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Abstract Nucleocytoplasmic export and biogenesis of
mRNPs are closely coupled. At the gene, concomitant with
synthesis of the pre-mRNA, the transcription machinery,
hnRNP proteins, processing, quality control and export
machineries cooperate to release processed and export
competent mRNPs. After diffusion through the interchro-
matin space, the mRNPs are translocated through the
nuclear pore complex and released into the cytoplasm. At
the nuclear pore complex, defined compositional and
conformational changes are triggered, but specific cotran-
scriptionally added components are retained in the mRNP
and subsequently influence the cytoplasmic fate of the
mRNP. Processes taking place at the gene locus and at the
nuclear pore complex are crucial for integrating export as
an essential part of gene expression. Spatial, temporal and
structural aspects of these events have been highlighted in
analyses of the Balbiani ring genes.

Introduction

Gene expression in eukaryotic cells requires the coordinat-
ed action of many molecular processes and the machines
that carry them out. Pre-mRNAs, synthesised by transcrip-
tion of protein-coding genes, are assembled into pre-
mRNA–protein (pre-mRNP) complexes, processed, trans-
formed into export competent mRNA–protein (mRNP)
complexes and exported to the cytoplasm. There is no

sharp distinction between components present in pre-
mRNPs and components present in mRNPs. Some compo-
nents interact transiently either with pre-mRNPs or mRNPs,
while other components are present in both pre-mRNPs and
mRNPs. In addition, an mRNP does not consist of the same
components when it enters the nuclear pore complex (NPC)
as when it emerges into the cytoplasm.

Many of the pre-mRNP/mRNP components are abun-
dant in the nucleus, such as small nuclear ribonucleopro-
teins (snRNPs) and several of the heterogeneous nuclear
ribonucleoproteins (hnRNPs), and they recognise binding
determinants in the transcripts, such as splice sites and poly
(A) signals and more or less specific binding motifs. As a
result, different pre-mRNPs contain largely the same
components. However, gene-specific sequences and unique
exon–intron organisation, in combination with the set of
available binding components, result in pre-mRNPs that
have gene-specific combinatorial compositions. In addition,
the composition of a pre-mRNP along a transcribing gene
changes as components bind, processing occurs and as
components in some cases leave the pre-mRNP.

The spatial separation of making translatable mRNPs
from the translation process in eukaryotic cells has made
possible additional levels of regulation of gene expression.
It has become more and more evident that the mechanisms
for export of mRNPs are integrated in the biogenesis of the
mRNP. The molecular machines that are responsible for
biogenesis have evolved to interact with each other to
achieve coordination, efficiency, regulation and quality
control. The transcription machinery and the transcription
process are at the centre of coordinating many of the
processes and the molecular machines. It is moreover
evident that the NPC provides a molecular environment
that triggers rebuilding of the mRNP, essential for the future
cytoplasmic functions.
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Our knowledge of the chain of molecular events, from
synthesis of pre-mRNPs at the gene to entrance of mRNPs
into the cytoplasm, has been gained mainly by combining
results from in vitro analyses of individual processing
events, studies of gene constructs introduced into cells and
yeast genetics. More knowledge about the expression of
specific, endogenous genes in vivo is needed to under-
stand the temporal, spatial and structural coordination of
the different steps and of the different molecular machines
that are involved. Analyses of the expression of the
Balbiani ring (BR) genes in the intact polytene nuclei of
the dipteran Chironomus tentans have contributed essen-
tial and unique information (reviewed in Daneholt 2001a).
For the BR genes, it is possible to study most nuclear
events at the gene, in the interchromatin space and at the
NPCs. Here, we will use the BR genes and their pre-
mRNPs/mRNPs as reference to summarise the knowledge
about the steps of pre-mRNP/mRNP formation and export
in eukaryotic cells. The overall intranuclear steps in gene
expression as seen for BR1/BR2 genes are shown in
Fig. 1. At the gene, the pre-mRNA is synthesised and
assembled with hnRNP proteins, processing, export and
quality control components. The released, export compe-
tent BR mRNP moves randomly by diffusion through the
interchromatin space. At the NPC, the BR mRNP binds,
moves into the central channel, goes through conforma-
tional and compositional changes and, at the cytoplasmic
side, translation is rapidly initiated.

The cotranscriptional formation of export competent
mRNPs

According to structural determination of the elongating RNA
polymerase II in yeast (Kornberg 2007), about eight bases of
the pre-mRNA are base paired to the DNA. It is suggested

that the nascent pre-mRNA chain appears on the surface of
the RNA polymerase II after reaching approximately double
this length. At this exit site, it is likely that the pre-mRNA
rapidly associates with various proteins and snRNPs that
have access to sequence motifs in the pre-mRNA on a
competitive basis. Analyses of transcribing BR genes by
electron microscopy (EM) show that pre-mRNP assembly is
initiated very early and that the transcription elongation
complex and the pre-mRNP form a closely connected multi-
molecular structure (Skoglund et al. 1983; Wetterberg et al.
2001) (Fig. 2). The observed gene-specific combination of
SR proteins bound to pre-mRNAs in a single nucleus
support that binding affinities determines the combinations
of proteins in each pre-mRNP (Björk et al. 2009). The
sequential exposure of newly synthesised pre-mRNA
sequences during transcription presumably contributes to
order during assembly and processing. This is exemplified in
the BR3 gene where introns are excised in an overall 5′ to 3′
order (Wetterberg et al. 1996).

It is not understood how efficient access for all pre-
mRNA interacting components is orchestrated close to the
surface of the RNA polymerase II exit channel. It is
possible that the components get access to the pre-mRNP
because they continuously and randomly move within the
interchromatin space. It is also possible that the local
concentration of components is increased at active genes by
intermolecular interactions. The RNA polymerase II C-
terminal domain (CTD) is located in convenient proximity
to the pre-mRNA exit channel, and it is implicated in
loading components onto the pre-mRNA. Apparently, the
CTD has evolved as a regulatable interaction surface to
facilitate coordinated delivery of components to the pre-
mRNP and to the chromatin (Yoh et al. 2008). In this way,
the local concentration of specific components can be
increased at the appropriate time. The CTD is long enough
to simultaneously bind several proteins. The CTD is
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Fig. 1 Overview of the intra-
nuclear steps of expression of a
BR1/BR2 gene. Processes tak-
ing place at the gene locus, in
the interchromatin space and at
the NPC are listed. BR gene
chromatin in black, RNA poly-
merase II elongation complex in
purple, pre-mRNPs in light
blue, mRNPs in dark blue and
ribosomes in orange. The NPC
and nuclear membrane are in
grey
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structurally versatile and an induced fit is important when it
interacts with different components (reviewed in Meinhart et
al. 2005). Furthermore, binding can be regulated because
interacting proteins recognise specific serine phosphoryla-
tion patterns in the CTD (reviewed in Buratkowski 2009).

The coupling between pre-mRNP assembly, the transcrip-
tion process and chromatin dynamics is not fully understood.
One aspect is that assembly of the pre-mRNP may prevent
formation of RNA–DNA hybrids and transcription-
associated recombination (Huerta and Aguilera 2003).
Another aspect might be that pre-mRNP assembly influences
the chromatin structure to facilitate transcription elongation.
Recent data imply that actin binds to certain hnRNP proteins
in BR pre-mRNPs and recruits HATs (Fig. 2a), thereby

directing histone acetylation (reviewed in Visa and Percipalle
2010). Also, the chromatin remodelling complex SWI/SNF
associates with BR pre-mRNAs (Tyagi et al. 2009). It is
suggested that this complex, as part of the pre-mRNPs, could
in addition influence splicing and 3′ end processing.

As a result of evolving specific interactions between
components of the different molecular machines, coupling
between transcription and pre-mRNP assembly, process-
ing and export has been established. In such a system,
quality control can be reached by connecting different
machines through regulating subunit interactions. Such a
case could be the apparent coordination between assem-
bly of the 3′ end machinery and delivery of export
adaptors (Johnson et al. 2009). It is further likely that the

Fig. 2 Cotranscriptional synthesis, assembly and processing of BR1/
BR2 and BR3 pre-mRNPs. a The proximal (0–7 kb) and middle (7–
35 kb) regions of the BR1/BR2 gene is shown schematically. The bent
arrow indicates the transcription start site. The RNA polymerase II
elongation complex in purple and the pre-mRNPs in light blue. The
proximal region contains three introns (i1–i3, black boxes) and exons
1–3, followed by the long (approximately 35 kb) exon 4. The
continuous recruitment of components to the pre-mRNPs (listed
components have been demonstrated) and the continuous assembly
of the pre-mRNPs are indicated by red arrows. The processing events
of the pre-mRNPs are indicated (red lines). Assembly of the exon
sequences results in a 7-nm pre-mRNP fibre that is further folded into
a 19-nm fibre, followed by organisation into higher order structures.
Interaction between the pre-mRNP and chromatin may involve pre-
mRNP-bound actin. b Schematic representation of part of the BR3

gene. The BR3 gene contains multiple short introns and exons. Three
nascent transcript and splicing (NTS) complexes are shown. Each
complex consists of a pre-mRNP (light blue), including splicing
factors and an RNA polymerase II elongation complex (purple). b′
EM 3D reconstruction of a corresponding BR3 gene segment with
three NTS complexes (adopted from Wetterberg et al. 2001). The
repeated assembly and structural dynamics of the spliceosome along
the multi-intron gene dominate the structure of the pre-mRNPs. The
scale bar represents 10 nm. c, d EM images of nascent BR1/BR2 pre-
mRNPs in the middle region of the gene (adopted from Skoglund et
al. 1983). The 19-nm fibre and the higher order granular structure are
seen in several pre-mRNPs. The granular structure (arrows) gets
bigger and denser as more RNA protein is added (compare c and d).
The scale bar represents 50 nm
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many cotranscriptional interactions and rearrangements
that include multi-component assemblies involve kinetic
proofreading (Hopfield 1974) that increases fidelity and
efficiency. Specific ATP-dependent steps in splicing have
been suggested to be such examples (Burgess and Guthrie
1993; Xu and Query 2007).

In addition to the cotranscriptional environment, it is
known that the localisation of genes inside the nucleus is
important for gene expression. The presence of specific
transcription factories in the nucleus has been suggested
(reviewed in Sutherland and Bickmore 2009), but the
molecular basis for such factories is not clear. In the
polytene nucleus, multiple copies of each BR gene are
closely packed, providing a local environment of high
concentration of various factors, but there is no evidence for
arranging different genes in close approximation. In yeast, a
sub-compartment at the NPC facilitates gene expression.
Direct interactions between several different components
involved in transcription activation, transcription elongation,
3′ end processing, export as well as quality control and
components of the NPC have been demonstrated in yeast for
highly expressed and inducible genes (reviewed in Dieppois
and Stutz 2010). The multitude of interactions suggest a
direct coupling between the cotranscriptional processes and
processes at the NPC. Such a direct interaction is apparently
not the case for most active genes since they are not located
at the NPCs. However, Nup153 and Tpr are dynamic NPC
components, and in addition to being part of NPCs, they are
associated with active chromatin within the nucleus
(Vaquerizas et al. 2010). Interactions in the interior of the
nucleus between chromatin and nucleoporins are also
important for gene expression during cell differentiation
(Capelson et al. 2010; Kalverda et al. 2010). Indirect
coupling mechanisms between mRNP synthesis and NPC
transport may furthermore exist, as suggested from studies
of BR mRNP export (Kylberg et al. 2008).

Using immuno EM, it has been demonstrated that many
components are recruited to the multi-molecular pre-mRNA–
RNA polymerase II elongation complex on the active BR
genes. There, they cooperate throughout transcription to
facilitate and coordinate transcription, pre-mRNP assembly
and processing. They also, in many cases, couple the
cotranscriptional processes with export and cytoplasmic
processes. These pre-mRNP/mRNP components and their
functions will be briefly described below.

Pre-mRNP/mRNP components and their function

hnRNP proteins

More than 20 different hnRNP proteins, named A1 to U,
are abundant components of pre-mRNPs/mRNPs and
constitute a structurally and functionally diverse group of

RNA binding proteins (reviewed in Dreyfuss et al. 2002).
Different hnRNP proteins are present in widely different
amounts in cell nuclei. Many of the hnRNP proteins bind to
pre-mRNPs cotranscriptionally as demonstrated in lamp-
brush chromosomes (Wu et al. 1991) and for BR1 and BR2
pre-mRNPs (Visa et al. 1996b). In BR1 and BR2 pre-
mRNPs, an hnRNP A1-like protein is present in multiple
copies along the pre-mRNP (Kiseleva et al. 1997). The
hnRNP proteins thus seem to be present throughout the
length of pre-mRNPs and on individual transcripts they are
likely to be present in specific combinations (reviewed in
Singh and Valcárcel 2005), presumably determined by
preferential sequence binding properties, post-translational
modifications and cellular localisation. As they bind to the
pre-mRNP, the hnRNP proteins can affect the structure of
the pre-mRNP and the binding of other components,
thereby influencing many aspects of synthesis, processing
and function of pre-mRNPs/mRNPs, for example, poly-
adenylation, mRNA stability, export and translation.
Several hnRNP proteins modulate splice site choices
(reviewed in Martinez-Contreras et al. 2007), as exempli-
fied by hnRNP A1 and hnRNP H that can both repress and
stimulate splicing (Fisette et al. 2010). Hrp36, an hnRNP
A1-like protein, and the Y-box p50 protein (Soop et al.
2003) both bind to BR1 and BR2 pre-mRNPs cotranscrip-
tionally and remain associated with the BR mRNPs in
polysomes, suggesting multiple roles for these proteins.

Nuclear cap binding proteins

All pre-mRNAs are capped and associated with cap binding
proteins (CBPs) to form the cap binding complex (CBC).
This universal 5′ end modification of the pre-mRNAs
occurs soon after the start of elongation (presumably on 25-
to 40-base-long pre-mRNAs) by the combined action of
several enzymatic activities that also interact with the Ser5
phosphorylated CTD of RNA polymerase II (reviewed in
Gu and Lima 2005). The cap binding proteins CBP20 and
probably CBP80 are added early on BR1 and BR2 pre-
mRNPs (Visa et al. 1996a), and thus the CBC is present in
the pre-mRNP throughout most of the transcription elon-
gation. This is in line with the observed interaction between
the CBC and other cotranscriptional processing events
(reviewed in Lewis and Izaurralde 1997), including the
export machinery (Cheng et al. 2006).

The splicing machinery

SnRNPs and other splicing factors are efficiently recruited to
intron-containing nascent transcripts (Kiseleva et al. 1994;
Baurén et al. 1996; Lacadie and Rosbash 2005; Listerman et
al. 2006) and are part of a nascent pre-mRNP/transcription
complex (Wetterberg et al. 2001). Cotranscriptional splicing
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was originally observed in Drosophila (Beyer and Osheim
1988) and has been directly demonstrated for the BR1
(Baurén and Wieslander 1994) and BR3 (Wetterberg et al.
1996) pre-mRNAs. Observations in mammalian cells sup-
port that splicing is largely cotranscriptional (reviewed by
Neugebauer 2002; Bentley 2005; Perales and Bentley 2009).
EM visualisation of the BR3 pre-mRNPs in situ (Fig. 2b and
b′) (Wetterberg et al. 2001) indicates that spliceosome
components are repeatedly recruited to the multi-intron
transcript during transcription elongation and that spliceo-
some components and introns leave the pre-mRNP after
completion of splicing. It should be pointed out that
spliceosome assembly is initiated cotranscriptionally, but
splicing need not be completed until after 3′ end processing
(Tardiff et al. 2006), depending on for example the position
of the introns (Baurén and Wieslander 1994). Based on
observations on the BR1 gene, splicing can be stimulated by
3′ end processing and may be essentially completed in the
pre-mRNP while it is being polyadenylated, still retained at
the gene locus (Baurén et al. 1998).

The SR proteins

The family of SR proteins fulfils multiple roles in the life of
a pre-mRNP/mRNP (reviewed in Sanford et al. 2005; Long
and Cáceres 2009). SR proteins are recruited to nascent pre-
mRNPs (Baurén et al. 1996; Misteli et al. 1997; Mabon and
Misteli 2005). During constitutive splicing more than one
SR protein is required. SR proteins directly contact the pre-
mRNA at several specific sites during the splicing reaction
(Shen and Green 2004) and form important protein–protein
bridges. They also influence alternative splice site choices,
probably by contributing to specific combinations of
splicing factors that associate with pre-mRNPs. Pre-
mRNPs from different genes, including BR genes, bind
several different members of the SR protein family in gene-
specific combinations (Björk et al. 2009). At least four
different types of SR proteins remain with BR mRNPs
during export to the cytoplasm. Experimental interference
with one of these SR proteins, SRSF2 (SC35), suggests that
it is important for cotranscriptional events as well as for
nucleocytoplasmic export for a single BR pre-mRNP/
mRNP. One of the SR proteins, SRSF1 (ASF/SF2), even
stays with the mRNP in polysomes, in agreement with its
known role in translation initiation (Michlewski et al.
2008). These data underline the numerous findings that
SR proteins are part of pre-mRNPs/mRNPs from the gene
to the cytoplasm and influence many important processes
such as synthesis, processing, export, stability and transla-
tion. In addition, an SR-like protein, RSF1/hrp23, is
recruited to the pre-mRNP cotranscriptionally and inhibits
spliceosomal early assembly at incorrect sites within exons
(Björk et al. 2006).

The exon junction complex

A specific complex of proteins associates with the pre-
mRNP/mRNP in a splicing-dependent but non-sequence-
specific way, at a region about 20 nucleotides upstream of
exon–exon junctions (reviewed in Le Hir and Andersen
2008). Assembly of this exon junction complex (EJC)
represents a splicing-dependent change in pre-mRNP
composition. It is assumed that an EJC is deposited
upstream exon–exon junctions in a multi-intron pre-
mRNA. The core of the EJC consists of eIF4AIII, a
member of the DEAD-box family of RNA helicases that
binds to the pre-mRNA, the Mago-Y14 heterodimer and
Barentsz/MLN51. The order and timing of assembly of the
EJC is not precisely known. The eIF4AIII is associated
with both unspliced and spliced pre-mRNAs and may
interact with spliceosomal proteins (Ideue et al. 2007).
Detailed structural analyses indicate that eIF4AIII under-
goes conformational changes and that Mago-Y14 is needed
for the tight binding of eIF4AIII to the RNA. This may take
place during spliceosomal C-complex formation (Herold et
al. 2009). The four EJC core components associate with the
BR1 and BR2 pre-mRNPs during cotranscriptional splicing
(Björk et al. manuscript in preparation). The EJC core is
stably bound to the mRNA and serves as an anchoring
platform for many different proteins in the nucleus and in
the cytoplasm. Among these proteins are splicing-
associated proteins, export proteins and mRNA quality
control proteins (Le Hir et al. 2001). In the cytoplasm, the
EJC is involved in localisation of mRNPs, nonsense-
mediated decay (NMD) and translational control (Isken et
al. 2008; Ma et al. 2008). The EJC is present on CBC
bound mRNPs and upon the first round of translation, the
EJC is removed from the mRNP and eIF4E replaces the
CBC and steady-state translation initiation can take place
(reviewed in Isken and Maquat 2007).

The 3′ end processing machinery

The conserved 3′ end processing machinery (reviewed in
Mandel et al. 2008; Millevoi and Vagner 2010) binds to a
combination of sequence signals in the pre-mRNA and, in a
coupled two-step process, cleaves the pre-mRNA and
polyadenylates the free 3′ end. Even if it has been reported
that 3′ end processing can occur after release from the gene
(West et al. 2008), more commonly it takes place
cotranscriptionally (reviewed in Perales and Bentley
2009). The recruitment of 3′ end processing factors appears
to involve multiple mechanisms, pointing to interplay with
the transcription process. Some 3′ end processing factors
are recruited already at the 5′ end of the gene, possibly at
the promoter, involving for example TFIID (Dantonel et al.
1997). Some factors, such as the cleavage polyadenylation
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specificity factor (CPSF), bind to RNA polymerase II (Nag
et al. 2007). A maximal amount of 3′ end processing factors
is found at the 3′ end of the gene, downstream the poly(A)
site, probably recruited by the signals in the pre-mRNA
(Glover-Cutter et al. 2008). At this position, Ser2 phos-
phorylation in the RNA polymerase II CTD is maximal and
the cleavage stimulation factor (CstF) binds to the Ser2
phosphorylated CTD. In the BR1 gene, the RNA polymer-
ase continues transcription approximately 600 bp down-
stream the position of the poly(A) site (Fig. 3). At this
point, termination of transcription, 3′ end cleavage and the
initial polyadenylation as well as stimulation of excision of
the last intron take place (Baurén et al. 1998). As a result,
the composition of the pre-mRNP changes; the functional 3′
end processing machinery temporarily associates and the
poly(A)-binding protein (PABP) becomes part of the pre-
mRNP. Ultrastructural analysis of the BR1/BR2 pre-
mRNPs at the end of the genes has not been performed so
far. Although initiated at the gene, polyadenylation is
completed after release of the pre-mRNP from the gene
since the length of the poly(A) tail gets longer in the
interchromatin located BR pre-mRNPs/mRNPs.

The transcription-export complex

The transcription-export complex (TREX) is associated
with the elongating RNA polymerase II-nascent pre-
mRNP and plays several roles. TREX consists of the
multi-subunit THO complex and two export proteins, the
RNA helicase Sub2 (in yeast)/UAP56 (in mammals) and
Yra1 (in yeast)/Aly (in mammals). In yeast, the THO
complex appears to be associated with the transcription
elongation complex and is believed to facilitate loading of
proteins onto the pre-mRNA (Jensen et al. 2004). In
mammals, the THO complex contains additional subunits
and one of these, Thoc5, has been reported to participate in
binding the export receptor NXF1 (Katahira et al. 2009).
Recruitment of Sub2/UAP56 and Yra/Aly to BR pre-
mRNPs is cotranscriptional (Kiesler et al. 2002). Impor-
tantly, Sub2/UAP56 is yet an example of a protein that has
multiple functions. Apart from its presence during tran-
scription elongation, it is involved in splicing, where it
plays a role in U2 snRNP recruitment (Kistler and Guthrie
2001). Moreover, as part of the TREX complex, it is
involved in export.

The recruitment of Sub2/UAP56 to the pre-mRNA can
apparently take place by several mechanisms, connecting
export to transcription and processing. Hpr1, a subunit of
the yeast THO complex, has been shown to be required for
recruitment of Sub2 and Yra1 to the pre-mRNA (Zenklusen
et al. 2002). Aly can bind to nascent transcripts dependent
on the transcription elongation factor Spt6. Spt6 itself binds
to the Ser2 phosphorylated RNA polymerase II CTD and

recruits Aly via its interacting protein Iws1 (Yoh et al.
2007). Recruitment of the export proteins is moreover
connected to 3′ end processing. Direct interaction between
the subunit Pcf11 of the yeast 3′ end cleavage factor IA
(CFIA) and Yra1 may couple delivery of Yra1 to Sub2 and
assembly of a functional CFIA (Johnson et al. 2009). In
mammals, it has been reported that UAP56 and Aly interact
with the EJC (for example Le Hir et al. 2001). However, it
has also been demonstrated that in humans, CBP80 recruits
the TREX complex to the 5′ end of the pre-mRNP in a
splicing-dependent manner via interaction with Aly (Cheng
et al. 2006).

mRNA export adaptors and receptors

Export of mRNPs requires that specific proteins in the
mRNPs serve as adaptors for binding to export receptors.
The export receptors in turn mediate contact with the NPC
and are essential for translocation of the mRNP through the
NPC. The vast majority of mRNPs use a specific hetero-
dimer export receptor called NXF1:NXT1 in mammals and
Mex67:Mtr2 in yeast. NXF1 belongs to a family of proteins
(Herold et al. 2000), and several NXF family members
exhibit mRNA export function. Some members are
expressed in specific tissues and may serve specialised
functions in mRNA metabolism (Tan et al. 2005). In
addition, a second receptor, the karyopherin Crm1, is
involved in export of some mRNPs (Gallouzi and Steitz
2001; Cullen 2003; Carmody and Wente 2009).

A number of different adaptors to the NXF1:NXT1
export receptor have been identified. The recruitment of
these adaptors is directly or indirectly connected to pre-
mRNA processing steps. Yra1/Aly is a well-known adaptor,
described above as part of the TREX complex. Besides
Yra1/Aly, some SR proteins, SRSF3 (SRp20), SRSF7
(9G8) and SRSF1 (ASF/SF2), remain associated with the
processed mRNP. In a hypophosphorylated form, they serve
as adaptors for NXF1:NXT1 (reviewed in Huang and Steitz
2005). A BR mRNP contains multiple export adaptors. Aly
(Kiesler et al. 2002) and several types of SR proteins (Björk
et al. 2009) have been shown to be part of BR1 and BR2
mRNPs, suggesting that multiple copies of the export
receptor NXF1:NXT1 are associated with the BR mRNP. In
addition, Crm1 is part of the BR1 and BR2 mRNPs (Zhao
et al. 2004).

In summary, multiple export adaptor proteins and
mechanisms of loading them onto the pre-mRNPs/mRNPs
are utilised. These mechanisms involve both transcription
and different pre-mRNA processing steps and thus
connect these processes to the formation of export
competent mRNPs. It seems likely that individual mRNPs
associate with more than one adaptor, loaded by different
mechanisms, possibly to increase export efficiency. It is
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also likely that some mRNAs require specific arrange-
ments. The HSP70 mRNA, for example, requires a co-
adaptor, Thoc5, which is part of the TREX complex, for
binding the export receptor NXF1 (Katahira et al. 2009).
Furthermore, it is likely that biological variation accen-
tuates one variant or the other, such that different
conditions dominate in different tissues or species and
that mRNPs from certain genes preferentially use specific
export factors.

Gene-specific components

Although most components that bind to pre-mRNPs/
mRNPs are not gene specific, there are exceptions. For
example, some, but far from all, regulators of alternative
splicing are expressed tissue specifically (reviewed in
Nilsen and Graveley 2010). A second example is the
transcriptional repressor CA150/hrp130 that is highly
enriched in the BR3 gene in an RNA-dependent manner.
This conserved protein is known to repress transcription
elongation in mammals. It has therefore been suggested that
CA150/hrp130 may adjust the transcription rate to the
frequent cotranscriptional excision of the many introns in
the BR3 pre-mRNAs (Sun et al. 2004). A third example is
ADAR II that edits within double-stranded parts of specific
pre-mRNAs cotranscriptionally (Laurencikiene et al. 2006),

implying that this enzyme can be part of the pre-mRNP in
the appropriate cases.

Multiple roles for individual components

An important finding from studies of individual compo-
nents of pre-mRNPs/mRNPs is that the same protein can
interact with different molecular assemblies and be
involved in more than one process. Four examples, SR
proteins, the CBPs, the core EJC and the Sub2/UAP56
described above, emphasise this principle of multi-
functional proteins. Evolution has clearly shaped multiple
contact possibilities between subunits involved in different
processes. The functional diversity of these proteins and
their affinities are likely to be influenced by for example
mutually exclusive interactions as suggested between Yra1
and Sub2 and Pcf11, by the phosphorylation status as
observed for SR protein recruitment in splicing versus
interaction with export receptors and by the varying
interaction partners depending on cellular localisation as
suggested for the core EJC.

These examples show that proteins having multiple
functions during transcription, processing, export and
translation are essential for the coordination of gene
expression and thus are important for reaching accuracy
as well as efficiency.

0.6 kb                        0.6 kb                       3 kb

∼35 kb          i4                           polyA

3´end cleavage
Initial polyadenylation
Splicing stimulation

Completion of
splicing and
polyadenylation

Release

Retention

Splicing initiation

Recruitment/presence:

Assembly:
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splicing

3´end formation
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__

b

aFig. 3 Cotranscriptional pro-
cesses at the 3′ end of the BR1/
BR2 gene. a Schematic repre-
sentation. Colour code as in
Fig. 2. Excision of intron 4 (i4,
black box) is initiated rapidly.
About 0.6 kb downstream the
poly(A) signal (grey box), tran-
scription termination, 3′ end
cleavage and polyadenylation
are coordinated. The pre-mRNP
is retained at the gene during the
initial polyadenylation, and
splicing is stimulated at this
stage. Approximately 3 kb of
DNA, as extended chromatin, is
present downstream the site of
release of the pre-mRNP, before
being folded into compact chro-
matin (black curved line). Re-
leased mRNP in dark blue. b
EM image of the 3′ end of the
gene (adopted from Ericsson et
al. 1989). The arrows indicate
the chromatin fibre, extending
from the final pre-mRNP into
the compact chromatin. The
scale bar represents 50 nm
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The structure of pre-mRNPs and mRNPs

To understand mRNP export in its molecular context in
vivo, it is important to analyse the dynamic structure and
composition of pre-mRNPs and the corresponding mRNPs.
The structure and composition of a pre-mRNP changes
during transcription, reflecting the gradual synthesis of the
pre-mRNA, the continuous assembly of the pre-mRNP and
the transient interactions with processing machines (Figs. 2
and 3). Information about the structure of pre-mRNPs is
generally lacking. In EM studies of mammalian cell nuclei,
perichromatin fibrils and granules presumably represent
pre-mRNPs, but detailed structural analyses of such gene-
specific pre-mRNPs have not been performed (reviewed in
Fakan and van Driel 2007). The most detailed structural
information available is for BR pre-mRNPs (Skoglund et al.
1983; Wetterberg et al. 2001). During transcription elonga-
tion, the pre-mRNP structure changes as more RNA is
made and incorporated together with additional proteins. In
the BR1 and BR2 pre-mRNPs, distinct structural changes
are seen (Figs. 2 and 3). In the very beginning of the 5′
proximal part of the about 35-kb-long genes, the pre-mRNP
structure is not yet precisely analysed. Thin fibres and
occasional granules are present. In this region, three introns
are incorporated into the pre-mRNP and subsequently
rapidly excised (Fig. 2a). The structure of a pre-mRNP
can be highly influenced by the presence of processing
machines, such as the spliceosome. The 11-kb-long BR3
gene contains 38 introns and the pre-mRNP repeatedly take
several distinct structures during recruitment, assembly and
function of the spliceosome (Fig. 2b and b′) (Wetterberg et
al. 2001).

Further into the proximal region of the BR1/BR2 gene,
excision of the three introns is complete. The pre-mRNP
then appears as a 19-nm-thick irregular fibre (Fig. 2a).
Based on Miller spreads and on analyses of released BR
mRNPs, the 19-nm fibre is in fact built from a folded, basic
7-nm fibre. At the end of the proximal region, a second
structural change appears in the pre-mRNP. The 19-nm-
thick fibre reaches a length that from then on is constant
throughout transcription of the middle region (a single
approximately 30-kb exon) of the BR1 and BR2 genes
(Fig. 2a, c and d). At the tip of the 19-nm fibre, the 5′ part
of the pre-mRNP folds into a more compact granular higher
order structure. In this higher order structure, the 7-nm fibre
is still the basic unit, although arranged in a different way.
The molecular mechanisms for the structural transitions
(7 nm to 19 nm to compact granular structure) are not
known. They could for example be a consequence of
processing of introns 1 to 3 or they could reflect assembly
properties of a long pre-mRNP fibre. In summary, the
packing of the BR1 and BR2 exon sequences takes place in
distinct and reproducible steps; a 7-nm fibre is folded into

an irregular 19-nm fibre and subsequently folded into a
more compact, eventually spherical structure. At the 3′ end
of the BR1 and BR2 genes, the overall pre-mRNP structure
is still dominated by the 19-nm fibre and the growing
compact spherical structure (Fig. 3).

We predict from these results on the BR genes that, in
general, pre-mRNPs are structurally diverse. The structure
will depend on the size of the transcription unit, the exon–
intron organisation, the presence of processing machineries
and the dynamic rearrangements during the processing events.

Also for mRNPs in the interchromatin space, structural
information is needed. The structure of the BR1 and BR2
mRNPs has been analysed by EM tomography (Skoglund
et al. 1986). The mRNP consists of a 7-nm fibre (Lönnroth
et al. 1992) that is folded into higher order structures,
apparently folded in a back-and-forth manner (Daneholt
2001b). Overall, a spherical mRNP is formed, having a
diameter of about 50 nm and a central hole (Fig. 4a and b).
This structure largely reflects the build-up of the compact
spherical structure seen late during transcription (Fig. 3b).
All BR mRNPs from an individual BR1 or BR2 gene have
the same structure, and pre-mRNPs from the related BR1
and BR2 genes are very similar. This suggests that the
mRNP structure is the result of specific interactions. In
yeast, a large population of presumably nuclear mRNPs
have been isolated and characterised by EM (Batisse et al.
2009). Many different mRNPs shared a common architec-
ture consisting of a constant 5–7-nm-thick elongated
ribbon-like structure with a length that increased with the
size of the mRNA. From these examples, it is difficult to
know if there is a common architecture for all nuclear
mRNPs. It is possible that mRNPs have a more unified
structure than pre-mRNPs because processing factors are
not present. It could then be that a 5–7-nm fibre-like
structural element is present and that for longer mRNAs,
such a fibre can be arranged in a higher order of folding. It
is also possible that the CBC and the poly(A) tail with its
PABPs adopt structures that are different from the body of
the mRNP. As indicated from studies of BR mRNPs
(Mehlin et al. 1992, 1995) and dystrophin mRNPs (Mor
et al. 2010) during export through the NPCs, it is evident
that the mRNP structure is flexible and can be rearranged
(see ‘mRNP interaction with the NPC and release into the
cytoplasm’ section).

Quality control in the nucleus

Improperly processed or assembled pre-mRNPs are recog-
nised and degraded in the nucleus, as has been most
extensively analysed in yeast (reviewed in Schmid and
Jensen 2008; Fasken and Corbett 2009; Dieppois and Stutz
2010). Although decapping and 5′–3′ degradation has been
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observed for poorly spliced pre-mRNAs, the nuclear
exosome, having 3′–5′ exonucleolytic activity and its
activator complex TRAMP, is the most well-characterised
degradation complex. The exosome is associated with the
elongating RNA polymerase II in active genes (Andrulis et

al. 2002). In the BR genes, the exosome component Rrp4
(and presumably the exosome) is in addition present in pre-
mRNPs throughout transcription, an interaction that is
mediated by the hrp59/hnRNP M (Hessle et al. 2009).
Pre-mRNPs with defects in assembly, splicing or 3′ end
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Fig. 4 The BR1/BR2 mRNPs in the interchromatin space. a EM
image of BR mRNPs in situ. The BR mRNPs (50 nm in diameter) in
the interchromatin are indicated by long arrows. For comparison,
short arrows indicate ribosomal subunits. N nucleus, C cytoplasm.
The scale bar represents 100 nm. b The 3D structure of the BR1/BR2
mRNP (50 nm in diameter) (adopted from Mehlin et al. 1995, © The
Rockefeller University Press. The Journal of Cell Biology, 1995,
129:1205–1216, Fig. 7). The numbers (1–6) on the mRNP indicate
multiple contact points with the inner ring of the NPC during export.
The numbers outside the mRNP (1–4) indicate described domains of
the mRNP. The scale bar represents 10 nm. c The released BR1/BR2
mRNPs move randomly inside the interchromatin space and become
part of a population of mRNPs, from which individual mRNPs
(stochastically) bind to the basket of the NPCs. Colour code as in

Fig. 1. c′ EM image of a section through a polytene nucleus (adopted
from Singh et al. 1999). Newly synthesised (red dots) and old (blue
dots) BR1/BR2 mRNPs are randomly distributed. The highest
concentration of mRNPs is at the gene locus (BR). PC polytene
chromosomes, Nu nucleolus, N nucleus, C cytoplasm. The scale bar
represents 5 μm. d Within the interchromatin space, the random
movement of the mRNP is occasionally interrupted by transient
interactions (light grey, thin lines) with interchromatin structures (dark
grey, thick line). d′ EM 3D reconstruction of a BR1/BR2 mRNP
interacting with an interchromatin fibre structure (adopted from
Miralles et al. 2000, © The Rockefeller University Press. The Journal
of Cell Biology, 2000, 148:271–282, Fig. 2d, part IV). Numbers 1–4
refer to the described domains of the mRNP. The scale bar represents
20 nm
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processing can be retained at the gene locus in an exosome-
dependent manner (Hilleren et al. 2001). The molecular
mechanism of this retention is not known, at least partly
because the mechanisms for normal release of pre-mRNPs/
mRNPs from the gene is not known. It has been observed
that an appropriate poly(A) tail, presumably coupled to
PABPs, is needed for release from the gene locus. In the
BR1 gene (Fig. 3), correctly 3′ end cleaved transcripts with
short, approximately 20-A long, poly(A) tails were present
at the gene locus and extension of the poly(A) tails occurred
as the mRNPs were released or shortly thereafter (Baurén et
al. 1998). The initial polyadenylation thus occurs at the gene
locus and unless efficiently performed leads to retention and
exosome degradation (reviewed in Schmid and Jensen
2008). Since the different cotranscriptional events are
coupled, defects in RNA polymerase II, pre-mRNP assem-
bly and splicing could possibly all result in retention at the
gene locus, mediated through a 3′ end processing pathway.

Unspliced and improperly assembled mRNPs are also
retained and presumably degraded at the NPC. The basket-
associated Mlp1 and Mlp2 (Tpr in vertebrates) and Pml39
proteins are involved in sorting proper and improper
mRNPs for translocation and retention, respectively
(reviewed in Fasken and Corbett 2009). Additional NPC-
associated proteins are involved, probably indirectly because
they are important for NPC assembly (Esc1) and Mlp1
anchoring (Nup60). The mRNPs may directly interact with
Mlp1 via the poly(A)-binding protein Nab2. The SUMO
protease Ulp1 is localised to the NPC and is involved in
retaining unspliced mRNPs, suggesting that desumoylation
is part of this process (Lewis et al. 2007).

mRNPs move inside the interchromatin space
by diffusion

Different types of data support the view that active
chromatin is unfolded and form loops of various lengths
(reviewed in Cremer et al. 2004; Sutherland and Bickmore
2009). In mammalian cell nuclei, such actively transcribing
chromatin loops may be found inside chromosome territories
or at the surface of these territories. EM observations suggest
that in both cases, active transcription occurs at the interface
between chromatin and interchromatin (reviewed in Fakan
and van Driel 2007). The nascent pre-mRNPs are accessible
from the interchromatin space, and upon termination of
transcription/processing, mRNPs are directly delivered into
the interchromatin space. This situation is most evident in
polytene nuclei. EM analyses show that the active BR genes
loop out into the interchromatin space, that the nascent BR
pre-mRNPs are in direct contact with the interchromatin
space and that the pre-mRNPs/mRNPs are directly delivered
into the interchromatin space (Fig. 4c and c′).

Biochemical analysis of the nuclear BR1/BR2 mRNPs
suggests that each of these long mRNAs is associated with
approximately 500 average-sized proteins (Wurtz et al.
1990). A number of different proteins have been identified
by immuno EM (CBC, hnRNP proteins, export factors,
PABP, EJC core complex, helicases, SR proteins and a
splicing repressor), but the complete composition is not yet
known. It is evident that each BR mRNP contains proteins
that have specific functions during export, for example at
the NPC and subsequently in the cytoplasm. In general,
proteins present in mRNPs have been identified (Dreyfuss
et al. 2002; Singh and Valcárcel 2005) and also charac-
terised for mRNP populations (Batisse et al. 2009). More
information about the protein composition in gene-specific
mRNPs is however needed.

Before the movement and distribution of mRNPs inside
the cell nucleus could be studied, it was believed that
efficiency demanded structural mRNP transport systems.
The current model proposes that mRNPs move in a non-
directional manner away from the gene by diffusion. This
diffusion, however, is restricted by the chromatin organisa-
tion and structures inside the interchromatin (Zachar et al.
1993). In mammalian nuclei, the interchromatin space forms
a three-dimensional labyrinth and diffusion of the mRNPs
occurs within this restricted space. It is possible that narrow
channels in between volumes of chromatin increase the
efficiency of directionality for mRNP movement. Direct
measurements of distribution and rate of movement are
compatible with a restricted diffusion (Politz and Pederson
2000; Shav-Tal et al. 2004; Ben-Ari et al. 2010; Mor et al.
2010). It has been observed that within the interchromatin
space, mRNPs move unrestricted in and out of interchro-
matin granule clusters (speckles at the light microscope
level), suggesting that, in general, mRNPs do not accumu-
late at specific regions for specific processing/modification
steps, at least not for splicing (Ritland Politz et al. 2006).

Compared to mRNPs in mammalian nuclei, the move-
ment of BR1/BR2 mRNPs is less restricted within the
interchromatin space of the large polytene nucleus (Singh et
al. 1999), and the diffusion coefficient is higher than
reported for mRNPs in mammalian nuclei (Siebrasse et al.
2008). This is probably because chromatin restrains
movement in mammalian nuclei. Tracking of individual
BR mRNPs demonstrated that within the interchromatin
space, the mRNPs are slowed down occasionally. This may
reflect transient interactions with non-chromatin compo-
nents in the interchromatin space (Fig. 4d and d′). Such
interactions have been demonstrated (Miralles et al. 2000).

It has been estimated that movement through the nucleus
of mammalian cells, from the gene to the NPC, occurs
within a time frame of 5–40 min, i.e. not a fixed time (Mor
et al. 2010). In the case of BR1/BR2 mRNPs, newly made
mRNPs become part of a pool of nuclear mRNPs from
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which individual BR mRNPs are exported, presumably
after randomly docking at NPCs (Fig. 4c and c′). We
propose that this reflects a situation common to all mRNPs
and that the nuclear residence time for individual mRNPs
varies. It is possible that diffusion through narrow inter-
chromatin channels increases the directionality for mRNP
movement in mammalian nuclei.

mRNP interaction with the NPC and release
into the cytoplasm

A decisive step in nucleocytoplasmic export is the
recognition between the mRNP and the NPC. The NPC is
a huge protein complex, comprising around 125 MDa in
mammals and 60 MDa in yeast. The structure and function
of the NPC has been reviewed in several recent reviews (for
example Cook et al. 2007; D’Angelo and Hetzer 2008; Lim
et al. 2008; Terry and Wente 2009; Strambio-De-Castillia et
al. 2010). Briefly, the NPC is built from about 30 different
proteins, called nucleoporins, divided into structural and
FG nucleoporins. FG nucleoporins contain flexible domains
rich in phenylalanine and glycine residue repeats, separated
by characteristic spacer sequences. In total, it is estimated to
be 500–1,000 nucleoporins/NPC. The NPC has a charac-
teristic 8-fold symmetry and consists of a core embedded in
the nuclear envelope and fibrillar structures on both the
nuclear and cytoplasmic sides. The core consists of a
central channel positioned in between a nuclear and a
cytoplasmic ring. The central channel contains a meshwork
of unfolded, flexible FG nucleoporins. The fibrillar
structure on the nuclear side, called the basket, consists of
eight fibrils attached to the nuclear ring of the core. The
ends of the basket fibrils can interconnect with each other.
On the cytoplasmic side, there are also eight fibrils but they
are shorter than those on the nuclear side.

The binding of BR1 and BR2 mRNPs to the basket of
the NPC and their translocation through the NPC has been
studied in some detail (Fig. 5). Initially, the BR mRNP
interacts with the tip of the basket fibrils and there are
structural rearrangements of the basket (Fig. 5a and a′)
(Kiseleva et al. 1996). The fibrils open up and a ring-like
structure is formed around the centrally placed BR mRNP.
It is possible that, before binding the mRNP, the basket
fibrils are in fact quite flexible and that they constantly
move and thereby contribute to the efficiency of recruit-
ment of mRNPs to the basket (Kylberg et al. 2010). After
binding, the BR mRNP enters the basket and the ring
structure regresses (Fig. 5b and b′). Tpr and the FG
nucleoporin Nup153 are present in the basket fibrils. Export
receptors interact with FG repeats and several FG nucleo-
porins in addition to Nup153 are present on surface-
accessible NPC positions including the basket (reviewed

in Terry and Wente 2009). Export receptors bind directly to
the FG repeats with domains that are different from the
mRNP-binding domains (Stewart 2007), and different
export receptors may require different subsets of FG
nucleoporins. BR mRNPs are retained on top of the basket
when Nup153 is experimentally interfered with, suggesting
that Nup153 is involved in the transfer of the BR mRNP
into the basket (Soop et al. 2005). Wheat germ agglutinin
blocks the BR mRNPs at the basket, suggesting that
GlcNAc-bearing nucleoporins, but presumably not
Nup153, are involved in processes preceding the transloca-
tion through the central channel (Kylberg et al. 2010).

As previously pointed out, a BR mRNP contains
multiple export adaptors for NXF1:NXT1 and it also
contains Crm1. It has been observed that during transloca-
tion, the BR mRNP rotates and that it has multiple contact
points with the NPC nuclear ring (Fig. 4b) (Mehlin et al.
1995). This may reflect the multiple export receptors and/or
the mechanics of entering the central channel. At least for
large mRNPs, such as the BR mRNPs, efficient NPC
passage may require multiple export receptors. In agree-
ment with such an interpretation, interference with SRSF2
(SC35) (Björk et al. 2009) or inhibition of formation of
LMB–RanGTP complex (Zhao et al. 2004) only partially
reduces export.

After docking at the entrance of the central channel, the
BR mRNP strikingly changes structure as it continues to
move into the channel and adopts a more extended shape,
approximately 25 nm in diameter (Fig. 5c and c′). The NPC
channel allows almost free passage of molecules smaller
than 5 nm in diameter (Feldherr and Akin 1997; Keminar
and Peters 1999) and appears to have an upper limit of
transport of complexes with a diameter of 39 nm (Wente
and Rout 2010). The structural rearrangement of the BR
mRNP may be a consequence of this physical size limit and
the translocation process. Compositional changes could
facilitate these structural rearrangements. The BR mRNPs
move through the NPC channel with its 5′ end first (Fig. 5c
and c′) (Mehlin et al. 1992, 1995; Visa et al. 1996a). This
may be a general property of mRNPs since it has also been
observed for dystrophin mRNPs (Mor et al. 2010). The
molecular details are not known. It is possible, though, that
a number of proteins leave the mRNP at this point. In the
case of the BR mRNP, immuno EM studies suggest that the
TREX components UAP56 and Aly (Kiesler et al. 2002),
the splicing regulator hrp23/RSF1 (Sun et al. 1998) and
hrp59/hnRNP M (Kiesler et al. 2005) all leave the BR
mRNP during docking or translocation through the NPC. It
is also possible that proteins important for export, such as
RAE1, interact transiently and specifically with the BR
mRNP at this stage (Sabri and Visa 2000).

The translocation through the NPC channel is rapid.
Real-time visualisation of individual mRNPs during export
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showed that the export time was about 0.5 s (Mor et al.
2010 and references herein). The movement of the mRNP
through the NPC was 15-fold faster than simple diffusion,
suggesting that the translocation is facilitated. Several
mechanisms for translocation have been put forward
(reviewed in Peters 2009).

At the cytoplasmic side of the NPC, BR mRNPs do not
regain their spherical interchromatin structure. Instead, they
form extended mRNP fibrils. In general, it has been
suggested that a reorganisation of mRNPs takes place at
the cytoplasmic side of the NPC. The DEAD-box helicase
Dbp5 is enriched at this location. Dbp5 is important for the
export process (Alcazar-Roman et al. 2006; Weirich et al.
2006), presumably by remodelling the mRNP and simulta-
neously releasing proteins, such as NXF1:NXT1, thereby
creating a directionality of the export (Lund and Guthrie
2005). Dbp5 binds to RNA and to several protein partners
that are present at the cytoplasmic side of the NPC (Moeller
et al. 2009). Nup214 (Nup159 in yeast) binds Dbp5, but
only in the RNA-free form. It is therefore possible that
Dbp5 could be delivered from Nup214 to the mRNP.
Immuno EM studies of translocating BR1 and BR2 mRNPs
suggest that Dbp5 is added to the mRNP at this stage (Zhao
et al. 2002). Gle1 and its cofactor InsP6, which are

associated with another nucleoporin and positioned close
to Nup214, stimulate the Dbp5 ATPase activity. This results
in a local activation of Dbp5, leading to the mRNP
remodelling and release of proteins. One such protein is
the nuclear poly(A)-binding protein that is lost from BR
mRNP at NPC translocation or shortly thereafter (Bear et
al. 2003). This would be in line with that Dbp5 has been
shown in vitro to remodel mRNP and displace the yeast
Nab2 protein (Tran et al. 2007).

Dbp5 has been shown to also bind to pre-mRNPs
cotranscriptionally in yeast (Estruch and Cole 2003) and
to BR pre-mRNPs (Zhao et al. 2002). Such ‘pre-bound’
Dbp5 could function at the NPC. It is also possible that
Dbp5 is involved in remodelling of the pre-mRNP in the
nucleus, for example during cotranscriptional assembly.

The routes taken by mRNPs in the cytoplasm can be
different. For efficiently translated mRNPs, such as BR
mRNPs, initiation of translation can occur immediately
after entrance into the cytoplasm (Fig. 5d and d′). CBP20,
and presumably the entire CBC, is lost from the BR mRNP
during translocation (Visa et al. 1996a). Furthermore, the
translation initiation factor eIF4H (Björk et al. 2003)
becomes associated with the BR mRNP at the cytoplasmic
side of the NPC. Morphologically, ribosomes can be seen

Fig. 5 The behaviour of BR1/BR2 mRNPs at the NPC. Schematic
representations and EM images (adopted from Mehlin et al. 1992) of the
corresponding steps. a, a′ The mRNP (in dark blue) binds to the tip of
the basket (in grey). b, b′ It then enters into the basket and docks at the
entrance of the central channel. c, c′ Subsequently, the mRNP changes

conformation as it is translocated through the central channel with the 5′
end first. d, d′ At the cytoplasmic side, initiation of translation can occur
rapidly at the exit of the central channel. Orange dots in (d) and arrows
in (d′) indicate ribosomes. The scale bar represents 100 nm
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associated with the extended BR mRNP fibril (Mehlin et al.
1992). This implies that a pioneer round of translation and
establishment of polysomes can occur already in the
perinuclear region.

The NPC translocation process is an important step in
transforming the intranuclear mRNP into a functional
cytoplasmic mRNP. Understanding the molecular events at
the NPC that deciphers the information built into the
nuclear mRNP composition and structure will be important
to understand gene expression. The intranuclear mRNP
enters the NPC via the basket as an export competent
mRNP, and during translocation, conformational and
compositional changes are triggered. Changes occur at both
the 5′ and 3′ ends of the mRNP. Export receptors and other
proteins are displaced. The cotranscriptional assembly is,
however, not entirely replaced. The EJC, hnRNP proteins
and SR proteins are examples of cotranscriptionally added
components that will influence localisation, translation and
quality control in the cytoplasm.

Conclusions and future perspectives

The making of an export and translation competent mRNP
requires the coordinated action of many multi-component
protein and protein–RNA complexes. At the active gene
locus and at the NPC, important events integrate the
formation, processing and modification of the mRNP
before delivery into the cytoplasm. Interactions between
components in the different molecular machines and
multiple roles for individual components at several steps
result in a streamlined synthesis, processing and export
pathway. In addition, the interplay between subcomponents
improves efficiency and makes quality control possible at
several steps.

Identical molecular components are present in different
organisms, but variations in the pathway of mRNP
biogenesis clearly exist that presumably tend to emphasise
specific processes depending on the cell type or experi-
mental system. We therefore need to analyse principles and
mechanisms in favourable systems and learn how these
mechanisms operate in specific cases and in general. We
furthermore need experimental tools to better analyse the
formation, possibly pre-formation, and reuse of the multi-
molecular machines in intact cell nuclei. It is still largely
unknown how integrated, efficient and regulated action of
the machines and processes is brought about in the cell
nucleus.
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