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Abstract: Whole genome sequencing (WGS) of Salmonella supports both molecular typing and
detection of antimicrobial resistance (AMR). Here, we evaluated the correlation between phenotypic
antimicrobial susceptibility testing (AST) and in silico prediction of AMR from WGS in Salmonella
enterica (n = 1321) isolated from human infections in Canada. Phenotypic AMR results from broth
microdilution testing were used as the gold standard. To facilitate high-throughput prediction of
AMR from genome assemblies, we created a tool called Staramr, which incorporates the ResFinder
and PointFinder databases and a custom gene-drug key for antibiogram prediction. Overall, there
was 99% concordance between phenotypic and genotypic detection of categorical resistance for
14 antimicrobials in 1321 isolates (18,305 of 18,494 results in agreement). We observed an average
sensitivity of 91.2% (range 80.5–100%), a specificity of 99.7% (98.6–100%), a positive predictive value
of 95.4% (68.2–100%), and a negative predictive value of 99.1% (95.6–100%). The positive predictive
value of gentamicin was 68%, due to seven isolates that carried aac(3)-IVa, which conferred MICs just
below the breakpoint of resistance. Genetic mechanisms of resistance in these 1321 isolates included
64 unique acquired alleles and mutations in three chromosomal genes. In general, in silico prediction
of AMR in Salmonella was reliable compared to the gold standard of broth microdilution. WGS can

Microorganisms 2022, 10, 292. https://doi.org/10.3390/microorganisms10020292 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10020292
https://doi.org/10.3390/microorganisms10020292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0003-4171-9436
https://orcid.org/0000-0003-2712-0961
https://doi.org/10.3390/microorganisms10020292
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10020292?type=check_update&version=2


Microorganisms 2022, 10, 292 2 of 10

provide higher-resolution data on the epidemiology of resistance mechanisms and the emergence of
new resistance alleles.

Keywords: antimicrobial resistance; whole-genome sequencing; molecular epidemiology; AMR
prediction; Salmonella

1. Introduction

Salmonella spp. are a major cause of foodborne illness that can produce symptoms rang-
ing from mild gastrointestinal illness to more severe invasive infections such as bacteremia.
Invasive infections with nontyphoidal Salmonella accounted for an estimated 535,000 human
cases and 59,100 deaths in 2017 globally [1,2]. While most cases are self-limiting, antimicro-
bials may be prescribed for invasive infections and for serious gastrointestinal infections in
young infants, the elderly, and immunocompromised individuals [3]. Recommended an-
timicrobial treatments include ceftriaxone, ciprofloxacin, trimethoprim/sulfamethoxazole,
or amoxicillin [3].

Antimicrobial resistance (AMR) in Salmonella, including multidrug resistance, is in-
creasing [4–9]. Surveillance of AMR can help inform treatment guidelines and policies
on antimicrobial stewardship in human and veterinary medicine. Traditional antimicro-
bial susceptibility testing (AST) is performed with phenotypic methods, including broth
microdilution, disc diffusion, and Etest strips. Advances in the speed and cost of whole-
genome sequencing (WGS) is transforming microbiology [10]. Globally, countries are
transitioning to WGS for epidemiological surveillance, including detection of outbreaks,
and detection of AMR in Salmonella and other pathogens [10]. Genetic mechanisms of
resistance are relatively well characterized in Salmonella, which facilitates in silico AMR
prediction [11].

There are many databases and tools for AMR detection, such as CARD, AMRFinder,
ARG-ANNOT, and ARIBA [12–15]. Each tool has its strengths and limitations, and differ-
ent countries have adopted different approaches for genotypic AMR detection [10]. The
Center for Genomic Epidemiology (CGE) in Denmark has published databases for acquired
resistance genes (ResFinder), chromosomal mutations (PointFinder), and plasmids (Plas-
midFinder) [16–18]. CGE’s web-based tools to query these databases can help low- and
middle-income countries to overcome challenges in the implementation of in silico AMR
detection; however, the offline versions of these tools do not currently process samples in
batches [19].

Here, we describe a new tool called Staramr, which was created to query the CGE
databases in high throughput. Staramr uses a BLAST-based approach to scan bacterial
genome contigs for antimicrobial genes and mutations and compiles a summary report of
genetic mechanisms and predicted antibiogram based on a gene-drug key developed by
the United States Centers for Disease Control (US CDC). We used Staramr to evaluate the
reliability of in silico AMR detection from WGS for Salmonella enterica isolated from human
infections in Canada.

2. Methods

Bacterial isolates. The Canadian Integrated Program for Antimicrobial Resistance
Surveillance (CIPARS) collects human clinical isolates of Salmonella from all ten provincial
public health laboratories in Canada. Further details on the methods used by CIPARS are
described in the Design and Methods section of the annual report [20]. Our study included
all isolates of Salmonella enterica collected from January to June 2017 that were tested by
both broth microdilution and WGS (n = 1321).

Antimicrobial susceptibility testing (AST). AST was carried out by broth microdilu-
tion using the Sensititer Automated Microbiology System (Trek Diagnostic Systems Ltd.,
Westlake, OH, USA). We used clinical breakpoints established by the Clinical Laboratory
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Standards Institute M100:ED27 for all drugs except streptomycin, where an epidemiologi-
cal cut-off of 64 mg/L was used [21]. Fourteen antimicrobials on the CMV4AGNF panel
were tested, including amoxicillin/clavulanic acid (AMC), ampicillin (AMP), azithromycin
(AZM), chloramphenicol (CHL), ciprofloxacin (CIP), ceftriaxone (CRO), cefoxitin (FOX),
sulfisoxazole (FIS), gentamicin (GEN), meropenem (MEM), nalidixic acid (NAL), strep-
tomycin (STR), sulfisoxazole/trimethoprim (SXT), and tetracycline (TET). This panel is
also used by the National Antimicrobial Resistance Monitoring System (NARMS) [22].
CIPARS routinely carries out susceptibility testing on eleven Salmonella serotypes (4,[5],12,i:-
, Dublin, Enteritidis, Heidelberg, Infantis, Kentucky, Newport, Paratyphi A, Paratyphi B,
Typhi, and Typhimurium), which were chosen because they are frequently isolated from
human samples or frequently multidrug-resistant. In addition to routine testing of these
11 serotypes, other serotypes were tested by request or for research projects.

Whole-genome sequencing and assembly. PulseNet Canada conducts short-read WGS
on all Salmonella from human-source infections. DNA extractions were carried out with the
Epicentre Complete DNA and RNA Extraction Kit (Illumina Inc, San Diego, CA, USA) or
the DNeasy blood and tissue kit (Qiagen, Germantown, MD, USA). Libraries were prepared
with the Nextera XT kit and sequencing was carried out on the Miseq platform with the
Miseq Reagent v3 600 cycle kit (Illumina Inc, San Diego, CA, USA). Isolates with coverage
below 40× and an average Q-score ≤ 30 were re-sequenced. Genomes were assembled
within Bionumerics v7.6.3 using spades v3.7.1 [23] with a minimum contig length of
1000. The quality of the assemblies was assessed within BioNumerics v7.6.3; isolates with
≥200 contigs or a genome size outside the range of 4.4 to 6.0 Mb were re-sequenced.

Staramr and genotypic AMR prediction. Determinants of antimicrobial resistance and
plasmids were detected with the Public Health Agency of Canada’s Staramr tool, which
is available at https://github.com/phac-nml/staramr (date accessed 14 December 2021),
as a Python package at https://pypi.org/project/staramr/ (date accessed 14 December
2021), as a bioconda package (name: staramr), and also as a tool in the Galaxy bioinfor-
matics analysis platform (https://academic.oup.com/nar/article/46/W1/W537/5001157,
date accessed 14 December 2021). The current version of staramr (0.7.2) was also de-
posited to Zenodo (https://doi.org/10.5281/zenodo.5866712). The current version of
Staramr, which was written in the Python programming language, incorporates BLAST [24]
ResFinder, PointFinder, and PlasmidFinder databases [16,17] as well as the PubMLST
databases (https://pubmed.ncbi.nlm.nih.gov/30345391/, date accessed 3 February 2020)
using the software mlst (https://github.com/tseemann/mlst, date accessed 3 February
2020). Staramr v0.7.0 or later also applies quality metrics for the assembly, including: max
number of contigs: 1000; min contig length: 300; min N50 length: 10,000; and genome
size range: 4 Mb-6.5 Mb. For this study, Staramr v0.2.1 was used with ResFinder database
version e8f1eb2585cd9610c4034a54ce7fc4f93aa95535 (July 2018) and PointFinder database
version 8706a6363bb29e47e0e398c53043b037c24b99a7 (July 2018). The parameters used for
the Staramr query were: percent identity threshold for BLAST: 98, percent length overlap of
BLAST hit for ResFinder database: 52, percent length overlap of BLAST hit for PointFinder
database: 95.

Sequence accession. PulseNet Canada deposits sequence reads of Salmonella enterica to
the National Center for Biotechnology Information in Bioproject PRJNA543337.

3. Results

Staramr tool for genotypic AMR prediction. Staramr can be used to (1) detect resis-
tance genes and point mutations in assembled contigs, (2) apply a gene-drug key to produce
a predicted antibiogram, and (3) provide assembly statistics, plasmids and the MLST type
of the genome. The program utilizes CGE’s ResFinder, PointFinder, and PlasmidFinder
databases as well as PubMLST databases. Staramr (* amr) was named after the asterisk
(star) character, which is often used as a wildcard when searches are performed within
software. The gene aac(6′)-Iaa was frequently detected but did not confer resistance to any
antimicrobial; therefore, the script was revised to reject this gene at the antibiogram predic-

https://github.com/phac-nml/staramr
https://pypi.org/project/staramr/
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https://pubmed.ncbi.nlm.nih.gov/30345391/
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tion step. This gene is reported to be cryptic [25]. For PointFinder, the minimum length
was set to 95% to ensure that the correct gene was captured. For ResFinder, a truncated
but functional sul1 was sometimes detected in S. Typhimurium; the threshold of minimum
length of the BLAST hit was thus lowered to 52% (from the default of 60%) when querying
Salmonella, which improved overall sensitivity but did not affect specificity. The nucleotide
ID threshold for ResFinder was set to 98% ID, as recommended by Zankari et al. [16].

Comparison of phenotypic and genotypic AMR detection. Genotypic AMR prediction
was conducted with Staramr, and MICs were produced by broth microdilution testing.
We compared phenotypic and genotypic resistance for 14 antimicrobials belonging to ten
classes. Staramr predicts categorical resistance (resistant or non-resistant) for all drugs
except for ciprofloxacin, which was categorized as either intermediate/resistant or suscep-
tible. Of 1321 isolates, 529 displayed resistance to one or more antimicrobials for a total of
1572 instances of resistance in the dataset.

There was an overall correlation of 99.0% between phenotypic and genotypic detection
of categorical resistance for 14 drugs against 1321 isolates (18,305 of 18,494 results in
agreement). Using broth microdilution results as the gold standard, genotypic AMR
prediction displayed average sensitivity of 91.2% (range 80.5–100%), specificity of 99.7%
(98.6–100%), positive predictive value (PPV) of 95.4% (68.2–100%), and negative predictive
value (NPV) of 99.1% (95.6–100%) (Table 1).

The sensitivity of detection, which is the ability of the genotypic test to detect antimi-
crobial resistance (true positive rate), was >90% for 10 antimicrobials: ampicillin, chloram-
phenicol, ciprofloxacin, ceftriaxone, sulfisoxazole, gentamicin, meropenem, streptomycin,
sulfisoxazole/trimethoprim, and tetracycline. The antimicrobials with sensitivity <90%
were amoxicillin/clavulanic acid, azithromycin, cefoxitin, and nalidixic acid. For amoxi-
cillin/clavulanic acid, the sensitivity was 87.8% due to 5/41 phenotypically resistant isolates
being missed by the genotypic method (three of the five missed isolates contained blaCARB-2).
In our dataset, 41/49 (84%) of isolates containing blaCARB-2 had amoxicillin/clavulanic
acid MIC that was one two-fold dilution below the resistance breakpoint (intermediate
category), three were resistant and five were susceptible. Thus, blaCARB-2 appears to confer
reduced susceptibility to amoxicillin/clavulanic that is usually just below the resistance
break point. Azithromycin detection had a sensitivity of 83.3% due to 2/10 azithromycin
resistant isolates being missed by genotypic detection while cefoxitin displayed a sensitivity
of 80.5% due to 8/41 resistant isolates being missed. These exceptions may be due to porin
mutations or plasmid loss. For nalidixic acid, 49/251 nalidixic acid resistant isolates were
missed by genotypic detection resulting in a sensitivity of 80.5%. Of these 49 false negatives,
32 (65%) contained the quinolone resistance gene qnrB19, which Staramr currently predicts
as conferring ciprofloxacin intermediate/resistance but not nalidixic acid-resistance. In
our dataset, of 35 isolates containing qnrB19, 32 isolates were nalidixic acid-resistant, two
had MIC of one two-fold dilution below the resistance breakpoint and one was susceptible.
If the interpretation of qnrB19 was changed from only “CIP-I/R” to both “CIP-I/R, and
NAL-R”, the sensitivity of detection of nalidixic acid would increase from 80.5% to 93.2%.

The specificity of the genotypic detection of AMR, which is the ability of the geno-
typic test to detect susceptbility (true negative rate), was high for all drugs, ranging from
98.6% for streptomycin to 100% for azithromycin, meropenem, sufisoxazole, sulfamethoxa-
zole/trimethoprim, and tetracycline.



Microorganisms 2022, 10, 292 5 of 10

Table 1. Comparison of phenotypic and in silico AMR prediction in Salmonella enterica (n = 1321) for
14 antimicrobials.

Phenotype Resistant a Phenotype Susceptible a

Class and
Antimicrobial c

Genotype
Resistant

Genotype
Susceptible

Genotype
Resistant

Genotype
Susceptible

Concordance
(%)

Sensitivity
(%) b

Specificity
(%) b

PPV
(%) b

NPV
(%) b

Aminoglycoside

GEN 15 1 7 1298 99.4 93.8 99.5 68.2 99.9

STR 162 16 16 1127 97.6 91.0 98.6 91.0 98.6

Beta-lactam/beta-lactam inhibitor

AMC 36 5 1 1279 99.5 87.8 99.9 97.3 99.6

Carbapenem

MEM 0 0 0 1321 100.0 100.0 100.0 100.0 100.0

Cephem

FOX 33 8 4 1277 99.2 80.5 99.7 89.2 99.5

CRO 48 3 1 1269 99.7 94.1 99.9 98.0 99.8

Folate pathway inhibitors

FIS 179 9 0 1133 99.3 95.2 100.0 100.0 99.2

SXT 47 5 0 1269 99.6 90.4 100.0 100.0 99.6

Macrolide

AZM 10 2 0 1309 99.8 83.3 100.0 100.0 99.8

Penicillin

AMP 182 9 2 1128 99.2 95.3 99.8 98.9 99.2

Phenicol

CHL 95 5 1 1220 99.5 95.0 99.9 99.0 99.6

Quinolones

CIP I/R 259 20 2 1040 98.3 92.8 99.8 99.2 98.1

NAL 202 49 13 1057 95.3 80.5 98.8 94.0 95.6

Tetracycline

TET 162 10 0 1149 99.2 94.2 100.0 100.0 99.1

Total/Average 1431 141 47 16,876 99.0 91.2 99.7 95.4 99.1
a Resistant and susceptible phenotypes were determined by broth microdilution testing and interpreted according
to CLSI guidelines; for streptomycin a breakpoint of 64 mg/L was used and for ciprofloxacin the intermediate
and resistant categories were combined. b Sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) were calculated for the genotypic test using broth microdilution as the gold standard
c Antimicrobials tested were amoxicillin/clavulanic acid (AMC), ampicillin (AMP), azithromycin (AZM), chlo-
ramphenicol (CHL), ciprofloxacin (CIP), ceftriaxone (CRO), cefoxitin (FOX), sulfisoxazole (FIS), gentamicin
(GEN), meropenem (MEM), nalidixic acid (NAL), streptomycin (STR), sulfisoxazole/trimethoprim (SXT), and
tetracycline (TET).

The PPV is the probability that an isolate that is predicted to be resistant by the
genotypic test is actually resistant. This metric differs from sensitivity because it takes
into account the prevalence of resistance in a population. The PPVs were >90% for all
drugs except gentamicin and cefoxitin. For gentamicin, the PPV of 68.2% was due to
7 genotypic false positive isolates out of 1305 phenotypically susceptible isolates. All seven
false positives carried an aac(3)-IVa gene and were predicted to be gentamicin resistant
but had MICs of one or two two-fold dilutions below the resistance breakpoint. Only two
isolates carrying aac(3)-IVa were phenotypically resistant. Thus, aac(3)-IVa appears to confer
MICs close to the CLSI breakpoint for gentamicin. Cefoxitin had a PPV of 89.2% due to
4 genotypic false positives out of 1281 phenotypically susceptible isolates. Three of the four
phenotypically susceptible isolates carried blaCMY-2 and had MICs that were one two-fold
dilution below the resistance breakpoint while one isolate carried blaCMY-4. Thus, both
antimicrobials with lower PPVs were mainly due to genes that conferred MICs just below
the CLSI resistance breakpoint.

The negative predictive value is the probability that an isolate that is predicted to be
susceptible by the genotypic test is actually susceptible. This metric differs from specificity
because it takes into account the prevalence of resistance in a population. The negative
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predictive values for genotypic AMR detection ranged from 95.6% for nalidixic acid to
>98% for the other 13 drugs.

Isolates showing discrepancies to ≥2 drugs were retested by broth microdilution, but
categorical results did not change significantly (data not shown). Resistance determinants
were also detected for antimicrobials that were not routinely tested during the study period
such as fosfomycin (n = 156), kanamycin (n = 140), hygromycin (n = 9), lincomycin (n = 1),
rifampin (n = 1) and colistin (n = 1). Colistin has since been added to the broth microdilution
antimicrobial panel that is used for routine testing by NARMS and CIPARS due to renewed
interest in this drug as a last resort treatment for highly drug-resistant organisms.

Mechanisms of resistance. In total, we detected 64 alleles of acquired genes and
mutations in three chromosomal genes (Table 2). For beta-lactams (ampicillin, amoxi-
cillin/clavulanic acid, cefoxitin, ceftriaxone, or meropenem) 13 unique beta-lactamase
genes were identified, with most conferring resistance to ampicillin only. No determi-
nants for meropenem resistance were detected, consistent with MIC testing. The most
common ampicillin resistance genes were blaTEM-1B (n = 90) and blaCARB-2 (n = 49) (Table 2).
We detected AmpC-type beta-lactamases encoded by blaCMY-2 (n = 33), blaCMY-44 (n = 2),
blaCMY-4 (n = 1), and blaCMY-54 (n = 1), which confer resistance to all of the beta-lactams
tested except meropenem. We also detected the extended spectrum beta-lactamase (ESBL)
alleles blaCTX-M-65 (n = 8), blaCTX-M-55 (n = 3), and blaCTX-M-9 (n = 1). For folate pathway in-
hibitors, resistance was mediated by alternative targets that are insensitive to drugs. Genes
sul1 (n = 95) and sul2 (n = 103) accounted for 96% (198/206) of sulfisoxazole resistance,
while dfrA1 (n = 13), dfrA7 (n = 11), dfrA12 (n = 8), and dfrA14 (n = 8) accounted for 85%
(40/47) of sulfamethoxazole/trimethoprim resistance. For quinolones, ciprofloxacin non-
susceptibility (intermediate and resistant categories) was conferred by plasmid-mediated
quinolone resistance (PMQR) determinants, which protect the DNA-enzyme complex from
inhibition. We detected the PMQR genes qnrB19 (n = 37), qnrS1 (n = 8), qnrA1 (n = 5), qnrB6
(n = 1)) and aac(6′)-Ib-cr (n = 1). Mutations in the quinolone resistance determining regions
(QRDR) of the targets gyrA, gyrB and parC were predicted to confer both nalidixic acid
resistance and ciprofloxacin non-susceptibility. QRDR mutations in gyrA were the most
common and included S83F (n = 100), D87N (n = 58), D87Y (n = 28), S83Y (n = 21) and
D87G (n = 11) variants. The gyrB variants E466D (n = 13) and (S464Y) (n = 2), and the parC
variants S80I (n = 17) and E84G (n = 1) were also detected.

Several classes of antimicrobials that act on the ribosome were tested. For amino-
glycosides (gentamicin and streptomycin), 15 unique genes were identified encoding
aminoglycoside-modifying enzymes belonging to all three classes (acetyltransferases, nu-
cleotidyltransferases, and phosphotransferases). Genes aac(3)-IVa (n = 9) and aac(3)-VIa
(n = 8), accounted for 74% (17/23) of gentamicin resistance, while aph(3”)-Ib (n = 91), aadA2
(n = 64), and ant(3”)-Ia (n = 19) accounted for 90% (174/193) of streptomycin resistance.
For the macrolide category, resistance to azithromycin was conferred by the antibiotic
inactivation genes mph(A) (n = 9) and erm(B) (n = 1), while in the phenicol category, resis-
tance to chloramphenicol was conferred by the floR (n = 79) transporter and catA1 (n = 11)
inactivation enzyme in 89% (90/101) of isolates. Tetracycline resistance was conferred by
genes encoding efflux proteins (tet(A) (n = 68), tet(B) (n = 55), and tet(G) (n = 44)), and the
ribosomal protection enzyme tet(M) (n = 4).
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Table 2. Genetic mechanisms of resistance detected in Salmonella enterica (n = 1321).

Predicted Phenotype Genetic Resistance Determinants

Aminoglycosides

gentamicin (n = 23) aac(3)-IVa (n = 9), aac(3)-VIa (n = 8), aac(3)-Id (n = 3), aac(3)-IId (n = 2), aac(6′)-Ib-cr
(n = 1)

gentamicin, kanamycin (n = 1) ant(2”)-Ia (n = 1)

streptomycin (n = 193) aph(3”)-Ib (n = 91), aadA2 (n = 64), ant(3”)-Ia (n = 19), aadA1 (n = 9), strA (n = 4),
aadA7 (n = 3), aadA16 (n = 1), aadA22 (n = 1), aph(6)-Ic (n = 1)

Beta-lactams

ampicillin (n = 146) blaTEM-1B (n = 90), blaCARB-2 (n = 49), blaTEM-206 (n = 3), blaTEM-1A (n = 2),
blaTEM-1C (n = 1), blaTEM-90 (n = 1)

ampicillin, amoxicillin/clavulanic acid, cefoxitin, ceftriaxone (n = 37) blaCMY-2 (n = 33), blaCMY-44 (n = 2), blaCMY-4 (n = 1), blaCMY-54 (n = 1)

ampicillin, ceftriaxone (n = 12) blaCTX-M-65 (n = 8), blaCTX-M-55 (n = 3), blaCTX-M-9 (n = 1)

Folate Pathway Inhibitors

sulfisoxazole (n = 206) sul2 (n = 102), sul1 (n = 95), sul3 (n = 9)

trimethoprim (n = 47) dfrA1 (n = 13), dfrA7 (n = 11), dfrA12 (n = 8), dfrA14 (n = 8), dfrA15 (n = 3), dfrA5
(n = 3), dfrA27 (n = 1)

Macrolides

erythromycin, azithromycin (n = 10) mph(A) (n = 9), erm(B) (n = 1)

Phenicol

chloramphenicol (n = 101) floR (n = 79), catA1 (n = 11), cmlA1 (n = 6), catA2 (n = 3), oqxA (n = 1), oqxB (n = 1)

Quinolones

ciprofloxacin I/R (n = 52) qnrB19 (n = 37), qnrS1 (n = 8), qnrA1 (n = 5), aac(6′)-Ib-cr (n = 1), qnrB6 (n = 1)

ciprofloxacin I/R, nalidixic acid (n = 251)
gyrA (S83F) (n = 100), gyrA (D87N) (n = 58), gyrA (D87Y) (n = 28), gyrA (S83Y)
(n = 21), parC (S80I) (n = 17), gyrB (E466D) (n = 13), gyrA (D87G) (n = 11), gyrB

(S464Y) (n = 2), parC (E84G) (n = 1)

Tetracycline

tetracycline (n = 171) tet(A) (n = 68), tet(B) (n = 55), tet(G) (n = 44), tet(M) (n = 4)

Not tested phenotypically

fosfomycin (n = 156) fosA7 (n = 150), fosA3 (n = 6)

kanamycin (n = 140) aph(6)-Id (n = 96), aph(3′)-Ia (n = 42), aph(3′)-IIa (n = 2)

hygromicin (n = 9) aph(4)-Ia (n = 9)

lincomycin (n = 1) lnu(G) (n = 1)

rifampicin (n = 1) ARR-3 (n = 1)

erythromycin (n = 1) mph(B) (n = 1)

colistin (n = 1) mcr-3 (n = 1)

4. Discussion

We developed and evaluated the use of an AMR prediction tool called Staramr and
observed a strong correlation between phenotypic and genotypic detection of AMR in
Salmonella. One advantage of Staramr over similar programs is that it evaluates quality
metrics of the input data. Staramr, which uses genome assemblies as input, is not computa-
tionally intensive, so that it can be run on a local computer instead of a high-performance
cluster. We recommend the use of a quick genome assembler such as Shovill/SPAdes
(Shovill: https://github.com/tseemann/shovill, date accessed 18 January 2022; SPAdes:
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.102, date accessed
18 January 2022) [23]. Future work will include adding point mutations for additional
bacterial species from the PointFinder database. Further, antibiogram predictions are an
experimental feature which is continually being improved. The CARD database is not as
yet validated in terms of which genes/mutations confer MICs above a clinical resistance
breakpoint; however, CARD was useful for further analysis of discrepant results.

Genotypic AMR prediction is currently used for surveillance in some countries, but
further validation of its reliability is needed before this test is approved by regulatory
agencies for clinical use. Genotypic results, like phenotypic results, would need to be
subjected to clinical interpretation of which antimicrobials are appropriate for treatment.
The overall concordance between genotypic and phenotypic AMR detection was 99% in

https://github.com/tseemann/shovill
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.102
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Salmonella isolates in Canada. Similar studies in Salmonella from Denmark and the United
States have found concordances of 98.8% (slightly lower for quinolone) and 99% (slightly
lower for aminoglycosides and beta-lactams), respectively [19,26]. The NCBI AMRFinder
tool found a concordance of 98% for Salmonella [13].

The positive and negative predictive values of genotypic detection of AMR were >95%
for all antimicrobials except gentamicin and cefoxitin. For these two drugs, a few false
positive results were obtained from isolates with known resistance genes that conferred
MICs just below the current CLSI breakpoints for resistance. A study by McDermott
et al. found that the greatest number of discrepancies occurred for aminoglycosides and
beta-lactams, notably streptomycin and cefoxitin [26]. Similar to our findings, cefoxitin
false positives in their study carried resistance genes that conferred MICs just below the
resistance breakpoint. If an infection was caused by an isolate known to carry a resistance
gene, that drug may not be the first choice for treatment despite the MIC being slightly
below the breakpoint in in vitro testing. The European Committee for Antimicrobial
Susceptibility Testing (EUCAST) also provides clinical breakpoints for Salmonella, and,
in some cases, the breakpoints are different from CLSI [27]. While phenotypic testing is
considered to be the gold standard, there are several caveats for this method. Variability in
phenotypic results occur due to multiple factors such as amount of inoculum used, and
bacterial growth conditions. Further, the conditions used in vitro do not perfectly mimic
the site of infection.

The gene-drug key is provided with support from the US CDC and is continually
being improved. There were 141 false negatives whereby isolates that were phenotypically
resistant were not predicted to be resistant in the genotypic test. One fifth of these discrep-
ancies might be eliminated by modifying the gene-drug key to interpret qnrB19 as both
CIP-I/R and NAL-R instead of CIP-I/R only. Optimization of the key may be influenced
by strain epidemiology in different geographic locations. In the United States, qnrB19 does
not reliably confer nalidixic acid resistance, perhaps due to different serotype or strain
epidemiology in Canada and the United States. In some cases, such as blaCARB-2 which
usually conferred MIC just below the resistance breakpoint, the current interpretation is ap-
propriate for the CLSI breakpoint, but variation in phenotypic testing or strain dependence
can cause occasional discrepancies. False negatives may also be caused when strains carry
determinants of resistance that are currently undiscovered or fragmented in the assembly;
however, large-scale WGS along with continued phenotypic testing of a subset of isolates
offers opportunities to discover new mechanisms of resistance to strengthen the databases.

Mechanisms of resistance detected in our dataset included 64 unique acquired alleles
and mutations in three genes (gyrA, gyrB, and parC) conferring resistance to all antimicro-
bials that were phenotypically tested except for meropenem. These resistance mechanisms
were mostly similar to those reported in a similar study from the United States, which
detected 65 unique mechanisms [26]. Some of the differences in the two studies may be
due to the fact that Canadian isolates were all from human sources, whereas the majority
of isolates in the US study were from food/animals.

For ciprofloxacin, the intermediate and resistant categories were combined, and the
gene-drug key interprets the presence of any determinant as CIP-I/R. In general, the
presence of a single fluoroquinolone resistance determinant such as a gyrA mutation or
a qnr allele conferred an MIC in the intermediate range, while the presence of multiple
determinants conferred outright resistance. There was a lot of variability in this general
observation; the intermediate and resistant categories were therefore combined. Studies us-
ing machine learning or deep learning approaches with large datasets are being conducted
to produce algorithms for predicting antimicrobial MICs for Salmonella enterica, Neisseria
gonorrhoeae, Klebsiella pneumoniae, and other pathogens [28–30].

One limitation of genotypic-based detection of AMR is the possibility of missing new
resistance genes; thus, CIPARS continues to test 10% of human-source Salmonella using
broth microdilution for continual validation and detection of emerging resistance. On the
other hand, WGS will facilitate the detection of new variants of known resistance genes.
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WGS also allows monitoring of the molecular epidemiology of resistance mechanisms in
different reservoirs to enhance One Health studies of AMR. Genomic databases can be
scanned retroactively when new mechanisms of resistance are discovered; for example,
many institutions conducted retrospective analyses after the discovery of the first mobile
colistin resistance (mcr-1) gene. Genotypic AMR detection also allows monitoring of trends
in specific combinations of genes that produce different multidrug resistance patterns, as
well as monitoring the genetic context of resistance genes, and potential for horizontal
gene transfer.

In summary, in silico prediction of AMR from WGS for Salmonella from humans in
Canada was reliable. This method can yield a wealth of additional data that is not routinely
generated from phenotypic testing, such as the genetic context of resistance and surveillance
of the molecular epidemiology of resistance determinants.
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