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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The first two-center study constructing 
different radiomics models to differen-
tiate spinal multiple myeloma from 
metastases. 

• The radiomics models constructed based 
on MRI achieved satisfactory diagnostic 
performance for the classification of 
spinal MM and metastases. 

• Radiomics models based on joint CET1 
and T2WI performing better than T2WI 
alone, and CET1 alone.  
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A B S T R A C T   

Purpose: Spinal multiple myeloma (MM) and metastases are two common cancer types with similar imaging 
characteristics, for which differential diagnosis is needed to ensure precision therapy. The aim of this study is to 
establish radiomics models for effective differentiation between them. 
Methods: Enrolled in this study were 263 patients from two medical institutions, including 127 with spinal MM 
and 136 with spinal metastases. Of them, 210 patients from institution I were used as the internal training cohort 
and 53 patients from Institution II were used as the external validation cohort. Contrast-enhanced T1-weighted 
imaging (CET1) and T2-weighted imaging (T2WI) sequences were collected and reviewed. Based on the 1037 
radiomics features extracted from both CET1 and T2WI images, Logistic Regression (LR), AdaBoost (AB), Support 
Vector Machines (SVM), Random Forest (RF), and multiple kernel learning based SVM (MKL-SVM) were con-
structed. Hyper-parameters were tuned by five-fold cross-validation. The diagnostic efficiency among different 
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radiomics models was compared by accuracy (ACC), sensitivity (SEN), specificity (SPE), area under the ROC 
curve (AUC), YI, positive predictive value (PPV), negative predictive value (NPY), and F1-score. 
Results: Based on single-sequence, the RF model outperformed all other models. All models based on T2WI 
images performed better than those based on CET1. The efficiency of all models was boosted by incorporating 
CET1 and T2WI sequences, and the MKL-SVM model achieved the best performance with ACC, AUC, and F1- 
score of 0.862, 0.870, and 0.874, respectively. 
Conclusions: The radiomics models constructed based on MRI achieved satisfactory diagnostic performance for 
differentiation of spinal MM and metastases, demonstrating broad application prospects for individualized 
diagnosis and treatment.   

1. Introduction 

As two types of malignant tumors commonly affecting the bone 
marrow, multiple myeloma (MM) and metastases are often seen as single 
or multiple lesions in the spine [1,2].Currently, the primary diagnosis 
for the two spinal malignancies relies mainly on imaging examinations. 
However, atypical magnetic resonance imaging (MRI) manifestations 
and clinical symptoms could be observed in both of spinal metastases 
and MM [1,3–5]. The diagnosis of MM is usually based on the mea-
surement of quantitative serum and urine paraprotein (M protein), but 
some MM cases are non-secretory or hypersecretory, making diagnosis 
more difficult [3,6]. Although the history of the primary tumor may help 
the diagnosis of spinal metastasis, approximately 30% patients present 
with spinal metastases of unknown origin [7,8]. Differential diagnosis 
between spinal MM and metastases remains a challenge for radiologists, 
and therefore it is imperative to establish an effective method for ac-
curate differential diagnosis between them. 

MRI is generally accepted as the gold standard imaging method for 
assessing tumors of the spine [9,10]. It is more sensitivity in detecting 
lesions confined to vertebral column as compared with computer to-
mography (CT), standard radiography and nuclear medicine scanning 
[9]. However, there exists an overlap of MRI imaging manifestations 
between spinal MM and metastases, especially in cases with multiple 
vertebra focal osteolytic lesions, which may easily lead to clinical mis- or 
mal-diagnosis [11–13]. Although 18F-fluorodeoxyglucose positron 
emission tomography and CT (18F-FDG PET/CT) is vital for detecting 
metastasis and primary cancer, it has been demonstrated to have some 
disadvantages such as time-consuming, high radiation exposure and 
high cost for patients. Additionally, the resolution of 18F-FDG PET/CT is 
limited, and correlation with MRI imaging is required [3,9]. If conven-
tional MRI could accurately predict these lesions, it would provide a 
beneficial, cost-effective management option for patients. 

In recent years, radiomics has gained increasing attention in that it 
promises to reveal more biological detail and increases the spatial res-
olution as compared with conventional imaging methods. As a newly 
emerging non-invasive method, radiomics has proved to be effective in 
clinical diagnosis, differential diagnosis, prognosis prediction, and 
therapeutic effect assessment by extracting high-dimensional sets of 
imaging features and characterizing intratumoural heterogeneity 
[1,3,14]. In clinical oncology, radiomics has greatly expanded the scope 
of conventional medical imaging rather than focusing only on 
morphology. Although radiomics has made significant achievements in 
various types of tumors such as those originating from the lung, breast 
and gastrointestinal tract, studies reporting the application of MRI-based 
radiomics for differential diagnosis between spinal MM and metastases 
are limited [1,3,15–17]. 

The aim of this study was to develop radiomics models for differ-
entiation between spinal MM and metastases based on MRI sequences by 
collecting datasets from two institutions: one for the internal training 
set, and the other for the external validation set. The performance of 
different radiomics models was assessed based on different vertebra MRI 
sequences, including contrast-enhanced T1-weighted imaging (CET1) 
alone, T2-weighted imaging (T2WI) alone, and joint CET1 with T2WI. 

2. Material and methods 

2.1. Patients and study design 

This was a two-center retrospective study conducted at Changzheng 
Hospital (Shanghai, China) as Institution I, and Sun Yat-sen University 
Cancer Center (Guangzhou, China) as Institution II. The requirement for 
written informed consent was waived because of the retrospective na-
ture of this study without any intervention on patients. Clinical char-
acteristics and MRI sequences of patients with spinal MM or metastases 
were collected retrospectively, who received treatment in the two in-
stitutions from January 2019 to April 2021. The study was approved by 
ethics committee of each participating institution. 

A total of 263 patients with spinal metastases and MM were even-
tually recruited from the two institutions based on the following inclu-
sion criteria: (1) patients diagnosed with spinal MM or metastasis 
confirmed by histology or cellular pathology; (2) patients with preop-
erative MRI with qualified images, including CET1 and T2WI; and (3) 
patients with complete clinical information. Exclusion criterion 
included patients: (1) who were diagnosed with other spinal tumors; (2) 
who did not receive MRI scanning in our two institutions or without 
qualified or complete MRI images; (3) who did not undergo spine sur-
gery or tissue biopsy without pathological findings; and (4) without 
complete clinical information. 

Patients from Institutions I were assigned as the training set, and 
those from Institution II were in the external validation set, respectively. 
The demographic characteristics of the two cohorts are summarized in 
Table 1. The flowchart in Fig. 1 illustrates the analysis pathway of this 
study. 

2.2. MRI acquisition 

All patients underwent MRI examinations with General Electric 
Signa 1.5T (Milwaukee, USA), Philips Achieva 3.0T (Veenpluis 4-6, 
5684 PC Best, the Netherlands), and Siemens Avanto 1.5T (Shenzhen, 

Table 1 
Clinical information for patients with spinal MM and metastases from two 
institutions.  

Clinical factors Training cohort 
(Institution I) 

External cohort 
(Institution II) 

P value 

Gender    0.277 
Male 132 29  
Female 78 24  
Age 57.26 ± 10.55 57.11 ± 9.51  0.921 
Tumor type    0.459 
MM 99 28  
Metastases 111 25  
Tumor location    0.001 
Cervical vertebrae 40 1  
Thoracic vertebrae 90 17  
Lumber vertebrae 66 29  
Sacrococcygeal 

vertebrae 
14 6  

Tumor size (cm) 4.08 ± 1.32 2.99 ± 1.75  <0.001 

MM, multiple myeloma. 

J. Cao et al.                                                                                                                                                                                                                                      



Journal of Bone Oncology 45 (2024) 100599

3

China). All scans were performed in a consistent manner. MRI sequences 
included in this study were CET1 and T2WI sequences. The adopted 
scanning parameters were as followed: CET1 (repetition time [TR]: 
500–650 msec; echo time [TE]: 12–14 msec); T2WI (TR: 2500–4500 
msec; TE: 94–120 msec); The following imaging acquisition parameters 
were used for both CET1 and T2WI: slice thickness, 3–6 mm; matrix 
ranging from 320 × 160 to 512 × 512; field of view ranging from 240 ×
240 mm2 to 380 × 380 mm2. GD-DTPA Injection (Consun Pharma, 
Guangzhou, PR China) was administered intravenously using a weight- 
based dosing protocol of 0.2 ml/kg. Sagittal, axial and coronal images 
were acquired and converted to DICOM format for subsequent 
processes. 

2.3. Lesion segmentation 

All images were retrieved in the form of DICOM with accordant 
window width and window location from the Picture Archiving and 
Communication System (PACS) in both institutions. The region of in-
terest (ROI) was manually created from sagittal CET1and T2WI using 
ITK-SNAP 3.8.0 software [18]. Given the possibility of multiple lesions 
on each patients’ lumbar vertebrae, only the lesions bigger than 1 cm 
diameter were considered and chosen to avoid the partial volume effect. 
Of them, the largest was selected for the subsequent analysis. All 
participating radiologists were blinded to the clinical information. The 
ROI was outlined by one musculoskeletal radiologist with more than 5- 
year diagnostic experience, and the result was checked by another 
musculoskeletal radiologist with more than 10-year diagnostic experi-
ence. Any discrepancy between them would be solved through discus-
sion. Both were blinded to the results of pathology, clinical information, 
clinical and follow-up findings. An example of ROI outline is illustrated 
in Fig. 2. 

2.4. Feature extraction 

Extracted from the ROI for each patient, a total of 1037 features were 
divided into 10 groups: (1) First-order statistics (n = 18), (2) shape (n =
14), (3) texture (n = 24, derived from GLCM), (4) texture (n = 16, 

derived from GLSZM), (5) texture (n = 16, derived from GLRLM), (6) 
texture (n = 14, derived from GLDM), (7) texture (n = 5, derived from 
NGTDM), (8) wavelet-based features (n = 744), (8) exponential-based 
features (n = 93), and (10) logarithm-based features (n = 93). Feature 
extraction was automatically conducted by the PyRadiomics package 
implemented in Python. 

2.5. Feature selection 

T-test analysis was performed for all features, which with P values 
<0.05 were selected for further analysis. Two independent sample t tests 
were used to find whether the mean and distribution of these two 
samples were significantly different. In the two sets of samples of normal 
and abnormal patients whose features involved an average, t-test was 
used to determine whether these features were significantly different. If 
there were significant differences, they were reserved for classification 
tasks, and otherwise they were removed from classification tasks. The t- 
test analysis was followed by the Lasso feature selection method, aiming 
to remove irrelevant features before classification. Lasso regression was 
based on ordinary least squares with L1 regular expression, where the L1 
regular expression was used to prevent overfitting of models. Lasso can 
transform the value of irrelevant features into 0, thereby performing 
feature reduction and selecting important features for classification 
tasks. 

2.6. Classification and validation 

After feature selection, generalization of the selected features was 
evaluated by using four different classification models. Specifically, the 
Logistic Regression (LR) is simple and easy to implement, yet it has a 
limited capability to capture complex non-linear relationships. The 
AdaBoost (AB) can significantly improve model performance by 
combining weak classifiers, but it is sensitive to noisy data and outliers. 
The Support Vector Machine (SVM) effectively handles non-linear 
problems by utilizing kernel tricks, although the selection of an appro-
priate kernel and parameter tuning can pose challenges. The Random 
Forest (RF) offers strong robustness and is less prone to overfitting, but 

Fig. 1. The flow chart of patient enrolment.  
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may not be suitable for certain types of data, such as sparse data. In 
addition, to combine the CET1 and T2WI sequences, we first concatenate 
the features extracted from the CET1 and T2WI images, and then the 
new features are fed into these classifiers to generate the final results. 
These classifiers were all imported from a Python (version 3.6.5) ma-
chine learning library named scikit-learn (version 20.3). In addition, to 
combine the CET1 and T2WI sequences, we first concatenate the fea-
tures extracted from the CET1 and T2WI images, and then the new 
features are fed into these classifiers to generate the final results. 

Additionally, we utilized the multi-kernel learning based SVM (MKL- 
SVM) algorithm, which combines SVM with multi-kernel learning, to 
effectively incorporate CET1 and T2WI sequences. MKL-SVM can 
effectively capture intricate data relationships and enhance classifica-
tion performance. The detailed steps of MKL-SVM are as follows: 1) The 
ROIs including the lesions are first cropped from CET1 and T2WI images 
and the representative features are extracted to form single-sequence 
features; 2) The SVM classifier is then applied to the single-sequence 
features and the fused kernel features to generate a classifier pool; 3) 
The MKL algorithm is then applied to this classifier pool to boost these 
classifiers to generate the final diagnosis result. It is worth noting that 
the training time and computational costs of MKL-SVM can be sub-
stantial when dealing with numerous kernels. Training data set was split 
into five equally-sized parts, each exhibiting the same class distribution, 
and then the five-fold cross-validation was used to tune hyper- 
parameters. To evaluate their performance between spinal MM and 
metastases in differential diagnostic models, Accuracy (ACC), Sensitivity 
(SEN), Specificity (SPE), the area under the ROC curve (AUC), YI, Pos-
itive Predictive Value (PPV), Negative Predictive Value (NPY) and F1- 
score were selected as the metrics. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ACC = (TP + TN)/(FP + FN + TN + FP)

SEN = TP/(TP + FN)

SPE = TN/(TN + FP)

YI = SEN + SPE − 1

PPV = TP/(TP + FP)

NPV = TN/(TN + FN)

F1 = 2TP/(2TP + FP + FN)

where FN, TN, TP and FP represent false negative, true negative, true 

positive and false positive, respectively. The overall workflow for 
radiomics model development is shown in Fig. 2. 

2.7. ComBat compensation method 

The ComBat compensation method can eliminate batch effects 
caused by many sources of variability generated by different scanners 
and protocols while keeping the outperforming features seen in multi-
center radiomic investigations. It has been used to increase reproduc-
ibility between centers [19]. 

2.8. Statistical analysis 

Statistical tests were implemented using R statistical software 
(version 3.3.0, https://www.r-project.org). Independent samples t-test 
or MannWhitney U test was used to compare continuous variables, and 
the chi-square test or Fisher test was applied for the categorical variables 
between the two cohorts. A P value smaller than 0.05 was considered 
statistically significant in this study. 

3. Results 

Enrolled in this study were 263 patients with pathologically 
confirmed spinal tumors, including 127 patients with MM and 136 with 
metastases. A total of 210 of them were form institution I, and the other 
53 were from Institution II (Table 1). Distribution of tumor origin for 
patients with spinal metastases included: lung (n = 72), breast (n = 14), 
liver (n = 22), kidney (n = 24), and digestive tract (n = 4) (Fig. 3). 

Table 2 presents the classification results of different radiomics 
models based on single-sequence in the training set and external vali-
dation sets. Among all models based on CET1 alone and T2 alone, the 
classification performance of RF outperformed that of LR, AdaBoost, and 
SVM in both the training and external validation sets. In addition, all 
models constructed on T2WI were found to be superior to those based on 
CET1 with higher values of ACC and AUC in both the training set (0.819 
and 0.834 of RF vs. 0.782 and 0.806 of SVM vs. 0.760 and 0.756 of 
AdaBoost vs. 0.730 and 0.739 of LR) and the external validation set 
(0.759 and 0.785 of RF vs. 0.741 and 0.754 of SVM vs. 0.704 and 0.717 
of AdaBoost vs. 0.667 and 0.690 of LR). The ROC curves for all radiomics 
models based on single-sequence are shown in Fig. 4. It can be observed 
that the performance of all models was generally stable, and RF achieved 

Fig. 2. The radiomics workflow.  
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better performance than the other models. In addition, radiomics clas-
sifiers based on incorporation of CET1 with T2WI sequences performed 
better than their respective counterparts based on CETI or T2WI images 
alone (Table 3 and Fig. 5). The MKL-SVM model achieved optimal 
performance with an ACC of 0.862 and AUC 0.870, followed by RF 
(0.853 and 0.865), SVM (0.823 and 0.833), AdaBoost (0.791 and 0.793), 
and LR (0.752 and 0.788). 

4. Discussion 

In this two-center study, we constructed MRI-based radiomics 
models to differentiate spinal MM from metastases. In all radiomics 
models based on single-sequence, RF showed a stronger capability in 
classification than LR, AdaBoost, and SVM. In addition, radiomics 
models from T2WI achieved better performance than those based on 
CET1. Moreover, our research has illustrated the value of radiomics 
classifiers from joint T2WI with CET1 in differentiating spinal malignant 
tumors. The MKL-SVM model yielded the highest ACC and AUC among 
all models. In brief, the methodology developed in this study could serve 
as a reliable tool for differentiation between spinal MM and metastases. 
To the best of our knowledge, this research is the first multicenter study 
that applied radiomics method to differentiate spinal MM from 
metastases. 

With the arrival of the era of precision medicine, individualized 
diagnosis and treatment plays a pivotal role in the management of 
cancer patients. Given huge differences between spinal MM and me-
tastases, timely and accurate diagnosis is crucial for choosing the most 
appropriate therapies [20,21]. Although needle biopsy serves as the 
“gold standard” of diagnosis for spinal MM and metastases, its clinical 
application is limited by its invasiveness and potential false negative 
rates. Being non-invasive, imaging examination plays an essential role in 
pretreatment evaluation and efficacy assessment. However, both spinal 
MM and metastases imageologically present as a single lesion or mul-
tiple lytic lesions, which makes the differential diagnosis between them 
extremely challenging and to some extent limits the efficacy of differ-
ential diagnosis by conventional imaging examinations such as X-ray, 
CT, and MRI [3,4,22]. Prior studies have pointed out that advanced MRI 
methods are useful in differential diagnosis between spinal MM and 
metastases. Lang et al. [23] reported the application of dynamic 
contrast-enhanced MRI (DCE-MRI) in differentiating spinal MM and 
metastases, which could provide additional information that conven-
tional MRI could not obtain to differentiate MM from metastases. Similar 
conclusions have been also reached in other studies [24–26]. Park et al. 
[4] and Hwang et al. [27] reported that MR combined with diffusion- 
weighted imaging (DWI) could help distinguish MM from metastases 
in the spine and extremities. Nevertheless, not all medical conditions are 
equipped with advanced imaging devices, requiring sophisticated 
acquisition and analysis methods. Therefore, it is more practical and 

Fig. 3. The pie chart of distribution of tumor origin for patients with spi-
nal metastases. 
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preferred for clinical work-up to classify spinal tumors based on con-
ventional MRI sequences. Additionally, both conventional and advanced 
MRI tend to be impacted by the experience of radiologists, and they lack 
objectivity and quantification to some extent [19]. 

Radiomics could provide an objective assessment of tissue hetero-
geneity and lesion heterogeneity, thereby providing a new method to 
collect information about the microenvironment of lesions that is 
impossible to observe visually. Over the past several years, radiomics 
analysis has become a common approach for gathering information from 
medical images to perform a variety of clinical tasks, such as differen-
tiating benign and malignant tumors and predicting therapeutic out-
comes or prognoses [3,7,28–30]. So far, only sporadic reports have 
demonstrated the efficiency of radiomics analysis in differentiating 
spinal MM from metastases. Jin et al. [31] constructed radiomics model 
based on 18F-FDG PET/CT images and achieved excellent diagnostic 
performance for differentiation between MM and bone metastases, and 

the optimal model achieved an AUC value of 0.973. Although 18F-FDG 
PET/CT is recommended as one of the optimal imaging examinations, its 
high radiation exposure and high cost are problems that need to be 
solved, especially in developing countries. 

As one of the most widely used imaging modalities, MRI has proved 
to be effective in radiomics analysis for classifying spinal MM from 
metastases [1,3]. Xiong et al. reported that compared with SVM, K- 
Nearest Neighbor (KNN), RF, and Naïve Bayes (NB), the, Artificial 
Neural Networks (ANN) exhibited the best performance in differenti-
ating lumbar MM from metastasis based on T2WI images with accuracy, 
sensitivity, and specificity of 0.815, 0.879, and 0.790, respectively [3]. 
They also found that T2WI sequences contained more valuable texture 
features than T1WI for differentiating MM from metastases. Unlike their 
study based on 10-fold cross-validation, Liu et al. constructed radiomics 
models with an appropriate small number of the most frequent features 
using ten times 5-fold cross-validation and demonstrated its efficiency of 

Fig. 4. ROC curves of different radiomics models based on CET1 alone in the training set (a) and the validation set (b), and T2WI alone in the training set (c) and the 
validation set (d). 

Table 3 
Classification results of different radiomics models based on incorporation of CET1 and T2 sequences in the training set.  

Models ACC SEN SPE YI PPV NPV F1 AUC 

LR  0.752  0.811  0.687  0.498  0.744  0.764  0.776  0.788 
AdaBoost  0.791  0.811  0.768  0.579  0.798  0.784  0.804  0.793 
SVM  0.823  0.900  0.737  0.637  0.794  0.873  0.843  0.833 
RF  0.853  0.847  0.860  0.707  0.874  0.836  0.859  0.865 
MKL-SVM  0.862  0.910  0.808  0.717  0.841  0.893  0.874  0.870 

ACC, accuracy; SEN, sensitivity; SPE, specificity; YI, Youden index; PPV, positive predictive value; NPV, negative predictive value; AUC, the area under the receiver 
operating characteristic (ROC) curve. 
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differentiating MM from metastasis based on conventional vertebral 
MRI [1]. The 10 EPV-Model in their study achieved optimal perfor-
mance with AUC of 0.84. Moderate efficiency was achieved by radio-
mics models in the two studies mentioned above, which are consistent 
with our findings. In addition, their studies were carried out in one 
institute without an external validation set. In our study, we enrolled 
more patients from two institutes and validated the efficiency of models 
in an external validation set. 

In this study, we trained and validated classifiers by using machine- 
learning algorithms including LR, AdaBoost, SVM, RF, and MKL-SVM. 
Unlike Xiong et al. and Liu et al., we constructed radiomics models 
based on the sequences of T2WI alone, CET1 alone, and both. Because 
radiologists usually rely on CET1 to make diagnosis by human eyes, 
which can depict vascularity of the lesions, reflect the degree of malig-
nancy, and distinguish necroses and solid tumors. Whereas T2WI could 
effectively depict the lesion boundaries and reveal the overall density of 
lesions to a certain extent. Our results show that all models based on 
T2WI images performed better than those based on CET1. The findings 
of our study are consistent with other radiomics studies based on MRI or 
CT in that models constructed from non-contrast sequences were supe-
rior to those based on enhanced sequences [32,33]. The underlying 
reason may be that contrast enhancement could interfere with the true 
grayscale, uniformity, contrast, texture depth, and depth thickness in 
radiomics, which may then lead to poor performance in differentiating 
different tumors because of the existing intra-tumoral contrast material 
[33,34]. Among all radiomics models constructed based on single- 
sequence, the RF model achieved the best performance for differential 
diagnosis from both T2WI and CET1 in this study. By incorporating 
CET1 and T2WI sequences, the efficiency of all models was boosted and 
the MKL model achieved the best performance with an ACC, AUC, and 
F1-score of 0.86, 0.87, and 0.87, respectively (Table 3 and Fig. 5). Our 
results indicated that compared with the tandem strategy in other 
radiomic models, the MKL-SVM algorithm with a linear convex combi-
nation of polynomial kernel and sigmoid kernel could effectively fuse 
bimodal data with better performance in differential diagnosis. The MKL 
has been demonstrated to improve classification accuracy and robust-
ness [35]. It is impossible to construct a universal optimal learning al-
gorithm in all fields. Nevertheless, the classifiers constructed in our 
study showed capability of RF and MKL-SVM in distinguishing spinal 

MM from metastases with satisfied performance. 
There are several limitations in our study. First, since the images 

were reviewed retrospectively, the possibility of selection bias is un-
avoidable despite our stringent criteria. Second, manual tumor seg-
mentation may lead to subjectivity and irregularities. Third, although 
the experimental data were from two institutions, the differences in MRI 
scanners and protocols still existed to some extent. To lessen the dis-
parities in picture specifications, we used resampling methodology and 
the ComBat compensation method, with the goal of increasing the sta-
bility of features and different models. Finally, as it is less realistic to 
include all types of spinal metastases, we only selected several common 
types of spinal metastases as the metastatic group in this study. There-
fore, larger-sample studies are required to increase model generaliza-
tion. With the sample size increasing, we will further classify different 
subtypes of spinal metastases. 

5. Conclusion 

Our findings demonstrate the satisfactory performance of radiomics 
models based on conventional MRI sequences to differentiate spinal MM 
from metastases. Machine learning classifiers could potentially be 
valuable tools for optimizing precision medicine applied to spinal 
tumors. 
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