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Abstract

Protein kinases, key regulators of intracellular signal transduction, have emerged as an important 

class of drug targets. Chemical proteomic tools that facilitate the functional interrogation of 

protein kinase active sites are powerful reagents for studying the regulation of this large enzyme 

family and for performing inhibitor selectivity screens. Here we describe a new crosslinking 

strategy that enables rapid and quantitative profiling of protein kinase active sites in lysates and 

live cells. Applying this methodology to the SRC-family kinases (SFKs) SRC and HCK led to the 

identification of a series of conformation-specific, ATP-competitive inhibitors that display a 

distinct preference for autoinhibited forms of these kinases. Furthermore, we show that ligands 

that demonstrate this selectivity are able to modulate the ability of the regulatory domains of SRC 

and HCK to engage in intermolecular binding interactions. These studies provide insight into the 

regulation of this important family of tyrosine kinases.

Protein kinases are a large family of enzymes that mediate intracellular protein 

phosphorylation1. Spatial and temporal coordination of protein kinase activity is essential 

for proper cellular function. Therefore, it is not surprising that protein kinase misregulation 

leads to a variety of diseases including cancer, inflammation, and diabetes2. A 

correspondingly large percentage of drug discovery research focuses on kinase inhibitors as 

molecularly targeted drugs, with over a dozen successfully completing clinical trials3. 

Significant efforts have been made to investigate this large enzyme family, of which only a 

small percentage of its 518 members have been functionally analyzed. The functional 

annotation of enzymes in other large protein families has greatly benefited from the 

development of activity- and affinity-based probes that selectively target conserved active 

site features4,5. For example, activity-based fluorophosphonate probes have proven to be 
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powerful reagents for uncovering potential new serine hydrolase drug targets and 

performing inhibitor selectivity screens in complex proteomes6. While a number of useful 

proteomic tools have been developed for studying protein kinases7–9, there remains a need 

for reagents that allow rapid and quantitative analysis of protein kinase active sites in their 

native biological environments.

In order to comprehensively profile the roles that protein kinases play in the cell, methods 

that facilitate interrogation of their ATP-binding sites irrespective of their functional or 

activation state are particularly useful. In this study, we detail the development and 

application of a new method for the intracellular labeling of protein kinases in complex 

biological mixtures. Our strategy relies on a cell-permeable, ATP-competitive photo-probe 

that covalently modifies the ATP-binding sites of protein kinases upon irradiation with 

ultraviolet (UV) light. This probe contains an orthogonal chemical handle that facilitates the 

rapid and quantitative profiling of protein kinase active sites in their native biological 

environments.

In this study, we have applied our labeling strategy to a family of multidomain, nonreceptor 

tyrosine kinases called the SRC-family kinases (SFKs). These kinases play important roles 

in mediating diverse signaling processes and are promising therapeutic targets for a number 

of diseases10,11. SFKs contain regulatory domains that modulate their catalytic phospho-

transfer activity and cellular localization. A number of studies have revealed the structural 

and biochemical basis of the catalytic regulation of SFKs12,13. Despite this extensive 

characterization, how regulatory domain interactions influence the ability of the ATP-

binding pocket to accommodate small-molecule ligands is not well understood. Using our 

labeling method, we have identified a series of ATP-competitive inhibitors that display 

distinct selectivity for the active sites of autoinhibited SFKs in vitro and in situ. 

Furthermore, by obtaining a structure of one of these inhibitors bound to the catalytic 

domain of SRC, we have identified the molecular determinants of this preference. Finally, 

we show that inhibitors that display a preference for autoinhibited SFKs modulate the ability 

of their regulatory domains to engage in intermolecular interactions. These studies provide 

insight into how inhibitors can be designed to modulate interactions outside of the ATP-

binding site of this therapeutically important enzyme family.

Results

A photo-affinity probe for profiling kinase active sites

We identified three necessary components for developing general probes that can be used to 

profile the functional states of protein kinases in complex protein mixtures: (i) a general 

ligand that can direct a probe to the active site of protein kinases, (ii) a reactive moiety that 

allows the covalent labeling of bound kinase active sites, and (iii) a chemo-selective tag for 

conjugation to a reporter. For our studies, the cancer drug dasatinib was selected as the 

directing group due to its broad kinase target profile. Chemical proteomics studies have 

determined that dasatinib targets over 40 kinases, including many of clinical interest7,14–16. 

Furthermore, the interaction of this drug with kinases has been both biochemically and 

structurally characterized, so it can be derivatized without affecting potency or 

selectivity16–18. In order to allow covalent labeling of bound kinase active sites, the 
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piperazine moiety of dasatinib was modified with a photo-reactive benzophenone photo-

crosslinker (Fig. 1a). Although a number of chemoselective tags can be used to detect 

labeled kinase targets19, we wished to develop a method that allows rapid and quantitative 

determination of crosslinking efficiency in a single experiment using immunoblotting as a 

readout. To do this, an orthogonal chemical handle hexylchloride, which is able to undergo a 

rapid and selective reaction with the self-labeling protein HaloTag, was incorporated into 

our probe (1, Fig. 1b)20. The ability to selectively conjugate a large protein to labeled 

kinases allows for photo-crosslinking efficiency to be determined with a ratiometric gel-shift 

assay (Supplementary Results, Supplementary Fig. 1).

Labeling protein kinases in lysates and live cells

Prior to performing labeling reactions with 1, we determined whether our modifications 

affected the capacity of dasatinib to interact with its kinase targets. As expected, 1 retained 

the ability to potently inhibit the kinases that it was tested against (Supplementary Table 1). 

Next, the crosslinking efficiency of hexylchloride probe 1 was determined using two 

different sets of reaction conditions. In the pre-conjugation method, 1 is conjugated to the 

active site of HaloTag prior to performing photo-crosslinking experiments. The HaloTag-1 

conjugate, HT-1, is then incubated with a protein mixture and inhibitor-bound kinases are 

labeled upon irradiation with UV light (Fig. 1c and Supplementary Fig. 2). In the post-

conjugation method, 1 is first photo-crosslinked to inhibitor-bound targets and labeled 

proteins are subsequently conjugated to HaloTag. For both methods, the percentage of 

labeled kinase can be determined by separating UV-irradiated samples on an SDS-PAGE gel 

and probing with a kinase-specific antibody. This results in two distinct bands: a band 

corresponding to the unlabeled kinase and a mass-shifted band corresponding to the 

crosslinked kinase conjugated to HaloTag (Supplementary Fig. 1). The efficiency of each 

method was compared by performing crosslinking experiments with recombinant SRC that 

had been added to mammalian cell lysates (Fig. 1d and Supplementary Fig. 3). At least 50% 

of SRC was photo-crosslinked when 1 was conjugated to HaloTag prior to UV irradiation 

(Fig. 1d), with labeling remaining linear for up to 30 minutes (Supplementary Fig. 4). A 

similar crosslinking efficiency was observed for the SFK HCK. For both kinases, the 

absence of a higher molecular weight complex in the presence of an excess of active site 

competitor demonstrates that the crosslinking event is dependent upon active site binding. In 

contrast, the post-conjugation method was found to give a much lower crosslinking 

efficiency (Supplementary Fig. 3). Based on these results, all further experiments were 

carried out with the pre-conjugation method.

We next determined if our probe was able to efficiently label endogenous protein kinases in 

mammalian cell lysates. The HT-1 conjugate was incubated with COS-7 cell lysate and then 

irradiated with UV light. Immunoblotting with an α-SFK antibody demonstrated that greater 

than 50% of the endogenous SFKs were labeled. (Fig. 2a) A similar crosslinking efficiency 

(~30%) was observed in HeLa cell lysate (Fig. 2a). Next, the ability of 1 to label kinases in 

live cells was explored. COS-7 cells transiently expressing HaloTag were treated with probe 

1 (Fig. 2b). After incubation and irradiation, the amount of photo-crosslinked SRC was 

determined. Under these conditions, a mass-shifted band corresponding to the kinase-

HaloTag conjugate was observed. For cells that were also incubated with a competitor, no 
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crosslinked kinase was observed. Kinase crosslinking in cells was also found to be UV light 

dependent (Supplementary Fig. 5) and linear with irradiation time (Supplementary Fig. 6). 

These results demonstrate that 1 is able to efficiently label endogenous kinases in live cells.

The ability of 1 to efficiently label individual nonreceptor tyrosine kinases in cells was next 

determined. The SFKs SRC, HCK, LCK, FGR, and BLK and the Tec-family kinase BTK 

were co-transfected with HaloTag into COS-7 cells. HaloTag-expressing cells were 

incubated with 1, followed by UV irradiation. Under these conditions, 1 labeled all of the 

kinases tested (Fig. 2c and Supplementary Fig. 7). Remarkably, 37% and 14% of total 

intracellular SRC and HCK were labeled by HT-1, respectively. Although LCK, FGR, BLK, 

and BTK were not labeled as efficiently, the amount of crosslinking observed is sufficient 

for intracellular profiling of these kinases. The absence of a mass-shifted band for 

crosslinking experiments performed in the presence of a dasatinib competitor demonstrated 

that labeling was active site-dependent (Supplementary Fig. 7). Furthermore, introduction of 

an ATP-binding site mutation, SRCT338I, which disrupted dasatinib binding16, prevented 

active site labeling (Fig. 2c).

Profiling multiple SFK activation states

Most protein kinases within the cell possess low catalytic activity in the absence of external 

stimuli. These enzymes are activated in response to signaling events through a number of 

mechanisms12,21. Activation causes conformational changes that align key catalytic residues 

in the ATP-binding site. In SFKs, the catalytic activity of the ATP-binding site is controlled 

by intramolecular regulatory domain interactions12,13,22. These multidomain proteins 

contain SH2 and SH3 regulatory domains at the N terminus and a C-terminal catalytic 

kinase domain. Intramolecular engagement of the SH2 and SH3 domains clamps the kinase 

in a catalytically inactive conformation. Release of these intramolecular interactions leads to 

activation of the catalytic domain. Despite extensive study of these regulatory interactions, it 

is still unclear how these events affect the conformation of the ATP-binding sites of SFKs.

The active sites of protein kinases can sample multiple conformational states, and a photo-

affinity probe that does not rely on catalytic activity has the potential to profile all of them. 

Therefore, we determined the ability of 1 to profile SFKs across a range of activation states. 

To this end, a panel of SRC and HCK constructs was assembled. A series of mutations 

outside the active sites of SRC and HCK were selected; each set of mutations biased these 

kinases towards a specific activation state (Fig. 3a; SRC residue numbering is used to 

identify each of the various mutations). Highly activated SRC and HCK constructs, SRCAct 

and HCKAct, contain mutations that disrupt the interaction of the SH2 linker and SH3 

domain as well as convert Tyr527 to a nonphosphorylatable phenylalanine. These constructs 

preclude intramolecular binding and allow the kinase to adopt an activated state23,24. SRC 

and HCK variants of intermediate activity were generated by mutating tyrosine residues that 

are regulated by phosphorylation to phenylalanines (Y416F or Y527F). Mutating Tyr527 to 

a phenylalanine (Y527F) considerably weakened SH2-domain binding because the 

unmodified C-terminal tail is a suboptimal ligand for this domain. Y416F removes the 

activation loop residue that is phosphorylated in SFKs25. In addition, two variants that cause 

SFKs to adopt a closed conformation, and therefore possess low catalytic activity, were 
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generated. The SH3 domain-engaged SFK constructs, SRCSH3eng and HCKSH3eng, are 

autoinhibited because the introduction of multiple prolines into the SH2 linker enhances the 

affinity of the SH3 domain for this segment26. The SH2 domain-engaged SFK constructs, 

SRCSH2eng and HCKSH2eng, contain a C-terminal tail that is a high affinity ligand for the 

SH2 domain independent of Tyr527 phosphorylation27–30. Prior to performing labeling 

experiments, each construct was transiently expressed in COS-7 cells and the level of 

activation loop phosphorylation was determined with a phospho-Y416-specific antibody 

(Fig. 3b). The relative amounts of phosphorylation are consistent with the engineered 

regulatory preferences of these constructs.

The ability of 1 to label the active sites of the constructs described above was determined in 

COS-7 cells. Photo-crosslinking experiments were performed. Interestingly, 1 labeled each 

series of SFK constructs with almost equal efficiency, regardless of the activation state (Fig. 

3c and Supplementary Fig. 8). All of the SRC constructs were labeled with comparable 

efficiency (35–45%). The HCK variants followed a similar trend, with a crosslinking 

efficiency of 11–17%. These results are consistent with a study that demonstrated that 

dasatinib had a similar affinities for unactivated and activation loop-phosphorylated ABL31.

Interrogation of SFK active sites

From previous studies of SFK activity and regulation, it has been established that (i) SFKs 

adopt several different ATP-binding site conformations and (ii) regulatory domain 

interactions control the catalytic activity of this kinase family. We sought to examine the 

interplay between these sites in a physiologically relevant context with 1. To do this, we 

assembled a series of ATP-competitive SRC and HCK inhibitors to determine whether any 

of these ligands displayed a preference for the distinct active or autoinhibited states (Fig. 

4a). The capacity of 1 to label multiple activation states with equal efficiency provided us 

with a means to rapidly profile each inhibitor in a competition assay. Prior to testing our 

panel of HCK and SRC inhibitors in cells, their abilities to compete with 1 for ATP-binding 

site labeling was determined with purified SRC and HCK constructs in vitro. HCKSH3eng, 

HCKSH2eng, and SRCSH2eng, which contain intramolecularly engaged regulatory domains, 

were tested. Activated phospho-isoforms of SRC and HCK, generated via auto-

phosphorylation of the activation loop of SRCY527F and HCKY527F, were also screened 

(Supplementary Fig. 9). To allow quantitative and rapid determination of crosslinking 

inhibition, a fluorescently-labeled HT-1 construct was used.

In total, nine SFK inhibitors were profiled against the purified SFK variants described above 

(Fig. 4a and Table 1). Several of the inhibitors tested (2, 8–10) were more effective 

competitors of the autoinhibited HCK constructs (HCKSH3eng and HCKSH2eng) than 

activated HCK. A similar trend was observed with inhibitors 8–10 for the SRC variants. 

Interestingly, several inhibitors displayed divergent effects on SRC and HCK. For example, 

3 and 6 more effectively competed for crosslinking to SRCAct than SRCSH2eng but had little 

preference for any of the HCK variants. Inhibitors based on the pyrazolopyrimidine scaffold 

(6–10) demonstrated some of the most interesting differences in the competition assays for 

the HCK and SRC constructs (Table 1). Inhibitors that contained smaller aryl substituents at 

the C-3 position of the pyrazolopyrimidine core (6 and 7) were almost equally potent 
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competitors for the activated and autoinhibited SFK variants. In contrast, analogs that 

contained larger aryl groups at the C-3 position (8–10) demonstrated a striking preference 

for autoinhibited SRC and HCK constructs over their activated forms. For example, 

inhibitor 8 competed 57- and 90-fold more effectively for HCKSH2eng and HCKSH3eng than 

for activated HCK, respectively. Similarly, inhibitors 9 and 10 showed a distinct preference 

for the ATP-binding sites of autoinhibited SRC and HCK over SRCAct and HCKAct. To 

confirm these trends, inhibitors 7–10 were tested in an in vitro activity assay against 

activated and autoinhibited SRC and HCK constructs (Supplementary Fig. 10). Consistent 

with the results of the photo-crosslinking competition experiments, inhibitors 8–10 had 

significantly lower Kis for the autoinhibited forms of SRC and HCK. Furthermore, 7, which 

had a similar IC50 for all of the SFK constructs in the photo-crosslinking competition 

experiments, was an almost equipotent inhibitor of all of the SFK constructs.

To determine whether pyrazolopyrimidine ligands demonstrated the same selectivity trend 

in a more physiologically relevant environment, cellular competition assays were performed 

to obtain in situ IC50 values. To do this, crosslinking experiments were performed in COS-7 

cells with variable concentrations of dasatinib or 10 as competitors. Competition 

experiments were performed with the highly activated SFK constructs, SRCAct and HCKAct, 

and their autoinhibited analogs SRCSH3eng and HCKSH3eng. After irradiation, the extent of 

competition at each inhibitor concentration was determined via immunoblotting 

(Supplementary Fig. 11). 10 produced the same trend with SRC and HCK in situ as it did in 

the in vitro competition experiments. This inhibitor is at least 70-fold more potent in the 

cellular competition assay against HCKSH3eng over HCKAct (Fig. 4b and Supplementary 

Fig. 12). In cells, 10 did not show significant competition for SRCAct at the highest 

concentration tested (3 µM) but competed effectively for the autoinhibited form of SRC 

(SRCSH3eng).

9 stabilizes an inactive conformation of SRC

Due to the distinct binding preferences of inhibitors 8–10 for autoinhibited forms of SRC 

and HCK, we sought to understand how this class of ligands interacts with the ATP-binding 

sites of SFKs. To this end, we obtained a crystal structure of 9 bound to the catalytic domain 

of SRC (Fig. 5 and Supplementary Fig. 13). Two molecules of unphosphorylated SRC 

kinase domain bound to 9 were observed per crystallographic asymmetric unit. As expected, 

inhibitor 9 occupied the ATP-binding site of SRC, making many of the same interactions as 

the adenine ring of ATP. Interestingly, the catalytic domain of 9 adopted the SRC/CDK-like 

inactive conformation32–34. This inactive conformation is characterized by movement of 

helix αC in the N-terminal lobe, with the rotation of a conserved, catalytically-important 

glutamic acid residue (Glu310) (Fig. 5b, c). The chlorobenzyloxy group at the C-3 position 

of the pyrazolopryimidine scaffold projected into the pocket created by the movement of 

helix αC. Although the chlorobenzyloxy groups adopted slightly different conformations in 

the two complexes, in both cases an overlay of the inhibitor 9-SRC complex with a crystal 

structure of active SRC showed that the bulky aryl group would not be accommodated by 

the active form of the enzyme (Fig. 5d). Our crystallographic observations show that 

pyrazolopyrimidine inhibitors with extended substituents at the C-3 position stabilize the 

SRC/CDK-like inactive conformation of SFK ATP-binding sites.
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8–10 modulate the regulatory domain accessibility of SFKs

Our competition results demonstrate that certain classes of inhibitors have higher affinities 

for auto-inhibited SRC and HCK constructs, while others do not. Thus, regulatory 

interactions affect the conformation of SFK active sites. We were curious whether 

stabilizing the ATP-binding sites of SFKs in a specific conformation would affect the ability 

of their regulatory domains to engage in intermolecular interactions. Inhibitors 8–10 were 

tested for their capacity to modulate the intermolecular accessibility of the SH3 domains of 

SRC and HCK (Supplementary Fig. 14). SH3 domain pull-down experiments with a 

polyproline (PP) peptide ligand were performed with SRCY527F and HCKY527F in the 

presence of saturating amounts of various inhibitors (Fig. 6a). In the presence of dasatinib, 

22% and 27% of SRCY527F and HCKY527F were retained on the beads, respectively (Fig. 6b 

and Supplementary Fig. 15). In contrast, little to no SRCY527F or HCKY527F was pulled 

down when these SFKs were bound to inhibitors 8–10. Similar amounts of the isolated SH3 

domain of HCK were retained on the beads when pull-down experiments were performed in 

the presence of dasatinib, 9 or 10, demonstrating that the observed differences in SH3 

domain accessibility are due to ATP-binding site interactions (Supplementary Fig. 16). The 

diminished capacity of the SH3 domains of SRC and HCK to engage in intermolecular 

interactions when bound to inhibitor 10 was confirmed with a quantitative binding assay 

(Supplementary Fig. 17). The binding affinities of the SH3 domains of SRCY527F-10 and 

HCKY527F-10 for a fluorescently-labeled PP ligand was at least 10-fold lower than for 

SRCY527F-dasatinib and HCKY527F-dasatinib. Divergent behavior was observed for 

inhibitor 2 in the pull-down assay. Consistent with the preference that 2 demonstrates for 

autoinhibited HCK constructs, the SH3 domain of the HCKY527F-2 complex was hindered in 

its ability to engage an intermolecular PP ligand (Fig. 6b and Supplementary Fig. 15). 

However, when SRCY527F was bound to 2, a majority of its SH3 domain was accessible to 

an intermolecular SH3 ligand, which is consistent with the modest preference that this 

inhibitor shows in crosslinking competition assays for activated SRC. These pull-down 

experiments clearly demonstrate that the intermolecular accessibility of SFK regulatory 

interactions can be modulated through their ATP-binding sites.

Discussion

In this study, we describe a new method for quantitatively analyzing the ATP-binding site 

occupancies of protein kinases in cell lysates and live cells. This methodology utilizes a 

probe, 1, that can be used to covalently label the active sites of protein kinases. The 

incorporation of a hexylchloride group allows the efficiency of the photo-crosslinking event 

to be determined ratiometrically. Although we have applied this methodology to protein 

kinases, this strategy should be applicable to any small-molecule probe that can be modified 

with an appropriate linker. This should allow for the development of quantitative labeling 

tools for the analysis of a number of protein families. The ability to apply 1 to quantitatively 

and efficiently profile kinase active site accessibility in physiologically relevant 

environments has proved useful for studying SFKs. Specifically, we determined how 

regulatory domain interactions influence the conformation of the ATP-binding sites of SRC 

and HCK. We were able to identify several inhibitors (8–10) that were selective for the 

autoinhibited forms of these SRC and HCK kinases. Although this screen could have been 
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performed with any method that allows the ATP-binding site occupancies of SFK constructs 

with variable activation states to be determined, our labeling strategy was particularly well 

suited for this task.

To determine whether the observed preferences of inhibitors 8–10 for auto-inhibited SRC 

and HCK variants can be explained by the conformation of their ATP-binding sites when 

bound to these ligands, we obtained a crystal structure of 9 in complex with the catalytic 

domain of SRC (Fig. 5a). Interestingly, SRC was in the SRC/CDK-like inactive 

conformation. This conformation is characterized by the movement and rotation of helix αC 

in the N-terminal lobe of the catalytic domain, which disrupts a salt bridge between Glu310 

in helix αC and a conserved catalytic lysine (Lys295) (Fig. 5b). The ATP-binding site of 

SRC in the SRC-9 complex is distinct from the inactive form, called the DFG-out 

conformation, that the tyrosine kinase ABL adopts when bound to the drug imatinib35. With 

one exception, all previous structures of isolated SFK catalytic domains have been in either 

the active or the DFG-out conformation32,36–38. Generally, the SRC/CDK-like inactive 

conformation has only been observed in autoinhibited SFK constructs that contain SH2 and 

SH3 regulatory domains33,34.

The SRC/CDK-like conformation has been observed for a number of kinases21. For 

example, the receptor tyrosine kinase EGFR adopts the SRC/CDK-like inactive 

conformation when bound to the drug lapatinib39. Directly relevant to our observations, the 

kinase domain of Bruton’s tyrosine kinase (BTK) displays ligand-induced conformational 

changes when bound to pyrazolopyrimidine inhibitor 10 and the ATP-binding site is in the 

SRC/CDK-like conformation40. Superposition of BTK bound to 10 and SRC bound to 9 
showed that their ATP-binding sites are nearly identical in the presence of these inhibitors, 

with helix αC undergoing a similar degree of movement and rotation (Supplementary Fig. 

18a). Inhibitor 10 would not be accommodated in the active form of BTK without this 

movement. Superposition of inhibitor 10 with the active form of SRC shows that a similar 

steric clash would be predicted to occur with helix αC (Supplementary Fig. 18b).

We hypothesized that stabilizing the SRC/CDK-like inactive conformation of SRC and 

HCK with ATP-competitive inhibitors would influence their regulatory domains. Consistent 

with our speculation, there was a direct correlation between an inhibitor’s preference for 

autoinhibited SFK constructs and its ability to induce an inaccessible SH3 domain. 

Inhibitors 8–10 hinder the intermolecular interactions between the SH3 domains of these 

kinases with a PP peptide ligand. Presumably this occurs because the SH3 domain’s 

intramolecular interaction with the SH2 linker is strengthened. These results show that ATP-

competitive inhibitors that stabilize the ATP-binding site in distinct conformations influence 

distal regulatory domains.

These results have direct implications for the pharmacological inhibition of multidomain 

protein kinases like the SFKs. Many multidomain protein kinases use their regulatory 

domains to engage other signaling partners in the cell, often recruiting their catalytic 

domains to activated signaling complexes. Inhibitors, like 8–10, that stabilize an inactive 

ATP-binding site conformation and promote the intramolecular engagement of regulatory 

interactions would be predicted to prevent kinases from being recruited to active signaling 
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complexes. This is in contrast to several recently reported examples of ATP-competitive 

kinase inhibitors that lead to activation or priming of specific signaling pathways41–43. 

Furthermore, while kinase phospho-transfer activity is essential for a variety of cellular 

processes, growing evidence suggests that these enzymes possess a number of important 

noncatalytic functions44. Protein kinases mediate protein scaffolding complexes, 

allosterically regulate other enzymes, and modulate protein-protein and protein-DNA 

interactions through mechanisms independent of their enzymatic activity. For example, the 

SH2 and SH3 domains of SRC allow this kinase to play important noncatalytic functions in 

integrin signaling and the formation of focal adhesions45. In SRC-deficient fibroblasts, 

kinase dead SRC mutants can rescue cell spreading on fibronectin to comparable levels as 

the wild-type protein. SFKs have also been shown to have other noncatalytic roles in JAK2 

signaling, antigen-specific T-cell activation, and in B-cell antigen receptor signaling46–48. 

Beyond the SFKs, a large number of protein kinases contain additional domains that play 

important roles in both the catalytic and noncatalytic functions of these enzymes. The use of 

conformation-specific ATP-competitive inhibitors provides the opportunity to control the 

noncatalytic functions of protein kinases by modulating their abilities to engage in 

intermolecular protein-protein interactions. Thus, it may be possible to obtain different 

phenotypic effects through the ATP-competitive inhibition of the same kinase, simply by 

varying how an inhibitor interacts with the ATP-binding site. Finally, ATP-competitive 

inhibitors that modulate interactions outside of kinase active sites may allow for the 

differential regulation of the large number of pseudokinases, which are predicted to lack 

catalytic activity, encoded by the human genome.49 Chemical proteomic tools similar to 

those described in this study should aid in the discovery of pharmacological agents with 

these interesting properties.

Methods

Synthesis and characterization of probes are described in the Supplementary Methods.

SFK construct expression and purification

SRC-family kinases SRC (residues 84–533) and HCK (residues 84–531) were expressed and 

purified as previously described50. Mutations were introduced into SRC and HCK by site-

directed mutagenesis and were verified by DNA sequencing. SFKAct variants contained the 

following mutations (SRC residue numbering is used to identify each of the various 

mutations): SRC (K249E/P250E/Y527F) and HCK (P250A/P253A/Y527F). SFKSH3eng 

variants contained the following mutations: SRC (K249P/Q252P/T253P) and HCK (K249P/

K252P). SFKSH2eng variants contained the following mutations: SRC (Q528E/P529E/

G530I) and HCK (Q528E/Q529E/Q530I). Mutant SRC and HCK constructs were expressed 

and purified following the same procedure.

General procedure for in vitro photo-labeling of recombinant kinases with probe 1

Purified kinase (100 nM), mammalian lysate (0.5 mg/ml) and HT-1 (500 nM) were diluted 

in PBS in a 96-well, U-bottom plate. Samples were prepared either in the absence or 

presence of 10 µM dasatinib. Samples were mixed and irradiated on ice at 365 nm for 30 

minutes by placing a Spectroline ENF-260C UV lamp directly on top of the plate. After 
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irradiation, 25 µL of 3X SDS loading buffer was added. Samples were separated by SDS-

PAGE and visualized via Western blot using a non-phospho-SFK (Tyr416) (7G9) antibody 

(Cell Signaling). The scanned blots were quantified with LI-COR Odyssey software (mean ± 

SEM, n = 3). To determine the percent kinase crosslinked, the intensities of the mass-shifted 

band and the non-crosslinked kinase were measured. After background correction, the 

amount of crosslinked protein was calculated as the percentage of mass-shifted kinase over 

the amount of total kinase (sum of the mass-shifted and non-crosslinked kinase signals).

In vitro competition assays with SFK variants using ATP-competitive SFK inhibitors

Purified kinase (25 nM), mammalian lysate (0.2 mg/ml), and HT-1 (150 nM) were diluted in 

PBS in a 96-well, U-bottom plate. The ATP-competitive inhibitor (3-fold dilutions over 9 

wells) was added to the kinase mixture, and the plate was incubated at room temperature for 

20 minutes prior to photo-crosslinking. Samples were mixed and irradiated on ice at 365 nm 

for 30 minutes by placing a Spectroline ENF-260C UV lamp directly on top of the plate. 

After irradiation, DTT (1 mM) and a fluorescein-tag (500 nM) were added. Samples were 

incubated at room temperature in the dark for one hour and quenched with 25 µl of 3X SDS 

loading buffer. Samples were separated by SDS-PAGE and visualized via in-gel 

fluorescence scanning using a GE Typhoon FLA 9000. The intensities of the mass shifted 

bands at each inhibitor concentration were quantified with ImageQuant. Data was analyzed 

using Prism Graphpad software and IC50 values were determined using non-linear 

regression analysis (mean ± SEM, n = 3). Inhibitors that were found to have an IC50 less 

than 25 nM were re-tested at lower concentrations of SRC and HCK.

In situ labeling of SFK variants with probe 1

All cells were grown at 37°C in high glucose DMEM supplemented with 10% FBS and 

streptomycin/penicillin. Cell culture protocol is detailed in the Supplementary Methods. 

COS-7 cells, grown in a 12-well plate, were co-transfected with a HaloTag fusion construct 

(pDest26) and the kinase of interest (pcDNA3.2-V5) using Fugene HD reagent (Promega). 

The cells were incubated at 37°C for 24 hours. The transfected cells were treated with 1 µM 

of 1 in 1 ml of media (high glucose DMEM, 10% FBS with Strep/Pen) for one hour at 37°C. 

The cells were then washed with media (3×, 5 minutes at 37°C) and then 1 ml of PBS was 

added. The cells were irradiated at 365 nm at 37°C for eight minutes by placing a 

Spectroline ENF-260C UV lamp directly on top of the uncovered plate. After irradiation, the 

PBS was aspirated and the cells were lysed with 1X SDS loading buffer containing 

PhosStop phosphatase inhibitor (Roche). Samples were separated on an SDS-PAGE gel and 

visualized via Western blot using an anti-V5 tag antibody (Sigma). The scanned blots were 

quantified with LI-COR Odyssey software to determine crosslinking efficiency (mean ± 

SEM, n = 3).

Pull-down assay to determine SH3 domain accessibility

Formation of kinase-inhibitor complex: The kinase of interest (100 nM) and mammalian 

lysate (0.2 mg/ml) were diluted in immobilization buffer (50 mM Tris, 100 mM NaCl, 1 

mM DTT, pH 7). The inhibitor of interest (5 µM) was added to this kinase dilution. DMSO 

was added to those samples that used no inhibitor. The mixture was allowed to incubate for 
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30 minutes prior to loading on the resin. Pull-down: 40 µl of a 50% slurry of SNAP-Capture 

Pull-down Resin (NEB) was placed in a microcentrifuge tube. The resin was washed (2×, 10 

bed volumes) with immobilization buffer. A SNAP-tag-polyproline (PP) peptide fusion 

(VSLARRPLPPLP) (10 µM) was loaded onto the resin at a final volume of 100 µL in buffer. 

The resin was shaken at room temperature for 90 minutes, with agitation by a pipet every 15 

minutes. After PP peptide immobilization, the resin was washed (2×, 10 bed volumes) and 

100 µL of the kinase-inhibitor complex was loaded. The resin was allowed to shake at room 

temperature for one hour. After incubation with the kinase-inhibitor complex, the flow-

through was collected and the resin washed (4×, 10 bed volumes). To elute the retained 

kinase, 100 µL of 1X SDS loading buffer was added and the beads were boiled at 90°C for 

10 minutes. All samples were separated by SDS-PAGE and visualized via Western blot 

using an anti-His6 antibody (abm). The scanned blots were quantified with LI-COR 

Odyssey software to determine percent kinase retained on the resin based on the loaded and 

eluted fractions (mean ± SEM, n = 3).

Statistical analysis

All experiments were performed in triplicate, unless otherwise specified. Results are shown 

as mean ± standard error of the mean (SEM). Error bars represent ± SEM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. An active-site directed probe for ratiometric profiling of protein kinases
(a) The cancer drug dasatinib in complex with the tyrosine kinase SRC (PDB code 3G5D). 

The arrow shows the site where dasatinib was modified with a benzophenone photo-

crosslinker and an orthogonal chemical tag. (b) The chemical structure of probe 1. Probe 1 
contains three components: (i) a potent ATP-competitive inhibitor (dasatanib), (ii) a photo-

reactive benzophenone crosslinker, and (iii) a hexylchloride tag that selectively labels the 

active site of the self-labeling protein HaloTag. (c) Experimental crosslinking schematic 

using 1. Prior to photo-crosslinking experiments, HaloTag is labeled with 1. HT-1 is 

incubated with a kinase target and then irradiated with UV light. (d). HT-1 efficiently labels 

the recombinant SRC-family kinases (SFKs) SRC and HCK in cell lysate. Purified SRC or 

HCK (100 nM) was photo-crosslinked with HT-1 in mammalian cell lysate. Immunoblotting 

with an anti-SFK antibody shows that a large percentage of SRC and HCK are covalently 

modified. Upon addition of a dasatinib competitor, no mass-shifted kinases are observed.
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Figure 2. Characterization of 1 in cell lysate and live cells
(a) HT-1 labels endogenous SFKs in cell lysates. Immunoblots with an anti-SFK antibody 

are shown for photo-crosslinking experiments performed with COS-7 and HeLa cell lysates. 

(b) Endogenous SFKs in live cells transiently expressing HaloTag are photo-crosslinked by 

1. COS-7 cells transiently expressing HaloTag were treated with 1 and then irradiated with 

UV light. Immunoblotting with an anti-SFK antibody shows the presence of mass-shifted 

SFKs. Addition of an active site competitor prevents photo-crosslinking. (c) 1 labels 

nonreceptor tyrosine kinases in live cells. V5-tagged nonreceptor tyrosine kinases were 

coexpressed with HaloTag in COS-7 cells. After photo-crosslinking, the percent crosslinked 

kinase was determined with an anti-V5 antibody (mean ± SEM, n = 3).
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Figure 3. Photo-crosslinking to SFKs that have diverse regulatory domain interactions
(a) The panel of SRC and HCK variants that was generated in this study. Mutations outside 

the active sites of SRC and HCK were introduced to obtain SFKs with diverse regulatory 

interactions. Red dots indicate the sites that were modified. (b) The activation loop 

phosphorylation levels of SFK variants are consistent with their regulatory states. V5-tagged 

SRC and HCK constructs were transiently expressed in COS-7 cells and the level of 

activation loop phosphorylation (Tyr416) was determined with an anti-phosphoY416-SFK 

antibody (phospho-SFK (Tyr416), Cell Signaling). The same samples were immunoblotted 

with an anti-V5 antibody. (c) 1 labels SFKs with diverse regulatory domain interactions in 

live cells (mean ± SEM, n = 3). The regulatory states of SFKs have little effect on overall 

photo-crosslinking efficiency.
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Figure 4. Photo-crosslinking competition assays
(a) Chemical structures of the ATP-competitive SFK inhibitors used in photo-crosslinking 

competition assays with 1. The IC50 values obtained for these inhibitors in photo-

crosslinking competition assays with HT-1 and purified SFK constructs are shown in Table 

1. (b) Quantitative comparison of the fold differences in cellular competition between 

activated SFK variants (SRCAct and HCKAct) and their respective SH3eng constructs 

(SRCSH3eng and HCKSH3eng) for dasatinib and 10.
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Figure 5. The catalytic domain of SRC is in the SRC/Cdk-like inactive conformation when 
bound to 9
(a) Inhibitor 9 (yellow) occupies the ATP-binding site of the catalytic domain of SRC 

(gray). The pyrazolopyrimidine core sits in the adenine-binding site and makes hydrogen-

bonding interactions with the hinge region. (b) The naphthyl-benzyloxy substituent 

displayed from the C-3 position sits next to the gatekeeper residue (blue) and projects 

towards helix αC. Helix αC is rotated outwards from the ATP-binding site relative to its 

position in the active conformation of SRC, which disrupts a salt bridge between the 
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catalytic lysine (Lys295) and Glu310 (both shown in orange). Residues 258–276 have been 

removed for clarity. (c) Comparison of the relative positions of the helix αCs in the SRC-9 
complex (gray) and the active form of SRC (SRC-dasatinib (PDB code 3G5D) (blue)). Helix 

αC moves approximately 4.5 Å in the SRC-9 complex relative to SRC’s helix αC when 

bound to dasatinib. The rotation and movement of helix αC displaces a conserved glutamic 

acid residue (Glu 310; shown in orange) that is important for catalysis, which places SRC in 

the SRC/Cdk-like inactive conformation. (d) The benzyloxy group of 9 cannot be 

accommodated in the active form of SRC. Superposition of 9 with SRC in the active 

conformation (SRC-dasatinib (PDB code 3G5D)) shows a clear steric clash with helix αC.
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Figure 6. ATP-competitive SFK inhibitors modulate the SH3 domain accessibilities of SRC and 
HCK
(a) Representative Western blots for pull-down experiments performed with purified 

SRCY527F and HCKY527F in the presence of saturating concentrations of various inhibitors. 

Loaded samples and resin-eluted samples were immunoblotted using an anti-His6 antibody 

to determine the percentage of loaded kinase that was retained on the PP ligand-containing 

beads. (b) Quantitation of the pull-down assays performed with SRCY527F and HCKY527F in 
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the presence of each inhibitor that was tested (mean ± SEM, n = 3). The percent of loaded 

kinase that was eluted from the beads is shown.
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