
Genome-Wide Analysis of RNA Decay in the Cyanobacterium
Synechococcus sp. Strain PCC 7002

Gina C. Gordon,a,b Jeffrey C. Cameron,a* Sanjan T. P. Gupta,a Michael D. Engstrom,a Jennifer L. Reed,a Brian F. Pflegera,b

aDepartment of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
bMicrobiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA

ABSTRACT RNA degradation is an important process that influences the ultimate
concentration of individual proteins inside cells. While the main enzymes that facili-
tate this process have been identified, global maps of RNA turnover are available for
only a few species. Even in these cases, there are few sequence elements that are
known to enhance or destabilize a native transcript; even fewer confer the same ef-
fect when added to a heterologous transcript. To address this knowledge gap, we
assayed genome-wide RNA degradation in the cyanobacterium Synechococcus sp.
strain PCC 7002 by collecting total RNA samples after stopping nascent transcription
with rifampin. We quantified the abundance of each position in the transcriptome as
a function of time using RNA-sequencing data and later analyzed the global mRNA
decay map using machine learning principles. Half-lives, calculated on a per-ORF
(open reading frame) basis, were extremely short, with a median half-life of only
0.97 min. Despite extremely rapid turnover of most mRNA, transcripts encoding pro-
teins involved in photosynthesis were both highly expressed and highly stable.
Upon inspection of these stable transcripts, we identified an enriched motif in the 3=
untranslated region (UTR) that had similarity to Rho-independent terminators. We
built statistical models for half-life prediction and used them to systematically
identify sequence motifs in both 5= and 3= UTRs that correlate with stabilized
transcripts. We found that transcripts linked to a terminator containing a poly(U)
tract had a longer half-life than both those without a poly(U) tract and those
without a terminator.

IMPORTANCE RNA degradation is an important process that affects the final con-
centration of individual mRNAs, affecting protein expression and cellular physiology.
Studies of how RNA is degraded increase our knowledge of this fundamental pro-
cess as well as enable the creation of genetic tools to manipulate RNA stability. By
studying global transcript turnover, we searched for sequence elements that corre-
lated with transcript (in)stability and used these sequences to guide tool design. This
study probes global RNA turnover in a cyanobacterium, Synechococcus sp. strain PCC
7002, that both has a unique array of RNases that facilitate RNA degradation and is
an industrially relevant strain that could be used to convert CO2 and sunlight into
useful products.
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RNA degradation is a fundamental process that can influence the amount of mRNA
present in a cell. In bacteria, the abundance of a given RNA transcript, and

ultimately any protein it encodes, is controlled by the balance of nascent transcription
and RNA degradation. A suite of enzymes called RNases facilitate the bulk of RNA
turnover. Although many RNases have been characterized, there is limited information
on their precise in vivo sequence targets and how enzymes contribute to the turnover
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of individual mRNA. While general mechanistic models of global RNA turnover have
been described and debated (1–3), tools capable of predicting the stability of a given
RNA remain elusive. This is in part because the relationship between sequence ele-
ments, secondary structures, and other biophysical information on the rate of RNA
decay remain poorly understood. The first step toward closing this knowledge gap is
collecting global decay rates across the transcriptome of various species.

In prokaryotes, transcripts are quickly turned over, allowing for rapid response to
environmental change via conditional transcription (4). Using antibiotics to stop tran-
scription, global turnover rates have been quantified in many species via bulk RNA
measurements, microarrays, and more recently RNA-sequencing data. Transcript half-
lives are often on the order of minutes: Escherichia coli, 2.8 min, 4.7 min, and 6.8 min
(5–7); Bacillus subtilis, 5 min (8); Bacillus cereus, 2.4 min (9); Lactococcus lactis, 5.8 min
(10); Mycobacterium tuberculosis, 9.5 min (11); and Chlamydia trachomatis trachoma, 15
to 17 min (12). Short turnover times are logical for fast-growing species, but rapid
turnover has also been observed in a slow-growing cyanobacterium, Prochlorococcus
strain MED4, where the median half-life was 2.4 min despite doubling only once or
twice per day (13).

In this study, we examined RNA degradation in another cyanobacterium, Synechoc-
occus sp. strain PCC 7002 (PCC 7002), which is among the fastest-growing photoau-
totrophs (doubling time �2.5 h) (14). PCC 7002 is also genetically tractable with a wide
suite of synthetic biology tools (15–18), making it attractive for fundamental studies
and use for green chemical production from CO2 and sunlight (19–21). Another reason
motivating the study of RNA degradation in PCC 7002 is its unique array of RNases that
facilitate both RNA maturation and degradation. The functions of three homologs of
RNase III have been studied (22), but PCC 7002 also has both an essential homolog of
RNase E (a hallmark of RNA degradation in E. coli) and an essential homolog of RNase
J (a hallmark of RNA degradation in B. subtilis) (23). The impact of the presence of both
essential enzymes on RNA turnover remains unexplained. As a first step toward
establishing a turnover model, we used RNA-sequencing to quantify global RNA levels
in PCC 7002 after the arrest of transcription. We calculated global RNA half-lives on a
per-ORF (open reading frame) basis and examined how transcript half-life was related
to cellular function and what sequence features correlated with enhanced transcript
stability. From this analysis, we observed that transcripts encoding proteins involved in
photosynthesis were disproportionately stable, perhaps contributing to their large
steady-state abundance. Using machine learning and motif identification algorithms,
we identified a conserved sequence motif similar to Rho-independent terminators in
the 3= untranslated region (UTR) of these stable transcripts. These findings may guide
the design of future heterologous transcripts and facilitate the development of global
RNA turnover models.

RESULTS

We collected total RNA samples from three biological replicates of PCC 7002 before
(0 min) and 0.5, 1, 2.5, 5, 7.5, and 10 min after rifampin addition. We added synthetic
RNA spike-ins to cell pellets immediately before lysis to normalize for potential large
differences in mRNA pool sizes. We isolated total RNA and reduced the rRNA content
with commercial reagents. We used this pool of enriched mRNA to prepare a library for
sequencing via Illumina HiSeq. The number of reads that aligned to the RNA spike-ins
was counted and found to linearly correlate with RNA copy number (see Fig. S1 in the
supplemental material). After aligning each read to the PCC 7002 genome, the abun-
dance of each position was normalized to the number of RNA spike-ins in the sample
and averaged over each predicted ORF. We then fitted the normalized abundance to an
exponential decay model and calculated the half-life of each ORF’s transcript. We were
able to calculate transcript half-life values for 2,949 ORFs (91.1%) which had a median
half-life of 0.97 min (Fig. 1). The average half-life was 1.18 min with a standard deviation
of 0.73 min. We classified 0.5% of the transcripts as stable because each had greater
than 50% of the original read counts in the final time point (t � 10 min). We could not
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calculate half-lives for 4.4% of transcripts because of null or low expression and for
another 4.1% that exhibited a poor fit to the exponential model. For transcripts
containing operons, we observed an increase in half-life along the length of the
transcript (Fig. S2 and S3).

We grouped the half-life of protein coding transcripts by cellular function and found
that transcripts encoding proteins involved in energy metabolism had a longer half-life
than all other groups (Fig. 2A, pairwise t test P values between 9 � 10�6 and 2 � 10�16,
Bonferroni adjusted). Only cellular functions that contained greater than 50 genes were
included in the analysis. Within the energy metabolism subgroup, transcripts created
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FIG 1 Global mRNA decay trends for PCC 7002. Distribution of half-lives for each transcribed ORF in PCC
7002. The median half-life of all analyzed genes (n � 2,949) was 0.97 min. The average half-life was 1.18
min (standard deviation � 0.73 min).
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FIG 2 Photosynthesis genes have longer half-lives than genes classified with other cellular functions. (A) Half-lives of genes grouped by cellular function. Only
cellular functions that contained greater than 50 genes were included. The median half-life is displayed on the boxplot, and the number of genes in each group
is displayed below. The energy metabolism group had a significantly greater half-life than all other groups (*, pairwise t test P values between 9 � 10�6 and
2 � 10�16, Bonferroni adjusted). (B) Half-lives of genes in the energy metabolism subgroup. The photosynthesis group had a significantly greater half-life than
all other groups (*, pairwise t test P values all below �0.05, Bonferroni adjusted).
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from the photosynthesis genes had a longer half-life than all other subgroups (Fig. 2B,
pairwise t test P values all below �0.05, Bonferroni adjusted).

We looked for a relationship between transcript level and half-life and saw no overall
trend (r � 0.13, Pearson correlation), but photosynthesis genes seemed to be highly
transcribed and their transcripts seemed to be long-lived (Fig. 3A) (r � 0.40, Pearson
correlation). Transcripts encoding proteins involved in energy metabolism were more
abundant than transcripts encoding proteins involved with other cellular functions
(Fig. 3B, pairwise t test P values between 2 � 10�16 and 3 � 10�11, Bonferroni ad-
justed), but photosynthesis transcripts were not more abundant than those within the
energy metabolism subgroup (Fig. S4). Instead, only the antenna protein group had
statistically significant higher expression than all other subgroups besides nitrogen
metabolism.

While examining the read coverage, we observed that highly stable transcripts had
very distinct start and stop locations (Fig. 4A). We looked for motifs in both the
upstream region (150 bp), an approximation of the 5= UTR, and downstream region
(100 bp), an approximation of the 3= UTR, of each ORF that were enriched when linked
to transcripts with long half-lives. Using MEME (24) in discriminative mode, we looked
for motifs overrepresented in the sequences surrounding the 400 most stable tran-
scripts compared to the control 400 least stable transcripts. No significant motifs were
identified in the upstream region, but an enriched motif was found in the downstream
region (Fig. 4B). This 21-base motif had an E value of 5.6e�083 and featured a prominent
string of six consecutive U’s. This motif is reminiscent of Rho-independent terminators,
which feature a G-C-rich hairpin followed by a U-rich tract. Therefore, we asked whether
the presence of a terminator in the 3= untranslated region (UTR) was predictive of
stability of other transcripts. To examine whether different putative terminator forms
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are significantly associated with transcript stability, we used the Web Genome Scanner
for Terminators (WebGeSTer) database (25). We divided transcripts into three classes
based on the absence of a known terminator motif, presence of an L-shaped terminator
(hairpin with a U-tract), or the presence of an I-shaped terminator (hairpin without a
U-tract). We found that transcripts linked to an L-shaped terminator containing a
U-tract in the 3= UTR had a significantly longer half-life (P � 4.8 � 10�13 [L versus I] and
P � 2.0 � 10�16 [L versus none]) than transcripts that contained an I-shaped terminator
in the 3= UTR or no obvious Rho-independent terminator (Fig. 4D). Additionally,
bootstrap sampling was performed to assess the effect of various sample sizes between
the subsets of genes with and without terminators (Table S1).

In order to systematically analyze the effect of sequence-based elements, the counts
of all possible 3- to 8-letter-long sequence motifs present in the 5= and 3= UTRs were
used as features in a random forest model built to search for additional motifs.
Model-predicted half-life values for different transcripts in PCC 7002 correlated very
well with experimentally measured half-lives (Spearman rank coefficient of 0.88 under
10-fold cross validation [Fig. 5A]). The feature importance scores revealed a set of
putative sequence motifs in the 5= and 3= UTRs that correlate with transcript stability
and therefore could be used to enhance the stability of a heterologous transcript.
Consistent with the prior MEME search, most of the motifs are present in the 3= UTR and
contain a poly(U) trail which could be involved in Rho-independent termination. A few
motifs in the 5= UTR were detected (e.g., ACTACCTG, TAAGGAAT, AAAACTT, TCGAAAAC,
and AACTCTAA). In addition to enhancing the stability of mRNA transcripts, these
sequence motifs might be involved in enhancing translation initiation (26). Although
one of the motifs has a purine-rich signal (AGGA) that resembles the Shine-Dalgarno
(SD) sequence, it is well known that SD-like sequences found in the leaders of many
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mRNAs from cyanobacteria are hypervariable in base composition, size, and location
compared to those in E. coli (27).

DISCUSSION

RNA turnover in PCC 7002 is extremely rapid with a median half-life of coding
regions of 0.97 min (�58 s), faster than any other report of bacterial mRNA decay. Only
15 transcripts were classified as stable (retaining at least 50% of the read counts from
the initial pre-rifampin time point). Prior experiments using RNA sequencing to study
RNA degradation (5, 9) have shown that mRNA half-lives are much shorter than original
values determined by microarrays (6–8). Even so, RNA degradation occurred more
rapidly in PCC 7002 than expected.

We examined if any groups of transcripts that encode different cellular functions
had significantly longer half-lives and found both that photosynthesis genes were
highly expressed and that their transcripts were highly stable. Moreover, the biophys-
ical feature-based analysis indicated expression level to be one of the top predictors of
mRNA half-life (see Fig. S3 in the supplemental material). The abundance of mRNA-
encoding photosynthesis genes and all genes falling under the energy metabolism
category is not by itself surprising, as these proteins perform essential functions in the
cell. There are only 53 genes categorized as photosynthesis genes, of which the mRNA
half-life values could be determined for 38 and 2 were categorized as stable. Many of
these 40 transcripts are both highly abundant and very stable, making it hard to
differentiate between whether being inherently stable increases expression level
and/or having high expression protects the transcript from degradation.

Nevertheless, we wanted to identify sequence elements that may be predictive of
increased transcript stability; to precisely control RNA transcript stability, these ele-
ments may be helpful to guide the construction of heterologous transcripts. To this
end, we identified an enriched motif in the 3= UTR of stable transcripts that consisted
of a string of U’s. Upon further characterization, putative upstream hairpins were also
identified, which suggests that this motif is reminiscent of canonical Rho-independent

R² = 0.88

Measured Half-Life (min)P
re

di
ct

ed
 H

al
f-

Li
fe

 (
m

in
)

0 1 2 3 4 5
0

1

2

3

TTTT
TTTTT

GAAAGAAA
ACTACCTG

TTT
TTTTTT

GCTTCTCA
TAAGGAAT
CATTCTTA
CTTTTTT

TTGCTTAG
AAAACTT

TCGAAAAC
AACTCTAA
TTTTTTAT
TTTTTTGT
TGAGAGGA
CAGAGATC

CTTCAC

Legend

Relative Importance
0% 20%

5’-UTR

3’-UTR

40% 60% 80% 100%

A

B

FIG 5 Machine learning-based identification of sequence motifs in UTR. (A) Scatterplot illustrating the
predictive performance of the random forest regression model built using counts of 3- to 8-lettered
sequence motifs as features. (B) Top 20 motifs across 5= and 3= UTRs based on feature importance scores.

Gordon et al.

July/August 2020 Volume 5 Issue 4 e00224-20 msystems.asm.org 6

https://msystems.asm.org


terminators that consist of a G-C-rich hairpin followed by a U-tract. Indeed, the location
of these motifs had very significant overlap with computationally predicted Rho-
independent terminators (28, 29). We then explored whether putative terminator forms
may be associated with transcript stability. Early algorithms designed to identify
intrinsic terminators searched for the canonical sequence motifs that are typically found
in E. coli intrinsic termination: the GC palindrome and the poly(U) tract. Surprisingly, in
many organisms no terminators were found, and it was suggested that they relied on
some yet-uncharacterized termination mechanism (30). More recent algorithms de-
signed to address this issue found that many of these organisms contain hairpin
structures but lack the canonical U-tract and were thus overlooked (31). Terminators
have been classified into several groups with the major one being L-shaped (hairpin
and U-tract) and I-shaped (hairpin with no U-tract). We found that transcripts with
L-shaped terminators had a significantly longer half-life than those with an I-shaped
terminator or no predicted terminator in the 3= UTR, which strongly suggests that
terminator form is predictive of transcript stability in PCC 7002. That said, initial
attempts to stabilize heterologous transcripts with sequences pulled from the stable
cassettes failed.

The observation that an L-shaped terminator may be associated with stable tran-
scripts in PCC 7002, but not an I-shaped terminator, indicates that the U-tract itself may
play an important function in contributing to transcript stability. This could be a direct
effect through the affinity and activity of exoribonucleases on a terminal U-tract or
could be indirect, causing a difference in termination efficiency. It has been suggested
that the U-tract serves as a pausing signal (possibly through backtracking) that facili-
tates the folding of the hairpin, irreversibly trapping the RNA polymerase complex and
disrupting all key contacts between RNA, DNA, and RNA polymerase (32). It is possible
that the presence or absence of the U-tract determines termination efficiency and the
presence or absence of the poly-U’s at the end of a transcript influences transcript
stability. The distinction between different Rho-independent termination structures
could be quite important in cyanobacteria because without a known homolog of Rho
(33, 34), intrinsic termination is likely the dominant termination method. However, the
precise reason for this association with stable transcripts remains unknown and could
be, likely, coupled to the specific RNA transcript sequences upstream or downstream of
the putative L-form terminators. This is especially true as many transcripts with putative
L-form terminators have comparable or lower stability than transcripts without this
putative terminator form. Moreover, around one-fourth of the genes in the energy
metabolism group, as well as the subcategory photosynthesis genes, have L-shaped
terminators (Fig. S5), indicating the role of a gene and the presence of an L-shaped
terminator to be jointly affecting the stability of a gene.

The possibility that the presence and characteristics of a terminator may enhance
stability of a transcript is not unprecedented. The impact of both the hairpin and U-tract
on transcript stability of the E. coli crp transcript was analyzed, and the removal of the
of the G-C hairpin enhanced transcript degradation, but disruption of the U-tract did
not affect transcript stability. Additionally, swapping the terminator for other native
Rho-independent terminators did not change expression level or transcript stability
(35). However, as E. coli was the model organism tested in this study, it is reasonable
to speculate that RNAs may be processed differently in cyanobacteria, especially given
a different repertoire of RNases (23). Indeed, the presence of RNA hairpins at the 3= end
of transcripts may act as a barrier to exonuclease degradation, as several 3=-to-5=
exonucleases cannot degrade secondary structure (RNase II) or require a toehold such
as polyadenylation to initiate degradation (RNase R and PNPase) (36). Nevertheless, it
remains to be seen whether RNases act differently on L- or I-form terminators and, thus,
influence transcript stability in a noncanonical 3=-to-5= direction.

Machine learning-based statistical models were built to systematically explore the
role of different sequence- and structure-based properties of mRNA in the stability of
a transcript. Analyzing the regression coefficients in this model revealed that the
normalized expression level of a transcript, its position within the operon, and the
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ribosome binding site (RBS) strength as predicted by the RBS calculator (37) were three
of the most influential factors (Fig. S3). The effects of expression level and position
within an operon have already been discussed in the preceding paragraphs. A plausible
reason for observing RBS strength as one of the top three influential factors is that the
genes that are being actively translated might be less susceptible to the nuclease
activity.

Several aspects of this data collection and workflow were fundamental to obtaining
high-quality half-lives for most of the PCC 7002 transcriptome. The short time frame of
sampling was extremely important for capturing rapidly decaying messages. Most
studies of RNA degradation have taken an initial time point and then not collected the
next samples until 2.5 or 5 min after addition of rifampin. In all of these studies, the
overall median or average half-life is likely skewed as much of the early mRNA
degradation may have been missed. A study in E. coli that included an 0.5-min time
point also found an extremely low median half-life of 2.8 min in exponential phase and
5.4 min in stationary phase (5).

Another critical aspect of this data set is the use of RNA spike-ins (5). The typical
RNA-sequencing pipeline normalizes to the total number of reads from each sample,
which can greatly distort the results when the pool size of mRNA is shrinking through-
out the time course. RNA spike-ins can be added proportionally to the number of cells
to normalize both for the change in RNA pool size between samples and for variation
between samples introduced during library preparation. The need for RNA spike-ins to
correct for differences in RNA or DNA yields from samples has been addressed
previously (38), but their use has still been quite limited. A standardized set of spike-ins
has been developed for eukaryotes (the External RNA Controls Consortium [ERCC] mix
of 96 polyadenylated transcripts), but there is no standardized set for use in pro-
karyotes. We hope that RNA spike-ins become standard for future RNA degradation
studies and that the methods described in this work and reference 5 will enable robust
measurements of RNA half-lives in other prokaryotes.

This data set can also be probed to ask other fundamental questions about RNA
degradation such as the potential directionality of transcript degradation. Early E. coli
measurements using microarrays suggested that degradation occurs in a 5=-to-3=
direction by analyzing operons containing 2 or more ORFs (7). Similar findings were
found in the slow-growing cyanobacterium Prochlorococcus MED4, where stability
correlated with distance from the transcription start site (13). This 5=-to-3= directionality
was also observed within monocistronic transcripts. In B. cereus, researchers observed
a mix of 5=-to-3= degradation, 3=-to-5= degradation, and more complex patterns (9).
Here, we also observed a 5=-to-3= directionality of degradation where the half-life
increased with distance along an operon (Fig. S2 and S3). The 5=-to-3= directionality
may be caused by strong RNase J (5=-to-3= exonuclease) activity or RNase E processively
cleaving transcripts in this direction.

Alternatively, the observed 5=-to-3= directionality may be caused by the use of
rifampin to stop transcription. Rifampin binds the � subunit of RNA polymerase and
blocks the channel for the elongating RNA (39). This blockage prevents extension of the
RNA beyond 2 or 3 nucleotides but has no effect on elongating RNA polymerases.
Researchers have noticed a delay before transcripts begin to decay for locations
downstream of the transcription start site (5). They showed that this delay disappeared
when streptolydigin (an antibiotic that prevents transcription elongation) was used in
place of rifampin. The change in this delay due to residual transcription was used to
calculate the elongation rate, 25 nucleotides per second on average. The effect of
residual transcription after rifampin addition was estimated to be less than 30 s for E.
coli (40).

Despite these drawbacks, rifampin has been used in all RNA-sequencing and
microarray studies to examine global transcript degradation. This is due to rifampin
availability and cost. The confounding influence on half-life calculations may be min-
imal when initial time points are not taken until 2.5 or 5 min after rifampin addition, but
it may significantly influence half-lives when samples are taken early. This effect would
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be even more exaggerated with greater global transcription elongation rates. There is
little known about cyanobacterial transcription rates, but in vitro data comparing RNA
polymerase from Synechococcus sp. strain PCC 7942 and Thermosynechococcus elonga-
tus BP-1 with that from E. coli showed that the cyanobacterial enzymes took six times
longer to complete the same transcript (41). Additionally, there were significant differ-
ences in levels of abortive transcription and misincorporation. The global differences in
transcriptional machinery and transcription rates must also be considered when com-
paring global degradation rates between organisms. We hypothesize that the 5=-to-3=
directionality we see in degradation in this cyanobacterial data set may be entirely due
to the use of rifampin and residual transcription.

The conditions during sampling may have a large impact on RNA half-life. These
cyanobacterial RNA half-lives were determined at an optical density (OD730) of �0.2,
which is between late exponential and early linear phase for the environmental
conditions used. We chose this growth phase because we wanted to examine actively
growing and dividing cells. This could be why we saw high stability and abundance of
mRNA encoded by photosynthesis genes. In this time period, cells were growing rapidly
and needed to produce high levels of photosynthesis machinery. Transcript degrada-
tion, however, is likely influenced by many factors including growth phase, growth rate,
and environmental changes. There is an increasing body of evidence that RNase activity
and expression can be influenced by inhibitors (42), temperature (43), growth phase
(44), and osmolarity (45). The findings described here are from one experimental
condition and would likely be different under other conditions. To gain a better
understanding of global RNA degradation, it will be necessary to examine global decay
rates under many different conditions and to identify which specific RNases are affected
under these conditions. Ultimately, a global understanding of transcript degradation
would enable accurate predictions of transcript half-life given its sequence, but cur-
rently there is a lack of knowledge of how transcript stability is regulated and how
different sequence elements impact RNA processing and degradation.

MATERIALS AND METHODS
Sampling. Wild-type Synechococcus sp. PCC 7002 (Pasteur Culture Collection) was cultivated in a

temperature-controlled environment (37°C) with light provided by cool white fluorescent lights (4,100 K).
A �80°C frozen stock of PCC 7002 was streaked on A� medium (46) solidified with 1.5% agar and grown
under continuous illumination at 115 �mol photons · m�2 · s�2 for 4 days and then used to inoculate
liquid cultures. All liquid cultures were bubbled with air and continuous illumination of 215 �mol
photons · m�2 · s�2. A glass culture tube containing 21 ml A� medium was inoculated from plates and
grown for 24 h. The OD730 was measured and used to inoculate 3 separate bubble tubes containing 21 ml
A� medium at an OD730 of 0.1, which were grown for 24 h. The OD730 was measured, and 3 separate
1-liter bottles containing 900 ml of A� medium were inoculated with preculture to achieve an OD730 of
0.01. Cultures were bubbled with air and grown with continuous illumination for 22 h to reach an OD730

of �0.2 before sampling.
Two milliliters of each culture was collected for cell counts via hemocytometer and OD730 measure-

ments. Forty milliliters of culture was collected, deposited into a 50-ml conical tube containing 5.0 ml
stop solution (10% phenol in ethanol), and placed on ice. Rifampin was added at a concentration of
200 �g/ml (in dimethyl sulfoxide [DMSO]), and samples were taken as described above at 0.5, 1, 2.5, 5,
7.5, and 10 min following addition. Samples were spun down in a Beckman Coulter Avanti J-E centrifuge
at 7,500 � g for 10 min at 4°C. The supernatant was carefully aspirated to prevent loss of cells, and
samples were flash frozen in liquid nitrogen and stored at �80°C until RNA extraction (�1 week).

Processes regulated by circadian rhythms or light-dark cycles could have significant and important
influences on gene expression levels and decay rates in addition to overall cellular physiology. To avoid
complexity introduced by these variables, continuous illumination was used for precultures and exper-
imental growth conditions. Several tradeoffs were considered during experimental design. First, because
light shading in optically dense cultures attenuates growth, we chose to use rapidly growing dilute
cultures at late exponential/early linear growth phase (OD730 of �0.2). Thus, dilute cultures were
harvested via centrifugation. There was some flotation of the cultures which led to pelleting on the side
of the vial, but since they were centrifuged in 50-ml vials, the supernatant could be carefully aspirated
without disruption or loss of the pellet. Careful harvesting and extraction are crucial aspects of these
experiments, and extra care was taken at each step. It is possible that residual RNase activity could affect
the measurements. Therefore, we used a quench solution and rapid cooling to prevent residual activity,
which would be much more likely before hot-phenol extraction. In addition, we added RNA spike-ins at
the extraction step to account for residual RNase activity. The decay curves were fitted to an exponential
decay model, and multiple replicates were used to compare samples and provide statistical support to
the overall findings. Biological replicates can reduce the error due to potential RNase activity.
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RNA spike-in preparation. RNA spike-ins were used for normalization to ensure that read counts
corresponded to RNA copy number. Six RNA spike-ins from bacteriophage �X174 were used as in
reference 5. DNA templates for in vitro transcription were created by including the T7 promoter sequence
in the primer sequence (see Table S2 in the supplemental material) and amplifying �X174 DNA (New
England Biolabs; catalog no. N3023S). DNA templates were purified with ethanol precipitation and used
to synthesize RNA with the T7 RiboMAX Express large-scale RNA production system (Promega; catalog
no. P1320). RNA was purified with ethanol precipitation and quantified via NanoDrop. RNA spike-ins were
combined to obtain a range of copy numbers per cell (gene H, 0.1 copy/cell; gene D, 1 copy/cell; genes
F and G, 10 copies/cell; fragment 290, 100 copies/cell; and fragment 190, 1,000 copies/cell).

RNA extraction and sequencing. RNA spike-ins were added to samples immediately before
extraction with hot phenol and DNase treatment as in reference 47. RNA was quantified via NanoDrop,
quality verified with the Bioanalyzer, and submitted to the University of Wisconsin Madison Biotechnol-
ogy Gene Expression Center for library preparation and sequencing. rRNA was removed with a Ribo-Zero
magnetic kit, and cDNA was creating with a TruSeq stranded total RNA library kit. Libraries were
sequenced on an Illumina HiSeq 2500 (1 � 100).

RNA spike-in normalization and half-life determination. Sequencing files were aligned to the PCC
7002 chromosome and plasmids (NC_010474 to NC_010480) as well as the �X174 genome (NC_001422)
with Bowtie 2 (v. 2.2.6) and SAMtools (v 1.2). The HTSeq count function (v 0.6.1) was used to count the
number of reads that aligned to each feature. A linear relationship between log RNA spike-in copy
number and read counts was observed only for spike-ins added at a ratio of 0.01 to 10 copies/cell, so only
these were used for normalization (Fig. S1). All PCC 7002 transcripts were within this range, and all
samples had a good correlation between log RNA spike-in copy number and read count with all R2 values
being between 0.971 and 0.999. The sum of the reads that aligned to the spike-ins was calculated for
each sample and used to create a normalization factor to keep the sum of reads that aligned to the
spike-ins constant throughout the time course.

We combined data from all 3 biological replicates and used all 21 points to fit an exponential decay
model. Degradation of many transcripts was extremely rapid, and read counts were close to zero for
many later time points, so we determined the best number of time points to include based on the fit.
We used the half-life corresponding to the highest R2 fit of using the first 3, 4, 5, 6, or all 7 time points.
Based on our ability to calculate a half-life, we classified all transcripts as either “decay,” “stable,” “low_r2,”
or “no_reads.” A full list of transcripts and calculated half-lives can be found in Table S3 organized
by ORF.

Motif enrichment. Using MEME (24), we searched for enriched motifs in both the upstream 150-bp
region and downstream 100-bp region of each ORF. Using discriminative mode, we looked for motifs
enriched in the sequences of the 400 most stable transcripts compared to the control 400 least stable
transcripts. We looked for site distributions of zero or one occurrence per sequence (zoops) and looked
in the coding strand only. Top hits always included the highly iterative palindrome 1 (HIP1, 5=-GGCGA
TCGCC-3=) sequence. This sequence is a target of methylation in other cyanobacteria and may be
involved in modes of DNA repair (48, 49). However, its role in PCC 7002 remains unexplained.

Terminator analysis. The types and locations of terminators were extracted from the Web Genome
Scanner for Terminators Database (WebGeSTer DB) (25). The input parameters for identification of
terminators were maximum stem length of 12, minimum stem length of 4, maximum loop length of 8,
minimum loop length of 3, maximum mismatch of 3, maximum distance from ORF of 270, and a
species-specific ΔG cutoff of �11.618 kcal/mol.

Machine learning-based model building and analysis. A variant of random forest regression, often
referred to as extremely randomized trees-based regression (50), was used in this work. Conventionally,
a random forest approach builds an ensemble model by combining decision trees built on bootstrap
sampled data sets as well as using a random subset of features to identify the best candidate feature for
splitting at each node (51). This randomization helps increase the variability among the individual
decision trees built and also helps speed up the process of model building as one does not have to
analyze the complete set of features (�200,000 features for UTR sequence motif analysis). The extremely
randomized trees approach uses an additional layer of randomization by randomly choosing thresholds
at each node rather than computing the most discriminative threshold at each step. This helps reduce
the variance component of error for the ensemble model built by averaging the predictions across
individual trees at the cost of a minor increase in bias.

The optimal values for hyperparameters, max_features (number of features to consider when looking
for best split expressed in terms of fraction) and min_samples_split (the minimum number of samples
required to split an internal node), were found to be 0.5 and 100 based on a grid search over the range
[0.1, 0.2, 0.3, 0.5, 0.7, 0.9] and [2, 5, 10, 50, 100, 200, 500, 1,000], respectively, under 10-fold cross-
validation. Number of estimators was set to 100 decision trees.

The feature importance scores were computed based on mean decrease in impurity measures, and
the distribution of sequence motif in training set was used to determine whether a particular motif is
stabilizing or destabilizing in nature. In general, the features that show up at the top of a decision tree
are considered more important as they contribute to predictive decision of a larger fraction of samples.
The importance of a node in a decision tree can be determined by computing the decrease in impurity
metric for the node weighted by the fraction of samples arriving at that node (Fig. S6). Feature
importance scores can then be computed by averaging the node importance scores pertaining to the
feature and then averaging it across all trees in the forest. For regression setting, the impurity metric is
computed based on decrease in mean squared error (or variance), while for classification setting, the
impurity metric is computed based on the Gini index which is defined as follows:
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Gini indexj ��
i�1

C

fi(1 � fi)

where j is the node index, i is the label index, c denotes the cardinality of classes, and f is the fraction
of samples belonging to class i.

Biophysical feature-based maximum likelihood (ML) statistical analysis. A set of 19 biophysical
features ranging from simple sequence-based features such as length of the transcript and GC content
of the coding region to mRNA secondary structure-based minimum free energy for folding were
computed for each of the 2,949 genes in the half-life data set (Table S3). Binary features were converted
into Boolean values (0 or 1), categorical features were converted into binary strings using one-hot
encoding, and numerical features were normalized using min-max scaling. Later, support vector regres-
sion with linear kernel was used to predict half-life values and the values of regression coefficients were
used to assess the relative importance of features.

Accession number(s). Raw sequencing files have been deposited in NCBI’s Sequence Read Archive
(accession number SRP130967). Half-lives of transcripts and per-base-count data have been deposited at
the Gene Expression Omnibus (accession number GSE109174).
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