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ANALYTIC PERSPECTIVE

Applying the Bradford Hill criteria in the 
21st century: how data integration has changed 
causal inference in molecular epidemiology
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Abstract 

In 1965, Sir Austin Bradford Hill published nine “viewpoints” to help determine if observed epidemiologic associations 
are causal. Since then, the “Bradford Hill Criteria” have become the most frequently cited framework for causal infer-
ence in epidemiologic studies. However, when Hill published his causal guidelines—just 12 years after the double-
helix model for DNA was first suggested and 25 years before the Human Genome Project began—disease causation 
was understood on a more elementary level than it is today. Advancements in genetics, molecular biology, toxicology, 
exposure science, and statistics have increased our analytical capabilities for exploring potential cause-and-effect rela-
tionships, and have resulted in a greater understanding of the complexity behind human disease onset and progres-
sion. These additional tools for causal inference necessitate a re-evaluation of how each Bradford Hill criterion should 
be interpreted when considering a variety of data types beyond classic epidemiology studies. Herein, we explore 
the implications of data integration on the interpretation and application of the criteria. Using examples of recently 
discovered exposure–response associations in human disease, we discuss novel ways by which researchers can apply 
and interpret the Bradford Hill criteria when considering data gathered using modern molecular techniques, such as 
epigenetics, biomarkers, mechanistic toxicology, and genotoxicology.
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Background
In 1965, Sir Austin Bradford Hill gave the first President’s 
Address to the newly formed Section on Occupational 
Medicine, which was published within the Proceedings of 
the Royal Society of Medicine [1]. Hill began his address 
by pointing out a fundamental problem facing the Section 
members: how could they effectively practice preventative 
occupational medicine without a basis for determining 
which occupational hazards ultimately cause sickness and 
injury? Namely, Hill asked, “In what circumstances can 
[one] pass from [an] observed association to a verdict of 
causation?” [1]. He proceeded to propose nine “aspects of 
association” for evaluating traditional epidemiologic data. 
These aspects, which have since become fundamental 

tenets of causal inference in epidemiology, are often 
referred to as the Bradford Hill Criteria.

The nine “aspects of association” that Hill discussed 
in his address (strength of association, consistency, 
specificity, temporality, biological gradient, plausibility, 
coherence, experiment, and analogy) have been used to 
evaluate countless hypothesized relationships between 
occupational and environmental exposures and disease 
outcomes. Yet, when Hill conceived these nine aspects 
(hereafter referred to as criteria), the mechanistic con-
nections between exposure and disease were not well 
understood. Consider that Hill published his criteria 
just 12 years after Watson and Crick first suggested the 
double-helix model for DNA. Traditional epidemiologic 
study designs that were developed and used around the 
time of Hill’s speech treated the connection between 
exposure and disease as a ‘black box’—meaning that the 
biological mechanisms that occur between exposure and 
disease onset were unknown and therefore omitted in 

Open Access

*Correspondence:  Kristen.Fedak@colostate.edu 
1 Department of Environmental and Radiological Health Sciences, 
Colorado State University, 350 West Lake Street, Fort Collins, CO 80521, 
USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12982-015-0037-4&domain=pdf


Page 2 of 9Fedak et al. Emerg Themes Epidemiol  (2015) 12:14 

study design [2]. Over the past 50 years, advances in sci-
entific fields (e.g., molecular genetics, genomics, molecu-
lar toxicology) and technology (e.g., computers, software, 
statistics, analytical methods) have provided researchers 
with a much deeper and more complex understanding 
of how diseases initiate and progress, effectively allow-
ing researchers to glimpse into the ‘black box’ of the 
exposure-to-disease paradigm. As a result, researchers 
considering causal inference have new and more diverse 
types of information to consider when establishing cau-
sality beyond the traditional epidemiologic study designs 
that were available when Hill wrote his causal criteria.

Data integration refers to the incorporation of data, 
knowledge, or reasoning from across multiple disciplines 
or approaches, with the goal of generating a level of 
understanding or knowledge that no discipline achieved 
alone [3, 4]. Data integration, while not always referred to 
by that term, has been discussed in light of causal infer-
ence of disease for over a decade, and the epidemiologic 
community has generally welcomed these interdiscipli-
nary collaborations [5–7]. For example, the preface of 
the 5th edition of the Dictionary of Epidemiology directly 
acknowledges the “positive blurring of the boundaries of 
epidemiological research methods” into other scientific 
disciplines. The preface welcomes non-epidemiologists to 
contribute to and use the Dictionary and inversely invites 
trained epidemiologists to utilize the concepts within the 
Dictionary in non-epidemiological initiatives [4]. Fur-
thermore, numerous agencies, organizations, and aca-
demics have recently attempted to establish frameworks 
or guidelines for data integration in the field of human 
health and ecological risk assessment. These frameworks 
consider how researchers should address, compare, and 
contrast the value and contributions of data that come 
from different evidence streams or scientific disciplines 
[8–11].

Hill aptly stated at the end of his speech that “[a]ll sci-
entific work is incomplete… [and] liable to be upset or 
modified by advancing knowledge” [1]. Today, research-
ers considering causal inference must integrate data from 
a variety of scientific disciplines. Herein, we discuss how 
data integration in the field of causal inference of diseases 
affects the application and interpretation of each of Hill’s 
criteria.

Criteria 1: strength of association
Hill’s first criterion for causation is strength of the associ-
ation. As he explained, the larger an association between 
exposure and disease, the more likely it is to be causal. To 
illustrate this point, Hill provided the classic example of 
Percival Pott’s examination of scrotal cancer incidence in 
chimney sweeps. The tremendous strength of association 
between that occupation and disease—nearly 200 times 

greater than seen in other occupations—led to a deter-
mination that the chimney soot was likely a causal factor. 
Contrarily, Hill suggested that small associations could 
more conceivably be attributed to other underlying con-
tributors (i.e. bias or confounding) and, therefore, are less 
indicative of causation.

Defining what constitutes a “strong” association is criti-
cal to the assessment of potentially causal relationships. 
Advances in statistical theory and the computational 
processing power have allowed scientists to delineate 
strong versus weak associations using more defensible 
mathematical criteria than Hill had in mind. Strength is 
no longer interpreted as simply the magnitude of an asso-
ciation. Furthermore, researchers have gained a greater 
appreciation for multi-factoral diseases and the existence 
of determinant risk factors that are small in magnitude 
yet statistically strong. Today, statistical significance—not 
the magnitude of association—is the accepted bench-
mark for judging the strength of an observed association, 
and thus its potential causality.

Yet, these same statistical and computational advances 
necessitate an added degree of scrutiny when interpret-
ing study results. Modern tools have enabled research-
ers to collect much larger datasets, access wide ranges of 
metadata, employ complex algorithms, and choose from 
a multitude of statistical approaches. As such, statistically 
significant results presented within a study are not always 
biologically meaningful or methodologically appropriate 
for contributing to causal inference. Conversely, failure 
to mathematically demonstrate statistical significance 
in a single study does not preclude the possibility of a 
meaningful exposure–response relationship in reality. 
Thus, assessing strength of association in causal inference 
requires examination of underlying methods, compari-
son to the weight of evidence in the literature, and con-
sideration of other contextual factors including the other 
criteria discussed herein.

An example can be seen in the analysis and subse-
quent re-analysis of pulmonary function in a cohort of 
106 workers at a flavorings manufacturing facility that 
used a variety of chemicals, including acetaldehyde, ace-
toin, benzaldehyde, butyric acid, and diacetyl [12, 13]. In 
the original study conducted by the National Institute 
for Occupational Safety and Health (NIOSH), research-
ers retrospectively analyzed spirometry reports and job 
title records collected by the cohort’s employer [13]. The 
authors presented statistically significant effect estimates 
showing that employees in jobs with higher potential 
for flavoring chemical exposures had 2.8 times greater 
annual declines in forced expiratory volume (FEV) than 
employees in lower-exposure jobs. This led authors to 
conclude that there was a statistically strong associa-
tion between occupational exposure to flavorings and 
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restrictive pulmonary disease [13]. However, as Ronk 
et  al. [12] pointed out, the NIOSH researchers did not 
account for the inherently correlated nature of the lon-
gitudinal spirometry test data in their choice of regres-
sion analysis, which would affect the data variability 
and therefore standard error estimates and subsequent 
statistical inference [14, 15]. Ronk and colleagues re-
analyzed the same data set using generalized estimating 
equations (GEE) that account for these correlations and 
did not find any statistically significant associations [12]. 
The varied outcomes and author interpretations associ-
ated with these two studies underscores how the use of 
different statistical methods can lead to statistically dif-
ferent results, thus impacting the application of strength 
of association.

Criteria 2: consistency
Traditionally, Hill’s consistency criterion is upheld when 
multiple epidemiologic studies using a variety of loca-
tions, populations, and methods show a consistent asso-
ciation between two variables with respect to the null 
hypothesis. Hill stressed the importance of repetitive 
findings because a single study, no matter how statisti-
cally sound, cannot be relied upon to prove causation due 
to ever-present threats to internal validity. This criterion 
is still very appropriate for determining causal relation-
ships; however, data integration practices have led to an 
evolution in thought on what constitutes consistency. 
The concept of data integration is inherently influential 
in the interpretation of the consistency criterion as it 
speaks to understanding a consistent story across mul-
tiple disciplines or practices. For example, through the 
lens of data integration, molecular experimentation can 
bolster epidemiologic findings by providing supportive 
evidence for a mechanistic hypothesis, thereby lessening 
the need for repetition among numerous observational 
studies. In vitro toxicology studies that suggest a mode 
of action such as genotoxicity or altered gene expres-
sion can support an association found in an epidemio-
logic study. By integrating results from multiple types of 
studies, researchers can show consistency in the causal 
story by illuminating various mechanistic points along 
the exposure-to-effects paradigm. This is a much broader 
interpretation of consistency than Hill’s original concept 
of repetitive epidemiologic findings.

The story of benzene-associated Acute Myeloid Leu-
kemia (AML) illustrates the application of the consist-
ency criterion in light of modern data integration. Both 
animal models and in vitro human cell cultures demon-
strated that hydroquinone and para-benzoquinone are 
the active metabolites of benzene [15, 16]. Additionally, 
it was shown that hydroquinone induces cell changes that 
are consistent with various cellular changes known to 

mark the early progression of AML in humans [16, 17]. 
These molecular-level studies supported available human 
in  vivo data (i.e., standard epidemiological studies), 
thereby lessening the need for additional observational 
studies to support a causal relationship.

Similarly, data integration played a role in the dem-
onstration of consistency to support a causal relation-
ship between polychlorinated biphenyl (PCB) exposure 
and melanoma. Consistency among epidemiologic 
studies of PCB exposure and melanoma, and in  vitro 
mechanistic studies with human melanocytes support 
a plausible mechanism by which PCBs disrupt melano-
genesis [18, 19]. Collectively, these data contributed to 
the decision by the International Agency for Research 
on Cancer Monograph Working Group to upgrade PCBs 
to a Group 1 carcinogen [18, 20]. Consistency between 
rodent and human bioassays also demonstrates support 
for a mechanism of carcinogenicity via initial binding to 
the aryl-hydrocarbon receptor (AhR) by PCB 126 and 
2,3,7,8-tetrachlorodibenzo-para-dioxin, (TCDD) in other 
cancers [18, 20]. These examples illustrate how advanced 
molecular analyses can be integrated with the results of 
observational studies to demonstrate consistent research 
findings supporting a potentially causal relationship.

Criteria 3: specificity
Hill suggested that associations are more likely to be 
causal when they are specific, meaning the exposure 
causes only one disease. While Hill understood that 
some diseases had multiple causes or risk factors, he sug-
gested that “if we knew all the answers we might get back 
to a single factor” responsible for causation. This view is 
indicative of the fact that, in Hill’s era, exposure was often 
defined in terms of proxies for true exposures, such as an 
occupational setting or a residential location. Today, we 
attempt to specifically define exposures not in terms of 
a person’s surroundings or conditions, but rather as an 
actual dose of a chemical, physical, or biological agent. 
While some examples of highly specific agent-outcome 
associations exist, most exposure and health concerns 
at the forefront of research today center around com-
plex chemical mixtures and low-dose environmental and 
occupational exposures complicated by a variety of risk 
factors.

The original criterion of specificity is widely consid-
ered weak or irrelevant from an epidemiologic stand-
point. However, specificity may have new and interesting 
implications in the broader context of data integration. 
For example, researchers can demonstrate a molecular 
mechanism of action with precisely defined (i.e., specific) 
relationships between the agent and the effects using a 
variety of research methodologies. Asbestos exposure 
and the development of asbestosis is one example. In 
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addition to the common use of occupational history as 
a surrogate for asbestos exposure in an epidemiologi-
cal framework, advances such as refined standardized 
criteria for clinical diagnosis of asbestosis, microscopic 
lung fiber burden analyses and identification of asbestos 
bodies, as well as increased understanding of the relative 
potency of different fiber types have further clarified how 
asbestosis may be specifically caused by asbestos expo-
sures [21–24]. With data integration, specificity evolves 
into a more powerful criterion, and the lack of specific-
ity can help to narrow down specific agents associated 
with disease. For example, complex mixtures of chemi-
cals (e.g., tobacco smoke) typically lack specificity when 
studied using classic epidemiology designs, since multi-
ple diseases can result from the exposures. However, it is 
possible that data integration may elucidate some mech-
anistic specificity among the varied disease endpoints 
associated with these complex carcinogenic mixtures.

Criteria 4: temporality
Temporality is perhaps the only criterion which epide-
miologists universally agree is essential to causal infer-
ence. Consider that Rothman and Greenland, despite 
finding a lack of utility or practicality in any of the other 
criteria, referred to temporality as “inarguable” [25]. Hill 
explained that for an exposure-disease relationship to be 
causal, exposure must precede the onset of disease. Thus, 
epidemiologic study designs which ensure a temporal 
progression between the two measures are more persua-
sive in causal inference.

When ensuring temporality in the context of modern-
day environmental exposures, it is important to consider 
that many of these involve low levels of exposure over 
extended time frames, and low incidence, micro-scale 
outcomes that occur following long latency periods. 
These factors make the prospect of designing a tradi-
tional epidemiologic study in which temporality is firmly 
established a costly, time consuming, and potentially 
unfeasible task. However, improved chemical exposure 
monitoring and analytical capabilities, molecular epi-
demiology techniques, and advances in understanding 
disease progression allow for new and expanded ways to 
meet this criterion across a variety of study designs. The 
use of biomarkers, state-of-the-art analytical testing at 
low limits of detection, and understanding of windows of 
toxicity and chromosome abnormalities in disease pro-
gression have increased our confidence in temporality as 
a useful criterion.

A modern example of expanded temporal analysis 
using data integration is illustrated by studies of low-dose 
exposures to arsenic through drinking water and food. 
Arsenic levels in hair and nails serves as a biomarker 
of past exposure [26, 27], and drinking water analytical 

records from an individual’s past and present residences 
can be used to create an estimate of historic environ-
mental exposure [28]. Limited windows of exposure 
can be evaluated to determine effects of exposure dur-
ing sensitive stages [29, 30]. By integrating new data and 
knowledge from these tools, temporal relationships can 
be considered even within cross-sectional or ecological 
studies that do not implicitly establish temporality within 
the study design.

Today, our understanding of temporality now includes 
a wider range of precisely defined wider exposure win-
dows, some of which are more relevant to disease out-
comes than previously thought. Through epigenetic 
mechanisms (i.e., DNA methylation, histone modifica-
tions), exposures that occur during specific periods of 
development or even in previous generations can result 
in phenotypic differences in offspring [31]. Such changes 
could be responsible for generational effects of synthetic 
estrogen diethylstilbestrol (DES) exposure which can 
lead to increased risk of breast cancer multiple genera-
tions removed from the initial exposure [32]. Analytical 
techniques are improving to detect these changes and to 
determine which epigenetic alterations may serve as indi-
cators of disease potential and persistent biomarkers of 
a previous exposure [33]. Understanding the molecular-
level changes that precede an observable outcome can 
help establish the temporal progression in a multigenera-
tional causal story [34].

Criteria 5: biological gradient
Hill wrote that “if a dose response is seen, it is more 
likely that the association is causal.” According to the 
traditional interpretation of biological gradient, the pres-
ence of a dose–response relationship supports the causal 
association between an exposure and an effect [25, 35]. 
In traditional epidemiology, a monotonic biological gra-
dient, wherein increased exposure resulted in increased 
incidence of disease, provides the clearest evidence of a 
causal relationship. However, Hill acknowledged that 
more complex dose–response relationships may exist, 
and modern studies have confirmed that a monotonic 
dose–response curve is an overly simplistic represen-
tation of most causal relationships. In fact, most dose–
response curves are non-linear and can even vary in 
shape from one study to the next depending on unique 
characteristics of the given population, exposure routes, 
and molecular endpoints assessed [36]. Furthermore, 
individual susceptibility and synergistic or antagonis-
tic effects of cumulative exposures can make some bio-
logical gradients even more difficult to characterize. An 
example of this effect can be seen in aryl hydrocarbon 
receptor (AhR)-based mechanisms: many exogenous and 
endogenous agents can act as partial agonists/antagonists 
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of AhR, and thus modulate the dose–response effect of 
2,3,7,8-tetrachlorodibenzodioxin (TCDD) which affects 
gene expression via AhR [9]. Integration of advanced 
statistical capabilities, data modeling techniques, and 
knowledge from increased understanding of biomo-
lecular interactions have resulted in the descriptions of 
more defined dose–response curves, capable of showing 
molecular effects at very low levels of exposure. Addi-
tionally, growing knowledge of genetic polymorphisms 
has illuminated the reasons behind individual varia-
tions in biological response to toxic insult and the dose–
response relationships [8].

It is now possible to observe threshold responses in 
the low-dose range, rather than assuming linearity for 
all substances. Furthermore, experimental support for a 
dose–response phenomenon referred to as hormesis has 
increased with improved molecular techniques. Horme-
sis is characterized by low dose stimulation and a high 
dose inhibition [37]. The dose–response curve associated 
with this phenomenon is biphasic and, depending on the 
endpoint measured, is either J or U shaped [38]. Horme-
sis has been observed in both toxicology and pharma-
cology, and the features of the observed dose–response 
are consistent and independent of the biological model, 
endpoint measured, chemical or physical stressor, and 
mechanism [37]. The most distinctive feature of hormesis 
is that it is repeatedly observed below the typical thresh-
old dose [37].

Biological gradient is an example of how data integra-
tion can complicate causal inference. New tools and 
technical capabilities have allowed researchers to charac-
terize a variety of low-level molecular endpoints that may 
not lead to disease or observable adverse outcomes on 
a larger scale. For example, innate responses can repair, 
eliminate, or reverse molecular changes caused by low 
levels of exposure. Thus, molecular changes within the 
no-observable-adverse-effect level (NOAEL) may not 
contribute to disease and are more indicative of a thresh-
old dose response. Understanding the mechanisms at low 
level exposures allows us to elucidate a dose–response 
curve. For example, the in  vitro endpoints for asbes-
tos toxicity include generation of oxidative stress which 
results in genotoxicity and chromosome damage via 
DNA adduct formation [39]. However, damage at low 
levels, while measurable in  vitro, is removed via cellu-
lar apoptosis which represents adaptive response and a 
threshold effect. Thus, responses at these low levels may 
not be indicative of disease, but rather adaptive responses 
that indicate a threshold must be overcome prior to dis-
ease initiation.

Additionally, modern analytics have shown that epige-
netic endpoints can occur in the low-dose range of envi-
ronmental chemical exposures, though these measured 

changes may not lead to observable disease. For example, 
Kim et al. [40] observed non-monotonic dose-dependent 
alterations in DNA methylation among mouse liver sam-
ples from offspring exposed perinatally to multiple doses 
of BPA through the maternal diet. These changes may 
provide insight regarding a mechanism of action for BPA 
during developmental exposure; however, further infor-
mation regarding phenotypic changes is necessary to 
determine whether epigenetic changes at low level expo-
sures are significant indicators of a dose-disease response 
relationship. Thus, biological gradient can be broadened 
to include molecular dose–response relationships, if the 
actual response occurs at a dose that is also associated 
with disease onset or progression.

Criteria 6: plausibility
Even at the time it was introduced, biological plausibil-
ity represented fundamental concepts of data integra-
tion—the criterion implies that epidemiology and biology 
must interact [5]. Plausibility has historically been judged 
based on the presence of existing biological or social 
models that explain the association of interest. Hill’s 
criterion of plausibility is satisfied if the relationship is 
consistent with the current body of knowledge regard-
ing the etiology and mechanism of disease; though, Hill 
admitted that this interpretation of biological plausibility 
was dependent on the current state of knowledge. Today, 
tools such as high-throughput screening assays can be 
used to study a specific biologically plausible pathway 
and identify toxic agents that interfere with that pathway 
in defined ways. Indeed, opening the ‘black box’ through 
integrating molecular epidemiological advancements 
has allowed researchers to illuminate more steps in the 
exposure-to-effect paradigm, contributing to an under-
standing of biological plausibility for suggested causal 
relationships.

The elucidation of biological pathways leading to liver 
toxicity have played a large role in advancing the inter-
pretation of biological plausibility, and the integration of 
knowledge from various evidence streams has aided in 
those interpretations. The liver is typically the first organ 
with appreciable capacity for oxidative metabolism that 
an agent encounters after ingestion, and is therefore a key 
organ for studying potential toxicity [16]. Liver effects 
demonstrated using techniques such as high-throughput 
in vitro and in silico cell manipulation, can be seen as a 
harbinger for further toxic endpoints that might occur 
with more refined, realistic exposures [41, 42]. However, 
as demonstrated by the newly-developed “virtual liver” 
[43], the future of testing biological plausibility likely 
lies with in silico experimentation. Researchers can now 
predict plausible relationships using in vitro and in silico 
screening tools targeting defined disease mechanisms, 
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which represents a potential paradigm shift in how scien-
tists frame causal research questions and design studies.

Historically, causal inference was approached with the 
assumption of a single-factor direct relationship (i.e. A 
causes B). However, researchers now understand that 
many disease outcomes are a result of the interplay and 
balance between multiple contributing and intermedi-
ary factors. As such, demonstrating the biological plau-
sibility of a causal relationship can be complex. However, 
improved statistical techniques can help researchers to 
understand complex disease progression from a molecu-
lar standpoint, where multiple risk factors, confounders, 
adaptive responses, and mediating mechanisms inter-
sect [44–46]. For example, the biostatistical approach of 
mediation analysis allows for the disentanglement and 
decomposition of the various biological pathways of 
direct and indirect effects that play a role in filling the 
“black box” between exposures and observable outcomes 
[47].

Criteria 7: coherence
Coherence has been viewed as being similar to biological 
plausibility, in that the cause-and-effect story should make 
sense with all knowledge available to the researcher, and 
this criterion has not changed greatly since its inception. 
Indeed, Hill identified histopathological evidence of bron-
chial epithelium changes and animal-based toxicity tests 
for the carcinogenicity of cigarette smoke as an example 
of a coherent story among several avenues of study design. 
Today, coherence is another area in which molecular-based 
studies have been used to demonstrate a comprehensible 
story regarding various aspects of the exposure-to-dis-
ease paradigm. For example, lung tissue fiber analysis by 
scanning transmission electron microscopy (STEM) has 
expanded our knowledge of internal biologically effective 
amphibole dose relating to altered structure and function 
of lung tissue, supporting the conclusion that amphibole 
asbestos fibers induce mesothelioma [48].

Alternatively, advanced mechanistic studies can elu-
cidate an incoherent body of epidemiologic literature, 
thereby strengthening the causal inference in one direc-
tion or another. Consider for example the carcinogenicity 
of hexavalent chromium [Cr(VI)]. The body of epidemio-
logic literature regarding the carcinogenicity of Cr(VI) is 
limited and conflicting, particularly regarding ingestion 
exposures (e.g., drinking water) and cancers outside the 
respiratory system (e.g., cancers of the GI tract). How-
ever, a recent array of genomic, pharmacokinetic, and 
mechanistic research—including metabolism, bioavail-
ability and kinetic studies, mutagenic mode of action 
studies, and gene expression profiling—demonstrate that 
ingested Cr(VI) does indeed have a carcinogenic profile 
[49, 50].

Criteria 8: experiment
Hill explained that evidence drawn from experimental 
manipulation—particularly epidemiologic studies in dis-
ease risk declines following an intervention or cessation 
of exposure—may lead to the strongest support for causal 
inference. Yet in modern contexts, experimentation must 
consider that many diseases result from multifaceted 
exposures and follow complex progression pathways. 
Cessation of exposure as Hill described may not reverse 
or appreciably slow the progression of disease. In some 
cases, multiple risk factors, including diet, exercise, 
smoking, chemical exposures, and genetic predisposition 
can contribute to disease onset and progression. Thus, 
while the combination of these factors may culminate in 
disease, experimental manipulation of a single contribu-
tory factor may or may not result in observable decreases 
in disease incidence.

Researchers using a data integration framework can 
now draw from toxicological findings for experimental 
insight into causality. In vitro studies that test mechanis-
tic pathways and demonstrate the biological role of an 
agent in disease progression may result in knowledge that 
can be used to predict potential human health outcomes 
in a much more time-efficient manner than human stud-
ies, particularly for adverse outcomes with a long latency 
period.

The expanded understanding of temporality in light of 
data from varied evidence streams can also affect inter-
pretation of the experiment criterion. Individual expo-
sures can cause epigenetic modifications to parental 
DNA that result in an observed effect in future offspring, 
even though there is no direct exposure to the offspring. 
Experimental studies in animal models are often neces-
sary to provide mechanistic support for an epidemio-
logic observation that involves complex temporality. For 
example, multiple animal studies provide support for 
the hypothesis that epigenetic changes induced by DES 
exposure in utero may be causative of transgenerational 
effects of DES exposure in females [32, 51–54]. Because 
epigenetic analyses in transgenerational human studies 
take decades and are riddled with potential confound-
ers, reliance on animal models and advanced analytical 
techniques can help to support determination of a causal 
relationship.

Criteria 9: analogy
Hill implied that when there is strong evidence of a 
causal relationship between a particular agent and a spe-
cific disease, researchers should be more accepting of 
weaker evidence that a similar agent may cause a similar 
disease. Analogy has been interpreted to mean that when 
one causal agent is known, the standards of evidence are 
lowered for a second causal agent that is similar in some 
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way [55]. Some modern epidemiologists have argued that 
a lack of analogy does not preclude causation, but sim-
ply implies a lack of creativity on the researcher’s part 
[56]. Indeed, some might argue that enough knowledge 
exists and is accessible today to identify an analogy for 
every situation, especially if the researcher pulls that 
knowledge from multiple disciplines and across evidence 
streams. Today, researchers have a wider range of tools 
by which to seek an analogy, including disease progres-
sion pattern, common risk factors and confounders, and 
biological mechanisms of action. Therefore, the modern 
value of analogy is not gained from confirming a causal 
inference, but rather from proposing and testing mecha-
nistic hypotheses.

As an example, analogous mechanistic hypothesis test-
ing has been conducted on carbon nanotubes (CNTs) 
using the extensive literature on the mechanistic toxic-
ity of asbestos fibers. Models based on molecular struc-
ture and physical–chemical characteristics such as aspect 
ratio predict a mechanism of action similar to that of 
asbestos [57]. The physical morphology of CNTs appears 
similar to that of asbestos fibers; thus, respirable-sized 
fibers are expected to behave similarly in occupational 
settings and lead to similar lung translocation and depo-
sition. Additionally, asbestos fibers are known to cause 
inflammation and fibrosis of the lung pleura as a precur-
sor to mesothelioma; these same outcomes have been 
demonstrated following CNT exposure [58, 59]. Further, 
CNTs have been found to stimulate the release of acute 
phase cytokines from human macrophages and meso-
thelial cells exposed to CNTs of varying lengths, demon-
strating that CNT exposure results in a length-dependent 
pro-inflammatory response, similar to that of asbestos 
[60]. These findings enhance the asbestos analogy by con-
firming that CNTs may be capable of causing disease that 
begins with pleural inflammation—the same mechanism 
responsible for asbestos-related mesothelioma. However, 
the results also demonstrate that not all CNTs have the 
same potential for carcinogenicity, implying that proac-
tive design of engineered CNTs can limit the risks and 
allow for safe use of the compounds in a variety of appli-
cations—and that the analogy to asbestos should not be 
viewed in a way that limits continued research.

Conclusion
Hill’s nine aspects of association were never intended 
to be viewed as rigid criteria or as a checklist for cau-
sation, yet have been popularized as such over the past 
50  years. Instead, the so called “Bradford Hill Criteria” 
were written as flexible guidelines or considerations 
meant to guide epidemiologic investigations and aid in 
causal inference. As the world of epidemiologic research 
has changed and expanded, our criteria for determining 

causal inference must similarly evolve. As Chen and 
Hunter explained, researchers today are “much more of 
a participant in the assessment of the biologic basis for 
an association, by using biologic measurements to assess 
exposure, internal dose, biologically effective dose, early 
biologic effect, altered structure/function, invasive cancer 
diagnosis, tumor metastasis and prognosis”—essentially, 
the ‘black box’ between exposure and disease can now be 
peered into and explored [2]. Epidemiologic investigation 
of causation conducted today must also evolve to reflect 
the concepts of data integration. This involves incorpo-
rating not just traditional epidemiological evidence but 
also evidence gathered by opening the ‘black box’ and 
incorporating data from molecular biology, toxicology, 
genotoxicology, and other disciplines into evaluations of 
causation. The advanced tools and techniques that have 
developed in recent decades across all scientific disci-
plines have affected the application and interpretation of 
the Bradford Hill criteria, which were originally written 
to fit the ‘black box’ model of epidemiologic studies.

The Bradford Hill Criteria remain one of the most 
cited concepts in health research and are still upheld as 
valid tools for aiding causal inference [61]. However, the 
way each criterion should be applied, interpreted, and 
weighted in a data integration framework must be care-
fully measured against the varied and often novel types 
of data available in each unique situation. In some ways, 
data integration degrades the value and importance of 
certain criteria, as it offers alternative interpretations 
for each criterion that give way for inductivism. In other 
words, in a data integration framework, researchers can 
interpret the criterion whichever way fits the available 
data as opposed to determining whether the data meets 
the criterion. This type of application is dangerous as 
it bypasses the ultimate purpose of causal inference—
determining whether the observed association is direc-
tionally causal or not.

Nonetheless, data integration represents an opportu-
nity to expand our abilities as researchers to think about 
causation. Herein, we have discussed how the data inte-
gration framework requires the compilation of more lines 
of evidence and more scrutiny for each of the criteria. 
The examples above have demonstrated that data inte-
gration can enhance the application of the Bradford Hill 
Criteria in a causal analysis by: allowing for more scru-
tiny in study designs; providing new tools to demonstrate 
consistency, specificity, and plausibility of associations; 
integrating molecular evaluation to determine temporal-
ity and dose–response; clarifying conflicting epidemio-
logic findings to determine coherence; and promoting 
the proposal and testing of new mechanistic hypotheses.

The Bradford Hill Criteria are far from outdated in a 
data integration framework. Causal inference in the field 
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of epidemiology is no longer informed solely by traditional 
epidemiologic studies, but rather by a complementary 
host of evolving research tools and scientific disciplines. 
Although specific interpretations of each criterion have 
evolved over time, the concepts that underlie each cri-
terion can be applied to a variety of methodologies to 
answer questions about causation. The Bradford Hill Cri-
teria can aid researchers in connecting the dots within a 
body of literature, either to lead to suggestions of causal 
relationships or identification of what more research is 
needed to understand potential causality. As ever, the cri-
teria should not be used as a heuristic for assessing causa-
tion in a vacuum; rather they should be viewed as a list 
of possible considerations meant to generate thoughtful 
discourse among researchers from diverse scientific fields. 
The interpretive concepts we have introduce into each 
Bradford Hill criterion in light of data integration support 
the Bradford Hill Criteria’s function as a valid and useful 
tool when establishing causation.
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