Studies have investigated
osteoclastic differentiations from a number of cell sources. These include circulating mono-
cytes [148,150], whole bone marrow MSCs [151] and bone marrow macrophages [151],
and tumor-associated macrophages from primary and secondary human and mouse mam-
mary carcinomas, which recruit exogenous macrophages [150,152,153]. Other sources
of cells able to differentiate into osteoclasts include osteoblasts [154] and commercially
available monocyte/macrophage-like cell lines, such as RAW 267.4, an Abelson leukemia
virus-transformed cell line derived from BALB/c mice [142], or receptor activator of NFκb
(RANK) ligand (L)1- and RANKL2-transfected NIH3T3 cells [155].

Osteoclast differentiation from mononuclear precursors requires macrophage-colony
stimulating factor (M-CSF) signaling [150] and RANK/RANKL/OPG, members of the
TNF family [142], and TNF receptor-associated factor (TRAF)6, which activates a key
transcription factor of osteoclastogenesis, activated T-cell nuclear factor 1 (NFATc1) [151].
RANK, expressed on the surfaces of osteoclast precursors, is activated by binding RANKL,
expressed by osteoblasts, mesenchymal cells and cancer cells [142]. OPG, which is a soluble
RANKL inhibitor, is also expressed in osteoblasts, bone marrow MSCs and cancer cells,
and it moderates osteoclast differentiation and maturation [142]. RANK-induced osteoclast
differentiation is mediated through metastasis-associated lung adenocarcinoma transcript
1 (MALAT-1), which in turn suppresses miR-124, a negative regulator of osteoclastogenesis,
which decreases the expression of Rab27a, IL-11, NFATc1 and tartrate-resistant acid phos-
phatase (TRAP) [142]. 1,25-dihydroxyvitamin D3 up-regulates RANKL, CathepsinK, TRAP
and MMP-9, genes needed for osteoclast differentiation and function [156]. Cytokines,
such as TNF-α, IL-1α and IL-6, and growth factors, such as TGF-β, can induce osteoclast
formation from marrow and circulating osteoclast precursors by a mechanism indepen-
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dent of RANKL [150]. Elevated IL-6 levels in adipogenic bone marrow likely activate
osteoclast differentiations associated with aging- and obesity-related bone loss [157,158].
Adipogenesis and aging are promoted indirectly by Sirtuin 3, a metabolic regulator of cell
senescence driven by mammalian target of rapamycin (mTOR) [158]. Bacterial lipopolysac-
charide (LPS) also induces osteoclastogenesis not associated with the RANKL/RANK/OPG
axis through the LPS/toll-like receptor 4 (TLR4)/TNFR-2 axis [159]. The process of pre-
osteoclast fusion to form multi-nucleated cells involves the rearrangement of the plasma
membrane, mediated by Tks5, a master regulator of invadopodia, inducing fusion down-
stream of phosphinositide-3- kinase and Src [160]. During this process, differentiated
tumor-associated monocytes exhibit an increase in E-cadherin expressions [145].

BC cells induce osteoclast differentiations in MSCs via RANKL, TNFα and other
molecules that activate the expression of RANKL in osteoblasts, osteocytes and bone
marrow stromal cells [151], but they also induce a decrease in NFATc1 [151]. However,
syndecan-1, exported by MCF-7 cells into the conditioned medium, suppresses osteopro-
tegerin and acts as a positive regulator of osteoclastogenesis [144]. The up-regulation of
IL-6 in cancer cells is also mediated through NFκB [161], which in turn can be mediated by
CXCL10/CXCR3 [154]. In one study, MDA-MB-231 BC cells induced osteoclastogenesis in
human monocytes through M-CSF secretion in a transwell co-culture [143].

As noted earlier, the crosstalk among the variety of cells in the bone marrow microen-
vironment is reciprocal and affects transitive relationships. The effects by BC-conditioned
medium on osteoclastogenesis depend on EGF signaling in BC cells [143] and on mTOR
signaling in monocytes [162]. In turn, MSCs co-cultured in transwells with BC cells can
induce molecular changes in BC cells, including increased expressions of both RANK and
EGFR and a greater capacity to drive the differentiation of peripheral blood monocytes
toward osteoclasts. [143].

A variety of approaches have been undertaken to generate osteoclasts for in vitro
studies from a variety of cells of hematopoietic origin. Peripheral blood mononuclear
cells from either human donors, rats or mice can be isolated by Ficoll centrifugation,
followed by red blood cell lysis with 5% acetic acid or Turk’s solution [148,162,163]. Bone
marrow mononuclear cells from BM MSCs can be obtained from marrow isolated from
the long bones of mice or from human aspirates, which is cultured for 4–7 days and the
adherent cells differentiated, as described [109,164]. Bone marrow can be used as well
to generate macrophages for osteoclast differentiation [151]. In this approach, freshly
obtained bone marrow is placed in a culture in αMEM/10% FBS and M-CSF 50 ng/mL
overnight, then non-adherent cells are collected and centrifuged using a Lymphoprep
mononuclear cell isolation solution and cultured in an M-CSF-containing medium for
4 days with daily re-feedings [151]. Tumor-associated macrophages can be isolated by
using collagenase I digestion, filtering, red cell lysis and culture in M-CSF 25 ng/mL for
several days to three weeks in M-CSF, as described [150]. An immortalized monocyte cell
line (RW267.4) can be used as well to study osteoclast differentiation and its biology [142].
Alternately, the enforced co-expression of RANKL1 and RANKL2 induces NIH3T3 cells to
form multi-nucleated tartrate-resistant acid phosphatase-positive osteoclasts in an in vitro
osteoclastogenesis assay system [155].

Osteoclast progenitors from different sources can be cultured in a basal medium of
DMEM/10% FBS or αMEM/10% FBS with antibiotics for 4–7 days with day-4 refeedings,
the non-adherent cells removed, and adherent cells refed with differentiation medium
or incubated in a transwell co-culture with cancer cells [142,162–164]. Bone marrow- or
cancer-derived macrophages can be maintained in a basal medium with M-CSF until the
medium is changed to or added to a differentiation medium.

A differentiation medium can consist of a basal medium with added RANKL
(20–100 ng/mL), M-CSF (20-50 ng/mL), PTH (10−7 M), TNFα (100 ng/mL), LPS (10 µg/mL)
or a BC-conditioned medium, or can consist of various combinations of these factors
replenished every 3–4 days for a one to three week period [109,143,150,151,163]. Os-
teoclast precursor cells can also be cultured in transwells with 0.4 µm pores with BC
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cells in the inserted upper chamber and the preosteoclasts cultured in the bottom or the
wells [143,150,162,163].

The differentiation of osteoclasts can be monitored and quantified by staining for
TRAP. The cells are fixed with 10% neutralized formalin phosphate, and TRAP is added
in a 0.1 mg/mL acetate buffer containing 0.1 mg/mL of naphthol AS-MX phosphate, a
disodium salt substrate for acid phosphatase, 0.6 mg/mL of fast red AL salt (azoic diazo)
and 10–50 mM of sodium tartrate [109,143,162–165]. TRAP-positive cells with ≥3–4 nuclei
can be counted [109,143,162,163] or osteoclast areas can be determined by using ImageJ or
other comparable software [143]. The quantitation of viable osteoclasts can be determined
by measuring their capacity to reduce alamarBlue dye chemically into the growth medium.
alamarBlue can be added at a dilution of 1:10 to culture medium for 4 h at 37 ◦C, and the
optical-density 600/570 nm absorbance ratio of the medium can be used to determine the
ratio of reduced/fully oxidized alamarBlue [163]. Osteoclast differentiation can also be
monitored by determining OPG, RANKL, TRAIL, Cathepsin K, TRAP or MMP-9 mRNA
or protein expression [150,156]. For further culture after differentiation, the differentiation
medium can be changed back to basic culture medium.

The co-cultivation of cancer cell lines in transwell cultures or the application of a BC
cell conditioned medium to osteoclast cultures can promote osteoclastogenesis in monocyte
lineage cells [142,143], an effect dependent on EGF signaling in the BC cells [143]. In turn,
MSCs co-cultured in transwells with BC cells can induce molecular changes in BC cells,
including an increased expression of both RANK and EGFR and a greater capacity to drive
the differentiation of peripheral blood monocytes toward osteoclasts [143].

The co-culturing of MDA-MB-231 cells in the same wells in physical contact with
bone marrow precursor cells increased their osteoclastogenic differentiation in response to
LPS (10 µg/mL) [109]. Head and neck cancer cell lines also induced osteoclastogenesis in
macrophage osteoclast precursors from bone marrow [151]. In one study, BM MSCs were
mixed in the same well with pre-osteoclast bone marrow mononuclear cells generated from
bone marrow by culture in αMEM/10% FBS and 1:10 BC cell 24-h-conditioned medium
supplemented with M-CSF for 3 days, cultured to confluence and assayed for osteoclast
differentiations by using TRAP assays [164].

These investigations lay out a potential approach to determining the effects of dif-
ferentiated osteoclasts on BC dormancy in a 2D co-culture system with bone marrow
fibroblasts. Osteoclasts can be generated from a variety of sources, including bone marrow,
bone marrow macrophages, circulating mononuclear cells, tumor-associated macrophages,
osteoblasts, monocytic cell lines and RANKL1- and 2- transfected NIH3T3 cell lines. Once
differentiation is confirmed using the variety of available techniques outlined above, differ-
entiated osteoclasts can be dissociated by using trypsin digestion and mixed with trypsin-
digested single cell suspensions of bone marrow stroma fibroblasts at various ratios. The
mixture of cells can be cultured in 24 well-tissue culture plates in a basal medium consisting
of DMEM/10% FBS or αMEM/10% FBS until they are confluent. The osteoclast assay must
be used at this point in parallel wells to quantify the number of osteoclasts in the mixed
culture, as this number cannot be predicted from the mixing ratios due to the incomplete
differentiation of the osteoclast component and to the variable growth rates of the two
mixed cellular components. A series of wells with variable osteoclast frequencies should be
generated to determine their concentration-dependent progressive effects on BC dormancy.
It is advisable that the starting frequency of osteoclasts in a mixed stromal culture be low,
probably in the range of 1%, due to their effects on inducing an osteoclastogenic potential
in BC cells in co-cultures at higher concentrations [109]. At confluence, the wells can be
seeded with BC cells at a clonogenic density of 1000 cells per well and cultured for 7–9 days
for BC dormancy or growth determinations. Immunofluorescence labeling can be applied
and used in a variety of microscopic imaging or flow cytometry analyses.
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3.6. Endothelial Cells
3.6.1. The Role of Endothelial Cells in Dormancy

Investigators have demonstrated that the tips of non-dividing vascular endothelial
cells in the bone marrow serve as niches for BC dormancy in vivo [12]. Others have
determined that endothelial cells induce EMT in cancer cells [166], congruent with the
mesenchymal program observed in dormant cells [76]. In addition, endothelial cells in
bone marrow vascular niches endow chemoresistance to disseminated cancer cells through
integrin-mediated interactions between DTCs and perivascular surface molecules, includ-
ing the von Willebrand factor and the integrin ligand VCAM1 [18], and by transferring
mitochondria to cancer cells through nanotubes [167]. A potential contributor to dormant
cancer cell reawakening may be the loss of TSP-1 around sprouting endothelial cells, which
accelerate tumor cell outgrowths through TGFβ1 and periostin [12].

The overarching concept governing the study of dormancy in the bone marrow is
that all cell interactions modify each other’s molecular and phenotypic behavior. While
a bone marrow MSC fibroblast culture induces a dormant, non-motile, non-proliferative
mesenchymal phenotype in cancer cells, so do other stromata. One example is the co-
cultivation of chorionic villi MSCs with MDA-MB-231 cells [168]. These interactions also
significantly reduce the proliferative and migratory capacity of MDA-MB-231 cells, the
expression of the BC characteristic cytokines IL-10, IL-12 and CXCL9, and inhibit the
tube-forming ability of HUVECs in mixed 3D co-cultures [168].

The role of endothelial cells in dormancy affords a glimpse into the diverse roles
of differentiated endothelial cells in both normal somatic and malignant tissues. They
have multiple functions besides being perfusing tubes and permeability conductors [169].
Indeed, endothelial cells act as biochemical regulators of cancer cells and the stroma, in
constant balance with their tumor [169]. They act as biochemical filters, controllers of
hemostasis, biosensors and paracrine regulators, among other functions [169]. Healthy
endothelial cells inhibit vascular smooth muscle cell proliferation, monocyte adhesion,
thrombosis, cancer cell invasion, inflammation and metastasis [169]. The recognition of the
necessity for tumor angiogenesis spawned the realization that tumor cells and endothelial
cells have an interdependent relationship, whereby they transfer information between
each other [169,170]. Indeed, this has been confirmed in many systems. As an example,
the prelecan in healthy endothelial cells inhibits IL-6 in the TME and prevents its tumor-
promoting effects. Vascular injury creates a dysfunctional tumor milieu and reverses these
inhibitory effects [169].

When investigating the roles of endothelial cells in the dormancy niche using stromal
co-cultures and in vivo models, we must consider that direct interactions among cancer
micrometastases, endothelial cells and other stromal cells may modify the ability of en-
dothelial cells to support dormancy. This may depend on a list of endothelial cell-, cancer
cell- and mesenchymal fibroblast-associated variables, including source, cycle status, dif-
ferentiation status, passage number, culture conditions and various reciprocal cell ratios,
where these interactions may act to modify endothelial cells and induce them to promote
cancer cell proliferations. The following examples from the literature underscore the mutual
reciprocal effects between cancer cells and endothelial cells.

3.6.2. Cancer Cells Injure Endothelial Cells

Endothelial cells isolated from tumors have unique gene signatures that include a
set of 17 genes that are up-regulated compared to angiogenic endothelial cells from nor-
mal tissue [171]. These include collagens I and IV, IGF binding protein 7, phosphatidic
acid phosphatase 2B, secreted protein acidic and cysteine rich (SPARC), as well as lactate
dehydrogenase B (LDHB), among others [171]. In vitro, endothelial cells are injured by
incubation with tumor-cell conditioned medium [171]. Connexin 43 in gap junctions, neces-
sary for endothelial cell quiescence, is downregulated by tumors, which allows endothelial
cells to respond to angiogenic cues [172]. Tumor-induced angiogenesis is mediated by
Fes expressions in cancer cells [173]. Cancer cells also express Ets-1, which induces en-
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dothelial cell adhesion and expression and secretion of MMP-9, which endothelial cells
recruit to promote angiogenesis and tumor invasion. Ets-1 also promotes endothelial
cell-sprouting morphogenesis and decreased endothelial cell chemoattraction and prolif-
eration, resulting in ineffective, leaky capillaries in tumors [174]. Decreased endothelial
cell migration induced by cancer cells also contributes to this effect [175]. Co-culture with
the human microvascular endothelial cell line-1 (HMEC-1) in 0.4 µm transwell inserts
can significantly increase the expression of ANG2 mRNA and protein as well as VEGF
protein, and decrease the expression of ANG1 protein in MDA-MB-231 BC cells com-
pared with monocultures [176]. The ratio of ANG1:ANG2 protein, a critical indicator of
neovascularization, shifts in favor of ANG2, a phenomenon that correlates with vessel
destabilization and sprouting in vivo [176]. In turn, the in vitro angiogenic potential of
co-cultivated medium on endothelial cells is markedly increased [176]. Cancer cells with
stem cell characteristics induce angiogenesis through HIF1α and VEGF, effects dependent
on the retinoic acid pathway and ALDH1A1 [177]. BC cell conditioned medium, or cancer
cells in transwell co-cultures up-regulate the adhesion molecules ICAM-1 and VCAM-1
and decrease migration and MT1-MMP and MMP-2 expression in endothelial cells [178].
BC cells or conditioned medium significantly increase hyaluronan synthase-2, hyaluroanan
and its receptor CD44 in endothelial cells, and increase the expression and activity of the
proteasome β5 subunit [178].

Co-cultivation with either a physical separation or with contact between cancer cells
and endothelial cells induces endothelial cell proliferation, migration, and in vitro angio-
genesis [179]. Direct-contact co-cultivation induces autocrine growth loops through the
up-regulation of matching pairs of angiogenesis-related receptors/ligands coordinately ex-
pressed in endothelial cells. These include the TGFβRII/TGFβ3, FGFRII and cysteine-rich
fibroblast growth factor receptor (CRF-1)/FGF-7 and FGF-12 chemokine receptor 1 (CCR1),
CCR3 and CCR5/regulated on activation, normal T cell expressed and secreted (RANTES;
CCL5) and the calcitonin receptor-like gene (CALCRL)/adrenomedullin pairings [179].
Tie-2 receptors are also up-regulated in vitro and in vivo [179]. The totality of the data
demonstrate that cancer cell to endothelial cell ratios, the length of time that endothelial
cells are in co-culture with cancer cells, proliferative status of the endothelial cells as well
as other variables must be considered and controlled when establishing contact co-culture
systems so as to increase the probability of consistent data.

3.6.3. Endothelial Cells Modify Cancer Cells

Normal endothelial cells serve a role in resistance to cancer progression. Healthy
endothelial cells promote vascular repair and inhibit tumor invasion and metastasis [180].
Factors released from quiescent endothelial cells induce balanced inflammatory signaling,
which correlates with decreased proliferation and invasion [180]. Quiescent endothelial cell
secretions, mediated through perlecan, inhibit the proliferation and IL-6-mediated invasion
of lung and BC cells, and cancer cell pro-tumorigenic and pro-inflammatory signaling
in vitro. Endothelial cell-conditioned medium can inhibit the metastatic potential of lung
carcinoma cells [181].

However, not all co-cultivation studies report similar conclusions. The context, source,
condition of endothelial cells and length of time of exposure to cancer cells during a co-
culture experiment affect the response of cancer cells to endothelial cell secretions and
co-cultivation. Conditioned medium from a non-contact co-culture with a commercial
human umbilical vein endothelial cell line (HUVEC) increases BC cell adhesion, migration
and invasion [178]. PECAM-1 expression in endothelial cells promotes tumor cell prolif-
eration in transwell co-cultures and in vivo [182]. These proliferative effects depend on
soluble PECAM-1 binding to homophilic ligands, which induces endothelial cells to release
TIMP metallopeptidase inhibitor-1 (TIMP-1), leading to tumor cell proliferation [182]. An
indirect transwell co-culture of endothelial cell-colony-forming cells (ECFCs), which are
late endothelial cell progenitors, and MDA-MB-231 BC cells increases the invasive and
migratory phenotypes of both cancer cells and ECFCs. ECFCs have a greater potential for
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cell division and a capacity for neovascularization than mature endothelial cells [183]. Co-
culture induces high levels of secretion of CCL8 through c-Jun by ECFCs, which promotes
IL-8 secretion and invasion in MDA-MB-231 cells. In turn, MDA-MB-231 cells enhance
MMP-2 secretion and angiogenesis by ECFCs [183].

Endothelial cells derived from an injured vasculature generate a dysfunctional tumor
milieu and support tumor progression [169]. Examples of endothelial cells with a dys-
functional state and tumor-stimulating effects are those affected by vascular disease [180].
Endothelial cells rendered dysfunctional by tumor co-culture in a 3D matrix can promote
intratumoral pro-inflammatory signaling and spontaneous metastasis, and are able to slow
a primary lung tumor growth in vivo [180]. Factors released from dysfunctional endothelial
cells activate NFκB and STAT3 in cancer cells, correlating with increased invasion, decreased
proliferation and survival in vitro, characteristics of a mesenchymal program [180]. 3D
matrix-embedded dysfunctional endothelial cells stimulate intratumoral pro-inflammatory
signaling and spontaneous metastasis, while simultaneously slowing a primary tumor
growth when they are implanted adjacent to Lewis lung carcinoma tumors [180]. Some
experiments can also demonstrate a stimulatory effect by normal endothelial cells on BC
colonies when co-cultured for 14 days [184] in a 3D rBM remineralized bone matrix that con-
tains ligands native to an epithelial basement membrane and alginate, an inert biopolymer
derived from seaweed [185]. Primary mammary endothelial cells from reduction mammo-
plasties stimulate the 3D clonogenic potential of normal luminal breast cells and malignant
BC cell lines in physical co-cultures and when they are separated in transwell cultures [184].
Due to the long culture conditions, it is likely that during the two-week incubation, cancer
cells transfer factors to normal endothelial cells that modify them to a phenotype that
promotes tumor cell progression. Under conditions of starvation, co-cultivation with en-
dothelial cells confers, in a contact-dependent manner, a survival advantage, invasiveness,
increased mammosphere-forming capacity, an enriched CD44HighCD24Low/- stem cell
content and self-renewal ability in BC cells [186]. Co-culture also enhances the metastatic
potential of these cells [186]. These effects are mediated by endothelial Jagged1 through the
activation of NOTCH [186]. Another study demonstrated that cancer cells secrete ECM1,
which, through a feedback loop, induces a NOTCH-mediated endothelial cell promotion of
cancer progression by enhancing migration and invasion [187].

PC cell lines demonstrate significantly greater adhesive strength to bone marrow
endothelial cells than to HUVECs or lung endothelial cells, an effect dependent on integrin
β1 [188]. Bone marrow endothelial cells also increase the invasive potential of PC cells one
thousand-fold in a transwell Matrigel colony assay [188]. The differential effect between
malignant and benign cell interactions was confirmed in mammary cells. BC cells have
markedly greater interaction and elongation when co-cultured with endothelial cells in a
3D matrix than do normal breast epithelial cells [189]. The interaction provides an energetic
favorability of cellular deformation, dependent on the cytoskeleton’s ability to elongate
and align, prior to breaching endothelial junctions. [189]. Galectin-3 expression in BC cells
is required for stabilizing epithelial–endothelial interactions. Co-cultures of epithelial and
endothelial cells result in increased galectin-3 secretion in cancer cells and the presence of
a proteolytically cleaved galectin-3 in the medium. The proteolytically cleaved galectin-
3 displays a much higher affinity for human umbilical vein endothelial cells than does
the full-length protein. Increased expression is associated with progression to invasive
carcinoma and may lead to an increased invasive potential [190].

3.6.4. Endothelial Cell Sources and Characteristics

Multiple qualities of endothelial cells differentially influence their effects on co-
cultivated cancer cells. Their source will affect the outcomes of cancer co-cultivation
studies since endothelial cells have organ-specific gene expression patterns [191]. The
differentiation status of endothelial cells also matters. Endothelial progenitor cells have
an enhanced potential for tumor neovascularization compared with mature endothelial
cells [183]. NOTCH-expressing endothelial cells induce cancer progression [187]. As noted
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above, cancer cell co-cultures in vitro and in tumors in vivo injure endothelial cells [180]
and induce NOTCH signaling [187], which in turn promotes cancer progression. Two-
dimensional culture causes endothelial progenitor cells to lose early progenitor properties,
such as CD34 expression [192]. However, matrix embedding enables endothelial cells to
attain a phenotype, secretome and genetic fingerprint similar to endothelial cell progeni-
tors, where they maintain or regain their expression of CD34 [192]. They also re-express
leptin, IL-6, IL-8 and monocyte chemoattractant protein-1 and up-regulate TIMP, IL-8,
MCP-1, PDGF-BB and angiopoietin-2 [192]. In 2D cultures, the substratum also matters,
whereby cells cultured on collagen take on a more in vivo phenotype than cells cultured on
tissue culture-coated plates [193]. Endothelial quiescence, in contrast to proliferation and
sprouting, also modifies cancer cell proliferative phenotypes [12].

A variety of endothelial sources have been used in cancer co-culture studies, some-
times with conflicting outcomes. The following is a partial list. Endothelial cells have been
isolated from human bone marrow [188], cord blood [193,194] and circulating endothelial
progenitors [193,195]. Human endothelial colony-forming cells (ECFC) were prepared
from the mononuclear fraction of human peripheral blood with CD31-coated magnetic
beads [183] and from cord blood using a variety of techniques [193]. Primary endothelial
cells have been isolated from normal human breast interstitial stroma and from breast
adipose tissue [184,196,197], lungs [182], umbilical veins (HUVECs), [177,198], aortas [192]
and placentas [171]. Human dermal microvascular endothelial cells (HDMEC) have been
isolated [198] and commercially purchased (HMEC-1) [176]. Primary HUVECs have also
been transfected with the adenoviral E4ORF1 gene to overcome the hurdle of rapid cell
death while starving primary endothelial cells [175]. Tumor endothelial cells can be iso-
lated [171], and normal endothelial cells can be activated by using a co-culture with cancer
cells or a cancer cell conditioned medium, as described [171].

3.6.5. Endothelial Cell Culture Conditions

A variety of culture conditions for endothelial cells from various sources have been
published. Primary endothelial cells are generally used at 2–8 passages to permit growth
to confluence without undergoing senescence [177,187,188,192,198]. Culture in 30% FBS
delays senescence until 18 passages [197]. ECFCs have been cultured to passages 7–10 [183].

Endothelial cell lines are generally cultured in endothelial growth medium-2 (EGM-2)
with FBS concentrations of 10%, growth factors IGF-1, EGF, FGF-2 and additives, including
hydrocortisone, ascorbic acid, heparin, GA-1000, glutamine and antibiotics [177]. When
culturing on collagen-coated plates, lower concentrations of FBS of 5% were used [180].

Primary HUVECs and microvascular cells have been cultured in EGM-2, MEMα,
M199 and MCDB mediums, 10–20% FBS and the additives endothelial growth supplement,
glutamine and antibiotics on 0.2% gelatin-coated flasks with or without hydrocortisone and
EGF [175,176,188,198]. Primary lung endothelial cells have been cultured in M199 medium,
15% FBS, EGF, heparin and glutamine [182]. Primary human aortic endothelial cells were
cultured in EGM-2 with 8% FBS and antibiotics on gelatin-coated polystyrene plates [192].
Primary breast endothelial cells have been cultured in EGM-2 with 30% FBS, heparin, FGF-2,
EGF, VEGF, long arginine-3 IGFR-1, ascorbic acid and hydrocortisone on collagen coated
flasks [197]. FBS concentrations can be reduced to 5% after two passages [184] and kept at
2% for short-term 1–4 passages. Primary endothelial cells can be cryopreserved in 55% FBS
and remain highly viable upon thawing [197]. Bone marrow endothelial cells can be isolated
and expanded on fibronectin-coated plates in EGM-2, 5–10% FBS and endothelial growth
medium [175,188]. Primary ECFCs have been cultured in EGM-2, RPMI-1640 and MEMα,
8–15% FBS and antibiotics without hydrocortisone on gelatin-coated plates [183,192,198].
Cells achieving quiescence can be maintained in RPMI 1640 supplemented with a low
(2%) serum [171]. Primary endothelial cells transfected with the adenoviral E4ORF1 gene,
called E4-EC, were cultivated in an M199 medium, supplemented with 20% FBS, βEGF and
heparin in 2D and in DMEM-F12, 2% B27 supplement, insulin, FGF-2 and EGF and 0.2%
methylcellulose to prevent cell aggregates [186].
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HUVECs have been co-cultured with cancer cells in an EGM-2 medium with 1% FBS,
growth factors and additives [179], but HUVECs used for co-culture experiments can be
cultured as well without the addition of extra growth factors [198].

3.6.6. Two-Dimensional Dormancy Cell–Cell Contact Co-Cultures

Several studies of endothelial cells and cancer cells in direct contact, mostly in 3D
co-cultures, have been reported. In 2D co-cultures, human umbilical vein endothelial
cells transfected with an adenovirus E4 open reading frame 1 vector co-cultivated with a
commercially available bone marrow MSC line decreased the growth of sparsely seeded
ER/PR- human-derived T4-2 cells [199] five-fold and induced quiescence in a laminin
overlay organoid structure [12]. This was in contrast to co-cultures with MSC fibroblasts
alone, where T4-2 cells grew freely [12]. Cell–cell contact during a 2D co-culture was
required for the endothelial cell promotion of tumor growth.

Switching culture conditions between 2D and 3D collagen matrix-embedding induces
plasticity in phenotype changes with a transient change to a progenitor cell-like phenotype
and gene expression profile in 3D, a reversion upon returning to culturing in 2D and a
reacquisition over time upon returning to 3D culturing [192]. These data suggest that a
co-culture of endothelial cells with bone marrow stroma in 2D may likely modify their gene
expressions and phenotypic characteristics and endow them with altered effects on cancer
cells co-cultivated at a clonogenic density with the mixed cultures.

The effects of endothelial cells in the bone marrow microenvironment on cancer dor-
mancy and reawakening in a stromal co-culture can be determined by generating bone
marrow endothelial cells [175,188] from either murine or human bone marrow indepen-
dently of and in parallel with bone marrow stromal fibroblast monolayer cultures, as
described above. For convenience, the same bone marrow source can be used within an
experiment. After reaching confluence in independent T25 flasks, bone marrow fibroblasts
and bone marrow endothelial cells can be dispersed by trypsin treatment and mixed at
variable ratios from 1:0, 10:1 and additional ratios all the way to 1:10 and 0:1, and cultured
in αMEM/10% FBS with 2 mM of glutamine and antibiotics in quadruplicate 24-well
tissue culture plates until confluent. Other culture media may also be used, depending on
the experimental conditions. The concentration of endothelial cells at confluence should
be assessed in one of the four wells at each ratio using labeled anti-CD31 or von Wille-
brand factor antibody [171], as the rates of growth of initial cell mixtures will vary by
the consensus medium selected, and in co-culture in tissue culture-coated dishes. The
confluent monolayers can be seeded with labeled cancer cells at a clonogenic density of
1000 cells/well and cultured in the same medium for 7–9 days, along with any intended
molecular perturbations needed to test a particular hypothesis.

Because of the potentially diverse molecular, cellular and phenotypic conclusions of co-
culture experiments on cancer cell behavior, it is imperative to characterize and standardize
all of the co-culture variables. In addition to the monolayer cell sources, mixture ratios,
culture conditions, media, additives, consensus media, levels of stroma/endothelial cell
confluence and proliferative status of the endothelial cells at the time of the seeding of cancer
cells, the cancer-cell-related variables will have to be determined as well. The cycle status of
endothelial cells should be determined and can be accomplished by immunofluorescence
Ki67 antibody staining.

It is important to control and isolate the co-cultivated endothelial cells and stromal
fibroblasts before and after co-cultivation with cancer cells to determine the mutual effects
on gene-expression profiles that the different cells have on each other as part of an initial
comprehensive characterization of the experimental model. Cancer cells are seeded at
clonogenic density, but if they proliferate, they can induce changes on stroma and endothe-
lial cells during the co-cultivation that affect the stroma’s influence on the cancer cells. This
effect depends on the concentration of the cancer cells, which may reach a critical mass
and result in a feedback signal loop, and on the time length of exposure. The medium and
additives should be the minimum that permit cancer cell proliferation, permit cancer cell
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dormancy and permit stromal and endothelial cell quiescence at the time the dormancy is
induced in the cancer cells. The factors being investigated for their ability to induce cancer
cell dormancy should be considered carefully so as not to affect endothelial cell activity
as well. Gene disruptions or enforced gene expressions in cancer cells to test hypotheses
or their effects on dormancy and reawakening can be completed before a co-incubation.
However, antibodies or small interfering RNAs may have to be added on successive days
after the start of a co-culture, and this may affect the cells in the substratum as well. Clearly,
all variables must be tested on the system and rigorously controlled before conclusions
from derived data can be sustained. While the 2D modular stromal approach to studying
dormancy is a powerful system for revealing the mechanisms and effects on cancer cells by
stromal cells and components, it must be wielded with exceptional caution and controlled
for all potential variables in order to generate hypotheses to be tested in vivo.

3.7. Other Components

There are additional components of the bone marrow microenvironment that can be in-
corporated in a co-culture system. These include cellular components that are immunomod-
ulatory, such as macrophages, [152,173,200–202], T-cells [101] and NK cells [203,204], for
example, structural components, such as heparan sulfate proteoglycans [87,205,206], fi-
bronectin [79,89], tenascin, versican, biglycan, periostin and TGFβ [12], as well as a wide
range of growth factors and cytokines having roles in the niche. The addition of structural
components to the media, such as fibronectin, may not necessarily replicate biological
conditions in vivo that rely on their structural organizations for pro-dormancy effects [89]
and may yield proliferative effects [92,207]. Hypoxic conditions can be generated in a
co-culture to more accurately model the relevant biologic conditions that affect dormancy
in vivo [177,208–210], and temperature can be modulated to modify adipogenic differ-
entiation [70]. The individual design would have to be constructed with step-by-step
developments, testing, evaluation and validation of the many variables involved in such a
multi-component system.

4. Conclusions

There are several general concepts addressed in this manuscript. The bone marrow
microenvironment is complex and can be modeled in vitro with variable components to
determine their effects on cancer cell growth or dormancy and on each other. Cellular
components can be generated independently and mixed with stromal fibroblasts at different
ratios. They will grow at different rates after mixing, making it imperative to determine the
ratios of different cells in the final monolayer in order to correlate their effects on seeded
cancer cells. Bone marrow niche-residing cells also differ in their potential to differentiate
after mixing in a culture. Therefore, the medium and additives used during the time
these cells grow to confluence must be chosen carefully. It is important to use the simplest
medium necessary for cancer cell growth for co-cultivation once the monolayer components
have been differentiated, lest they continue to differentiate during the week to 10 days of
co-culture with seeded cancer cells.

Cancer cells must be seeded at clonogenic density to ensure that their interactions are
solely with the substratum and not with each other. Moreover, cancer cells can modify
stroma and confer novel traits that have the ability to feedback promote cancer growth.
This is minimized at low cancer cell/stroma ratios achieved at a clonogenic density of
cancer cells and by limiting the assay to less than 10 days. However, various stromal cells
can affect each other’s behavior and differentiation as well, and different ratios may result
in different mutual effects in the mixture during the growth to confluence. Because of these
effects, the system can be used to study niche components as an investigational tool.

It is important to characterize the system components by immunophenotyping the
culture at confluence and determining the cells’ cycle status. This will generate a full
understanding of these dynamics before using the system to determine its effects on cancer
cells and generating conclusions on the biology of interactions. It may also be necessary in
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some scenarios to characterize the immunophenotype and differentiated status of stroma
cells after co-cultured cancer cell growth or dormancy is assessed to fully understand the
status of the stroma cells at the end of the cancer co-culture. These control characterization
studies of complex cell combinations are essential to ensure the understanding of the status
and representation of the cells generating the data used for biological interpretations.

Additional cellular components can be added to confluent fibroblast cultures or mixed
cultures, including T-lymphocytes, NK cells and macrophages of specific immunopheno-
types. These can be added together with cancer cells to the monolayers to determine their
effects on cancer proliferation, survival and dormancy. It is advisable to characterize the
culture at the end of the experiment. Similarly, structural and soluble components of the
microenviroment can be added to test their effects on cancer cells.
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