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ABSTRACT Bacteria alter their local chemical environment through both consump-
tion and the production of a variety of molecules, ultimately shaping the local ecol-
ogy. Molecular oxygen (O2) is a key metabolite that affects the physiology and be-
havior of virtually all bacteria, and its consumption often results in O2 gradients
within sessile bacterial communities (biofilms). O2 plays a critical role in several bac-
terial phenotypes, including antibiotic tolerance; however, our understanding of O2

levels within and surrounding biofilms has been hampered by the difficulties in
measuring O2 levels in real-time for extended durations and at the micron scale.
Here, we developed electrochemical methodology based on scanning electrochemi-
cal microscopy to quantify the O2 gradients present above a Pseudomonas aerugi-
nosa biofilm. These results reveal that a biofilm produces a hypoxic zone that ex-
tends hundreds of microns from the biofilm surface within minutes and that the
biofilm consumes O2 at a maximum rate. Treating the biofilm with levels of the anti-
biotic ciprofloxacin that kill 99% of the bacteria did not affect the O2 gradient, indi-
cating that the biofilm is highly resilient to antimicrobial treatment in regard to O2

consumption.

IMPORTANCE O2 is a fundamental environmental metabolite that affects all life on
earth. While toxic to many microbes and obligately required by others, those that
have appropriate physiological responses survive and can even benefit from various
levels of O2, particularly in biofilm communities. Although most studies have fo-
cused on measuring O2 within biofilms, little is known about O2 gradients surround-
ing biofilms. Here, we developed electrochemical methodology based on scanning
electrochemical microscopy to measure the O2 gradients surrounding biofilms in real
time on the micron scale. Our results reveal that P. aeruginosa biofilms produce a
hypoxic zone that can extend hundreds of microns from the biofilm surface and
that this gradient remains even after the addition of antibiotic concentrations that
eradicated 99% of viable cells. Our results provide a high resolution of the O2 gradi-
ents produced by P. aeruginosa biofilms and reveal sustained O2 consumption in the
presence of antibiotics.
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antibiotic resistance

Molecular oxygen (O2) is one of the most important molecules dictating bacterial
lifestyle and behavior. For organisms capable of tolerating O2, it can provide a

means to remove excess electrons formed during metabolism. While general funda-
mentals of O2 consumption are well established, the role of O2 is complex in bacterial
communities, including those associated with human infection, since O2 levels vary
tremendously based on the infection site and the host response (1–3). In addition,
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bacteria in many infections grow as sessile communities called biofilms (4), and the
three-dimensional structure of these communities can affect O2 levels throughout the
biofilm.

Previous work has shown that O2 gradients within biofilms affect their biology (5, 6).
This has prompted an examination of O2 levels within and surrounding biofilms. In
particular, stagnant biofilms rapidly deplete O2 and waste material buildup occurs as a
result of mass transport limitation at the surface of biofilms (7). Although it is clear that
O2 levels are decreased within the biofilm, the levels immediately adjacent to the
biofilm surface have not been thoroughly investigated in static biofilms, in part due to
the difficulties in robustly measuring O2 with high spatial precision (5, 8–13). To address
this gap in knowledge, we developed a system to spatially measure O2 levels above a
microbial biofilm in real time at the micron scale. We chose the facultative anaerobe
Pseudomonas aeruginosa strain PA14 for these studies since this opportunistic patho-
gen preferentially utilizes aerobic respiration (14), and its physiology and behavior are
highly influenced by O2 availability (14, 15).

A significant challenge that was overcame is the inherent difficulty with continu-
ously measuring O2 over extended time periods. To address this challenge, we devel-
oped a system using electrochemical methods to measure O2 in real-time with micron-
scale spatial resolution (Fig. 1A). O2 can be detected electrochemically through a
four-electron reduction on a platinum ultramicroelectrode (UME) (Fig. 1A) (16). How-

FIG 1 Experimental system and SECM detection of the O2 gradient surrounding a P. aeruginosa biofilm.
(A) Schematic of SECM setup for measurement of O2 gradient surrounding a P. aeruginosa biofilm (left),
including a closeup of the SECM cell and O2 reduction reaction at the UME tip (right). (B) The platinized
UME continuously monitors bulk O2 levels through measurement of tip current over several hours
without loss of sensitivity. The y axis (ordinate) is the ratio of the tip current at each time point divided
by the tip current at time zero. Each color represent biological replicates. PCM, polycarbonate membrane;
DS, double-sided; UME, ultramicroelectrode.
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ever, platinum UMEs readily deactivate which leads to long wait times for O2 current
stabilization and sub-nA current (see Fig. S1 in the supplemental material). To address
this challenge, we optimized a platinization protocol that coats the UME surface with
platinum particles that actively reduce O2 while avoiding severe changes in the
geometry of the UME surface (see Fig. S2). Importantly, our platinum UMEs had a higher
electroactive area and could continuously monitor O2 levels over several hours without
loss of sensitivity (Fig. 1B). This is especially important because the current measured in
bulk was approximated to be 205 �M; since current measured is directly proportional
to O2 concentration, stability ensures accurate O2 measurement despite each platinized
UME used only once per experiment and having slightly variable degrees of platiniza-
tion or size after polishing.

We next sought to measure O2 levels surrounding a P. aeruginosa biofilm using
scanning electrochemical microscopy (SECM). The P. aeruginosa strain chosen for this
work (fliC9::MrT7) (17) has an inactivated flagellar motor protein, rendering the strain
unable to leave the biofilm via swimming motility. Biofilms of the P. aeruginosa fliC
mutant were formed on polycarbonate membranes as previously described for elec-
trochemical studies (18). Membrane biofilms were grown for 8 h on Todd Hewitt broth
(THB) agar, yielding an �3-mm-diameter nascent biofilm containing �4 � 107 bacteria
(see Fig. S3). These biofilms contain fewer cells than those used in previous studies (5,
8) focused on O2 consumption to better mimic biofilms observed in human infections.
After formation, the membrane containing the biofilm was removed from the agar
plate and attached to the bottom of a glass vial using double-sided tape and covered
with �5 ml of morpholinepropanesulfonic acid (MOPS)-glucose minimal medium.

To measure O2 levels above the biofilm, a 10-�m-diameter platinized UME was
approached to 40 �m above the biofilm surface using ferrocenyl methyl trimethylam-
monium (FcMTMA�; the toxicity and stability are assessed in Text S1 in the supple-
mental material) as the redox mediator (Fig. S4 and S5) using SECM (19). The UME tip
was then poised at �0.5 V (O2 reduction potential), with a wait time of 5 min; afterward,
the UME was retracted at 6 �m/s while continually measuring O2 until bulk O2 levels
were detected, �1,400 �m above the biofilm surface (the O2 gradient calculations are
detailed in Text S1). The O2 levels above the biofilm resembled a sigmoidal curve with
no O2 detectable until �200 �m above the biofilm (Fig. 2A; see also Fig. S6). Assuming
a 10-pA minimal background current, the detection limit of the UME is �1 �M.

For comparison, we created an O2 gradient without a biofilm using a platinum
electrode the same size as the biofilm as the SECM substrate. The 3-mm platinum
electrode was held at three potentials (0.1, 0, and �0.5 V versus Ag/AgCl) for 5 min, and
then the O2 gradient was measured as described for the biofilm (detailed in Text S1).
The biofilm O2 gradient was similar to the �0.5 V poised electrode gradient, which is
the potential at which O2 reduction is mass transport limited at the surface of the
electrode. The biofilm O2 gradient was distinct from the other potentials at which O2

was being consumed at a submaximal rate (i.e., limited in part by kinetics and not
predominantly by mass transport). Using Comsol Multiphysics to digitally simulate O2

consumption (Fig. 2B; see also Fig. S7), we approximated the flux of O2 at the surface
of the biofilm to be 8.2 � 10�7 mol/cm2/s (detailed in Text S1). Assuming each cell has
a dimension of 1.5 �m � 0.8 �m, 9.8 � 10�15 mol/s O2 or 5.9 � 109 molecules of O2 per
second were consumed by each bacterium. Collectively, these results reveal that P.
aeruginosa biofilms produce a hypoxic zone that can extend hundreds of microns from
the biofilm surface within minutes, and the biofilm consumes O2 at a maximum rate.

To assess the effect of antibiotic treatment on biofilm O2 consumption, we treated
our biofilms with 400 times the MIC of the antibiotic ciprofloxacin (40 �g/ml) and then
measured the O2 gradient above the biofilm. We first confirmed that ciprofloxacin does
not interfere with the electrochemical signal for O2 quantification (Fig. S8; see also Text
S1). Ciprofloxacin treatment of the biofilm was performed by initially adding 20 �g/ml
ciprofloxacin and measuring the O2 response 1.5 h after submersion in MOPS-glucose
(Fig. 2C). After we observed no immediate change in signal, we treated the biofilm with
another 20 �g/ml. After addition of the second dose of ciprofloxacin, the O2 gradient
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FIG 2 P. aeruginosa rapidly produce O2 gradients that are resilient to antibiotic treatment. (A) O2

gradients above the surface of P. aeruginosa biofilms, P. aeruginosa biofilms treated with ciprofloxacin,
and for reference a 3-mm platinum electrode poised at 0, 0.1, and �0.5 V versus Ag/AgCl (different
electrode potentials correspond to various O2 consumption rates). n � 4 biological replicates for
Electrode 0.1 V, Electrode 0 V, Electrode �0.5 V, and Biofilm � Ciprofloxacin, and n � 16 biological
replicates for biofilm. For all O2 gradients, shading represents one standard deviation from the mean
(solid line). (B) Digital simulation (red circles) to estimate O2 consumption rates of the biofilm. The model
was solved by Comsol Multiphysics (5.3a; COMSOL, Inc., Burlington, MA) using the electrochemical

(Continued on next page)
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was measured for 50 min with no observable change in the O2 gradient, a total of 1 h
and 35 min after ciprofloxacin was first added. Despite the fact that addition of
ciprofloxacin reduced the number of viable bacteria in the biofilm by 100-fold to
�2.4 � 105 bacteria, there was no change in the O2 gradient or O2 consumption rates
(Fig. 2A and B).

While prior work has primarily measured bulk O2 at the biofilm/air interface, we
show that, in contrast, at a stagnant biofilm/liquid interface a hypoxic region forms
several hundred microns above the biofilm surface. Containing only �4 � 107 bacteria,
our biofilms consumed O2 at maximum rates and continued to do so despite 99%
killing by ciprofloxacin. These data corroborate similar findings that bulk respiratory
activity and carbon consumption persists despite antibiotic exposure (20, 21). Given this
high O2 consumption rate and the observation that biofilms of this size exist in human
implant/catheter infections (22), we propose that biofilms are capable of rapidly
depleting local O2 in chronic infections even during antibiotic challenge. Ultimately, the
experimental system developed in this work provides a valuable framework for study-
ing biofilm O2 consumption.

MATERIALS AND METHODS
Instrumentation. Initial electrochemistry experiments were performed using a BioLogic SECM

(model M470). Biofilm experiments measuring O2 gradients by scanning distances were done using a CHI
model 920D scanning electrochemical microscope (CH Instruments). For all experiments, a three-
electrode setup was used. This consisted of a 10-�m-diameter platinum UME (working electrode),
Ag|AgCl|Saturated KCl (reference electrode to which all potentials are referred to in all experiments), and
platinum wire (counter electrode). An in-depth protocol for UME fabrication may be found elsewhere
(19).

Ultramicroelectrode fabrication and SECM cell setup. An in-depth protocol for UME fabrication
may be found elsewhere (19). Briefly, platinum (99.9% purity) wire, 10-�m diameter, temper: hard
(Goodfellow Metals, Cambridge, United Kingdom; product PT005107) was used for the preparation of the
SECM UME tip. The metal wire was heat sealed with a heating coil under vacuum in a glass capillary. The
tip was sharpened to an RG of �10, where RG is the ratio of the glass diameter to wire diameter. Prior
to electrochemical experiments, UMEs were sonicated in a water bath for 30 s. Platinization significantly
alters the surface and UMEs were seldom repolished and replatinized for reuse.

Bacterial strain culture and preparation. P. aeruginosa (PA14) fliC9::MrT7 mutant was obtained
from a PA14 nonredundant transposon insertion mutant set (http://ausubellab.mgh.harvard.edu/cgi-bin/
pa14/home.cgi) (17). Biofilms were grown in THB agar for 8 h at 37°C, at which point an �3-mm-diameter
biofilm formed before transfer to the SECM cell. All SECM experiments were performed using MOPS
minimal media (23) containing 20 mM glucose. CFU were enumerated at the end of experimentation by
removing media above the biofilm, substantially vortexing the biofilm off the polycarbonate membrane,
and plating on THB agar plates overnight at 37°C.

Platinizing UMEs. Handmade 10 �m platinum UMEs (as described above) were sonicated in water,
acetone, and water. A modified protocol for platinizing UMEs was used that may be found elsewhere (24)
with an adjusted recipe for the platinization solution containing 0.250 ml of H2PtCl6 and 0.4 mg of
Pb(NO3)2 up to a final volume of 7.36 ml in 1� phosphate-buffered saline (pH 7.4). Geometric and
electroactive effects on the UME surface resulting from platinization were measured to confirm the
stability and reproducibility of platinization. An in-depth review of platinizing electrodes can be found
elsewhere (25).

Measuring O2. PA14 tn::fliC biofilms were grown as described above. After 8 h growth, the polycar-
bonate membrane was removed and attached to the bottom of a custom glass vial using double sided
tape. UMEs were cycled in platinizing solution (same as above) from 0.2 V to �0.3 V versus Ag/AgCl at
100 mV/s until the maximum limiting current increased �1.2� for FcMTMA� oxidation (the synthesis is
detailed in Text S1). After platinization and ensuring proper geometric area of the UMEs, 1 mM FcMTMA�

was added to MOPS-glucose media, and approximately 5 ml was added to the vial containing the biofilm.
A three-electrode setup using a platinum wire counter, and Ag/AgCl reference electrodes were con-
nected. Platinized UMEs were precisely positioned with micron-scale accuracy using SECM. SECM

FIG 2 Legend (Continued)
analysis module in two-dimensional axial symmetry using stationary conditions with a parametric sweep
of the “d” or distance between UME tip and substrate (Fig. S5, and detailed in Text S1). (C) Changes in
O2 concentration 600 �m above a biofilm measured as a response to ciprofloxacin treatment. At 120 s,
the first dose of 20 �g/ml ciprofloxacin was added (designated by red arrow). Each line represents a
biological replicate. The y axis (ordinate) is the ratio of the tip current at each time point divided by
current measured before ciprofloxacin addition (i.e., a value of 1 indicates no change in current after
ciprofloxacin addition). There were changes immediately after ciprofloxacin addition (peaks at red arrow),
likely a result of the mixing caused by addition of ciprofloxacin to the growth media above the biofilm.
Importantly, the current quickly stabilized.
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positions UMEs at defined distances from the biofilm surface using an electroactive mediator while
observing tip current changes as a function of distance. For this work, we chose the electroactive
mediator FcMTMA� since it is neither consumed by nor is toxic to P. aeruginosa. UMEs were poised at
0.5 V to oxidize FcMTMA�, approached within �40 �m above the surface (within the hindered diffusion
region corresponding to a decrease in signal to �95% limiting current), and then poised at �0.5 V and
retracted at 6 �m/s to measure O2 gradients. For antibiotic chronoamperometry curves, UMEs were
positioned first approximately 600 �m for the first addition of ciprofloxacin or control, approximately 1 h
and 30 min elapsed after MOPS-glucose was added over the biofilm. Ciprofloxacin was added slowly
during this time at �7.5 mm above the biofilm, and the stage was attached to the vial containing the
biofilm was rotated 10 times in a circular motion immediately after addition. The UME was then
approached approximately 300 �m above the biofilm for the second addition of ciprofloxacin, approx-
imately 2 h elapsed after MOPS-glucose was added over the biofilm. Ciprofloxacin or control was then
added quickly at �7.5 mm above the biofilm. For both additions, a 2-min window was given before
antibiotics were added to the media and current was measured for a minimum of 1,000 s in total. O2

concentration gradients were immediately measured in triplicate during each biological replicate after
the second addition of antibiotics to determine the O2 consumption rates.
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