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Simple Summary: The abundance of insects indicates that they are one of the most adaptable forms
of life on earth. Genetic, physiological, and biochemical plasticity and the extensive reproductive
capacity of insects are some of the main reasons for such domination. The endocrine system has been
known to regulate different stages of physiological and developmental processes such as metabolism,
metamorphosis, growth, molting, and reproduction. However, in this review, we focus on those
aspects of the endocrine system that regulate female insect reproduction. The proper understanding
of the endocrine system will help us to better understand the insect reproductive system as well as
to develop new strategies to control the insect pest population. The juvenile hormone analogs and
molting hormone analogs have been widely used to control the insect pests. Such insect growth
regulators are usually more specific and cause little harm to the beneficial organisms. Therefore, a
proper understanding of these signaling pathways as well as their interaction with each other and
other signaling pathways is very crucial. Further, the interaction of microbiome with the endocrine
system is also discussed.

Abstract: The proper synthesis and functioning of ecdysteroids and juvenile hormones (JHs) are
very important for the regulation of vitellogenesis and oogenesis. However, their role and function
contrast among different orders, and even in the same insect order. For example, the JH is the main
hormone that regulates vitellogenesis in hemimetabolous insect orders, which include Orthoptera,
Blattodea, and Hemiptera, while ecdysteroids regulate the vitellogenesis among the insect orders
of Diptera, some Hymenoptera and Lepidoptera. These endocrine hormones also regulate each
other. Even at some specific stage of insect life, they positively regulate each other, while at other
stages of insect life, they negatively control each other. Such positive and negative interaction of
20-hydroxyecdysone (20E) and JH is also discussed in this review article to better understand the
role of these hormones in regulating the reproduction. Therefore, the purpose of the present review
is to deeply understand the complex interaction of endocrine hormones with each other and with the
insulin signaling pathway. The role of microbiomes in the regulation of the insect endocrine system
is also reviewed, as the endocrine hormones are significantly affected by the compounds produced
by the microbiota.

Keywords: endocrinology; ecdysteroids; 20-hydroxyecdysone; juvenile hormone; vitellogenesis;
oogenesis; reproduction; microbiomes

1. Introduction

Reproductive physiology of insects includes all the physiological and behavioral
processes from the development of the embryo to the production and oviposition of the
fertile eggs [1]. Regulation of insect reproductive capacity coincides with the endocrine
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system [2]. The endocrine glands secrete hormones that are transported through the
blood and act on tissues bearing specific receptors. However, endocrine regulation is very
complex in insects and involves different types of hormones [3]. Therefore, in this review,
we focus on the endocrine system in regulating female insect reproduction.

The prothoracic glands synthesize ecdysteroids after stimulation by the prothoraci-
cotropic hormone (PTTH) and release them into the hemolymph [4], while the juvenile
hormones (JHs) are secreted by a pair of endocrine glands behind the brain called the
corpora allata (CA) [5]. The ecdysteroids are one of the major steroid hormones that play
an essential part in regulating metamorphosis and larval molting [6]. However, such
hormones are also vital and play crucial roles in regulating the reproductive physiology
of insects [7]. Insects convert cholesterol into ecdysone and 20E (active metabolite) by the
progression of some hydroxylation and oxidation steps. Such conversions are achieved by
the involvement of cytochrome P450 enzymes encoded by Halloween genes [8]. During
embryogenesis, the ecdysteroids are also maternally incorporated into the developing
oocytes as conjugated ecdysteroids. Maternally deposited ecdysteroids then regulate a
variety of cellular processes, which are vital for embryonic development. In Bombyx mori,
the ecdysone oxidase was reported to be present in the cytoplasm throughout the yolk
granules of the oocyte, and responsible for catalyzing 20E to 3-dehydroecdysone (3DE)
through encoding an enzyme. Downregulation of BmEO by RNAi resulted in a signifi-
cantly lower titer of 20E and hatching rate [9]. Meanwhile, during early embryogenesis,
ecdysteroid-phosphate phosphatase (EPPase) converts the conjugated ecdysteroid into
20-hydroxyecdysone (20E) [10]. Mating-induced increased titer of 20E, in the hemolymph
and ovaries of Drosophila melanogaster, results in increased expression of ecdysone-induced
protein 75B (Eip75B) [11].

In different insects, both ecdysteroids and JHs regulate female insect reproduction
in different ways. Among Lepidoptera, both 20E and JH control the female reproduction.
However, they have a different role in the reproductive process like vitellogenesis and
oogenesis among different insect species. For example, in Helicoverpa armigera and Manduca
sexta, the JH has been known to significantly regulate female reproduction, while in B. mori,
the egg development is mainly controlled by ecdysteroids [12]. Similarly, JHs are necessary
for the proper synthesis of Vg in the fat body, while 20E signaling is vital for the ovarian
development processes in Tribolium castaneum [13–15]. These internal regulatory factors
are involved in oogenesis and embryonic development [16]. Therefore, we can say that
endocrine hormones also regulate and affect each other. Thus, the proper understanding of
these interlinked signaling pathways is crucial. Owing to advances in molecular biology,
genomics, and bioinformatics, significant advancement has been accomplished in under-
standing the molecular channels that govern female insect reproduction. However, the
proper interaction of these pathways with each other is very complex, and so here, we try
to explain not only recent advances in understanding the role of ecdysteroids and JHs, but
also their interaction together with the insulin signaling pathway and with microbiota.

2. 20-Hydroxyecdysone Regulated Reproduction in Insects

The ecdysteroids’ biosynthesis and signaling were found to be vital for the repro-
duction and longevity of adult insects [17]. The 20E produces its effects through binding
with a heterodimer receptor. This receptor consists of the ecdysone receptor (EcR) and
ultra-spiracle (USP) [18,19]. After binding with the 20E, the heterodimer complex interacts
with the E response element (EcRE) [20,21], which later activates the early genes (broad
complex (BrC, E74, and E75). E75 is a primary response gene, while HR3 is a secondary
response gene [22]. Twenty-one nuclear receptors (NRs) were identified from the Bactero-
cera dorsalis [23], while Halloween genes encode for the enzymes (like cytochrome P450)
necessary for catalyzing the last step of the ecdysteroid biosynthesis. In Schistocerca gregaria,
shade (a Halloween gene) was found to encode 20-hydroxylase, which in turn catalyzed the
conversion of 20E from ecdysone (E) [24]. However, the role of the phantom in ecdysteroid
biosynthesis was also evaluated in S. gregaria [25]. Knockdown of EcR receptor (EcR-A)
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resulted in reduced expression of Bombyx doublesex (Bmdsx) in the embryos of both males
and females. Bmdsx is responsible for the sexual differentiation of B. mori. Thus, ecdysone
signaling is indirectly involved in the sexual differentiation of B. mori by affecting the
expressions of Bmdsx [26]. Further, different points of oogenesis are also known to be
controlled by more than 30 ecdysone responsive genes. Another Halloween gene, spook
(spo), is found in the ovary of D. melanogaster. This gene encodes Cyp307A1 and is vi-
tal for the ecdysone biosynthetic pathway in the Diptera [27]. An increase in the ovary
ecdysteroidogenic hormone (OEH) was found after blood-feeding in Aedes aegypti [28].
However, in D. melanogaster, the FLP-out system was used to knockdown the expressions
of EcR and E75 from the escort cells, and the results indicated a decreased number of 16-cell
cysts, meiotic entry, and follicle formation [29]. 20E also maintained the GSCs through E78
by controlling niche assembly [30]. These results suggested that the 20E is necessary for
regulating different biological aspects of insect life [31].

In Anopheles gambiae, male mosquitoes transfer 20E to the female through seminal
fluid, which results in the change of female behavior. Such transfer of 20E is essential in
promoting postmating processes, because virgin females cannot induce such processes
after blood feeding. Further when the sexual transfer of 20E is impeded by inhibiting
its biosynthesis and partial inactivation in the males, then the oviposition is significantly
reduced [32]. While in the case of Lepidoptera, the adults do not feed on rich protein sources
needed for egg production [33]. In Spodoptera litura, mating results in the reduction of
immunity, which in turn favors reproduction by saving the limited resources to support the
high energy needed in reproduction (egg maturation and oviposition). Thus, Lepidoptera
species can be a good a model to study mating-induced regulation in reproduction [34].

However, exogenous 20E negatively affected the reproduction of Plutella xylostella.
Presence of exogenous 20E on the leaves of the host plant repelled the female. Female adults
fed on exogenous 20E also displayed decreased fecundity. Further, the adult longevity and
the development of eggs were also reduced [35].

Interaction of 20E with JHs and Insulin Signaling Pathway

Proper balance between endocrine hormones is crucial for egg development. In female
insects, JH levels significantly depend on diet and mating. An increase in the JH level
upregulates the expression of yolk protein genes in the female of T. castaneum, Blattella
germanica, and B. dorsalis. High levels of JH increase uptake of the vitellogenin in the oocytes,
while a high 20E titer results in the resorption of vitellogenic eggs [36]. However, such a
pattern of JH/20E signaling contrasts among different insects. For example, in mosquitoes,
both 20E and JH are required for the oogenesis, but 20E is more essential for the regulation
of vitellogenin eggs than JH [37]. 20E also controls the expression of ecdysis triggering
hormone (ETH). Both 20E and ETH play an essential role in the reproductive success of
insects. However, in Colaphellus bowringi, 20E and ETH also control the photoperiodic
reproductive diapause. The 20E deficiency not only results in the decreased level of ETH,
but also reduced the production of JH, while ETH knockdown decreased the mRNA levels
of Vg1, Vg2, and of JH biosynthetic genes. Injected dsRNA of Met, EcR, ETH, and ETHR
remarkably decreased the ovarian-specific expression profiles of Halloween genes (Spo,
Phm, Dib, Sad, and Shd), in the long-day treated females. Exogenous treatment of both 20E
and ETH peptides induced the vitellogenesis, and thus rescued the ovary development.
Further, reduced expression of 20E, ETH, and JH results in the lipid accumulation. However,
20E might also repress lipid accumulation and could be independent of JH signaling.
Therefore, it was suggested that the 20E controls the photoperiodic reproductive diapause
of C. bowringi in both JH-dependent and JH-independent manners [38]. ETH plays a crucial
role in the maintenance of juvenile hormone acid methyltransferase (JHAMT), which in
turn is required for the normal production of JHs, vitellogenesis, and reproduction [39].
The injected dsRNA of ETH and ETHR in female adults of B. dorsalis resulted in reduced
expression of JHAMT, Vg2, and JHs. Moreover, injection of 20E or methoprene rescued
normal egg production [40].
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In fruit fly, JHAMT converts JHA III to the active JH III by transferring the methyl
group from S-adenosyl-L-methionine (SAM) to the carboxyl group of JH acids (Figure 1) [41].
The nutritional signals modulate the BR-C isoforms expressions in Drosophila eggs. Under
starved conditions, these nutritional signals upregulated the BR-C Z2 and Z3 expressions,
which in turn suppressed the E75B and overexpressed E75A. This overexpression of E75A
caused the apoptosis of nurse cells at stages 8 and 9 in the egg chamber [42]. Mutation in
EcR also reduced the expression of low-density lipoprotein receptor, LpR2, which caused
the deficiency of lipids’ accumulation in the oocytes at stage 10 [43]. While in the adult
stage of D. melanogaster, 20E increases the ETH production and control JHs’ biosynthesis to
regulate reproduction [39]. Further, PTTH increases expression of the Halloween genes
Spook, Neverland, Disembodied, and Phantom (JH-dependent), but not of Shadow and Shroud
(JH-independent) [44]. However, in the adult mosquitoes, ETH controls the activity of
JHAMT and JHs through the mobilization of endoplasmic reticulum Ca2+ stores. The
inhibition of the IP3 receptor reduces ETH-dependent increase in the activity of JHAMT
and JHs, respectively (Figure 1) [45]. However, the injection of 20E not only inhibited
the JHMAT transcription, but also inhibited Vgs and VgR expressions, in the Periplaneta
americana [46]. Meanwhile, in B. mori, insulin and bombyxin (insulin-like hormone) directly
stimulate the prothoracic glands. Both insulin and PTTH increase the phosphorylation of
Akt and stimulate the ecdysteroid secretion [47].
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Figure 1. 20E control of female reproduction through regulating juvenile hormones’ (JHs) production. (a) 20-
hydroxyecdysone (20E) regulates JH III in the fruit fly. In the fruit fly, 20E not only regulates the synthesis and release of
ecdysis triggering hormone (ETH) from the Inka cells, but also regulates the expressions of ETHR-B. Later, hemolymph
released ETH binds with ETHR-B and activated the corpora allata (CA). However, in the CA, ETH also acts as an allatotropin
and increase the activity of juvenile hormone acid methyltransferase (JHAMT). JHAMT regulates the biosynthesis of JHs
by converting the inactive JHA III to active JH III in the presence of S-adenosyl methionine (SAM); however, CA released
active JH III later regulates biosynthesis of vitellogenin in the ovary. Therefore, it was concluded that the 20E controls the
female reproduction, ovary growth, and oocyte maturation by regulating the JHs. (b) 20E regulates JHs in the A. aegypti. In
A. aegypti, in addition to hormones produced in the ovary, the brain also stimulates the CA to synthesis JHs, after sensing
the nutritional signals. However, it was also observed that the ETH controls the JHAMT and JHs’ activity by mobilizing
calcium from the endoplasmic reticulum stores, through the IP3 receptor.

3. Juvenile Hormone Regulated Reproduction in Insects

The role of juvenile hormones in controlling insect metamorphosis and reproduction
is of great importance [7]. Juvenile hormone regulates insect reproduction through its
receptor Methoprene-tolerant (Met), which dimerizes with another bHLH-PAS protein
Taiman (Tai). In the nucleus, the receptor complex of Tai and Met interacts with the target
gene promoter DNA element, also known as JHs’ response element (JHREs) [12]. Tai
did not bind with the JHs, but it is the JH-Met interaction that triggered the Met and Tai
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dimerization [48]. The nuclear import of Met is a crucial step in JH mediated signaling
pathway. A chaperone protein, Hsp83, was recognized as JHRR-bound nuclear protein
and was required for the JH-induced Kr-h1 expression [49]. A tetratricopeptide repeat
(TPR) domain of Nup358 also interacts with Hsp83 and is crucial for nuclear localization
of Met [50].

After the identification of Met as a JHs’ receptor, a regulatory model was also devel-
oped that involved JH-Met-Kr-h1 [51]. Kr-h1 knockdown resulted in the depletion of Met,
which in turn clears the role of Kr-h1 in insect reproduction [7]. In B. dorsalis, the treatment
of dsMet significantly reduced the expressions of BdKr-h1, BdMet, BdVg1, and BdVg2.
Over 50% reduction in expressions of BdKr-h1, BdVg1 and BdVg2 were observed after 72 h
treatment of dsKr-h1 [52]. The kr-h1 RNAi was also responsible for a 30% reduction of
Vg expression in the female adults of T. castaneum [53]. In Locusta migratoria, H. armigera,
and Nilaparvata lugens, suppression of Kr-h1 decreased the egg production by reducing
the Vg expression, oocyte maturation, and ovarian development [54,55]. RNAi mediated
silencing of Met not only blocked the ovary development, but also suppressed Vg gene
expressions in Pyrrhocoris apterus fat body [56]. When the SgMet was knocked down in the
S. gregaria, using RNAi, it was then observed that this insect never enters the previtellogenic
stage. The ovaries of such treated insects were found to be arrested. Further, the mRNA
level of kr-h1 was decreased by 88% and 73% in CA and fat body, respectively. Therefore,
the JHs’ receptor Met is found to be necessary for the vitellogenesis, ovary maturation,
and accessory ecdysteroid biosynthesis. Delayed copulation behavior is also found to be
associated with the knockdown of SgMet. Further, a notable decrease in insulin-related
peptides was also observed against dsSgMet-treated female adults of S. gregaria [57]. In
cockroaches and locusts, JHs play a vital role in triggering the Vg genes. Met knockdown
was responsible for the lower number of egg deposition. While in female adult mosquitoes,
Met/Tai complex, a transcription factor, stimulates Kr-h1 expressions, which in turn pro-
motes vitellogenesis [58]. In Diploptera punctata, ovarian growth was blocked owing to the
silencing of Met, which in turn was responsible for a remarkable decrease in the size of
developing eggs [59,60]. In Reticulitermes speratus, the Japanese termite, increase in the JH
titers initiates Vg synthesis and results in the development of neotenic reproductivity [61].
Meanwhile, in D. melanogaster, JH regulates female mating and pheromone production [62].
In A. aegypti adult female mosquitoes, the expression of large number of genes is regulated
by JH [63], while AaKrh1 knockdown significantly decreases egg production after blood
feeding [55]. In C. lectularius, common bed bug, silencing of Kr-h1 does not decrease the
number of oviposited eggs; however, it significantly affected the hatching of eggs [13]. In
H. armigera, knockdown of HaKr-h1 also decreased the transcription of vitellogenin and
interrupted oocyte maturation [64]. For Grapholita molesta, silencing of GmKr-h1 increased
preoviposition period and decreased fecundity [65]. The queens of Vespula vulgaris releases
honest signals to change the fertility status of subordinate workers, so their workers be-
come reproductively repressed and help in colony. However, such signals are found to be
controlled by endocrine hormones. To test if JH is the main hormone that maintains such
fertility and fertility signaling, the workers were treated with JH analogue (methoprene)
and JH inhibitor (precocene). The results showed that the oocyte size was increased after
treatment with the methoprene; nevertheless, oocyte size was decreased against precocene.
Thus, JH affects both fertility and fertility signaling in workers [66].

Meanwhile, JH also negatively affects the reproduction in some insects. Both Stre-
blognathus and Diacamma have queenless societies. Reduction of JH titer in gamergates
corresponds with high individual ranks within the hierarchy. As the alpha is responsible
for the reproduction of offspring, JH treatment of such individual results in the loss of its
reproductive status [67]. In Dinoponera quadriceps, JH regulates the female reproduction
by affecting the ovary development. The ants with increased JH levels develop reduced
ovarioles, which in turn decreased their reproductive potential by reducing the number
of vitellogenic eggs [68]. 20E treatment of Pteromalus puparum, endoparasitic wasp, pro-
moted Vg gene expression, while JH application resulted in the reduction of Vg mRNA
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levels [69]. However, knockdown of Kr-h1 did not affect the fecundity and Vg expressions
of C. lectularius [32].

Interaction of JHs with 20E and Insulin Signaling Pathway

Many aspects of reproduction, including vitellogenesis and oogenesis, are regulated
by JH and 20E [70,71]. Protein 93F (E93) is an ecdysone induced protein that works as an
adult specifier gene. Kr-h1 binding site (KBS) was identified in the E93 promoter region,
and it was further observed that the JH-inducible Kr-h1 repressed the transcription of E93
through the direct binding with KBS. Additionally, a CtC motif was also identified in Kr-h1,
which has been found necessary for the transcriptional repression of E93 [72]. The JHs also
increased the Vg expressions by increasing the production of ILP2 [73].

In Drosophila, an increase in JHs’ level was observed under the influence of stress
conditions, which in turn resulted in the accumulation of eggs and oviposition seize.
However, increase in 20E resulted in breakdown of oocytes, which ultimately reduced
fecundity. Therefore, the proper balance between JHs and 20E is necessary for the normal
development of oogenesis [74]. However, during the previtellogenic phase, the JHs are
involved with the fat body changes, which in turn makes the fat body sensitive to the
signals that induce vitellogenesis [75].

In T. castaneum, JH regulates the expression of Vg gene in fat body, while 20E controls
the synthesis of Vg by its effect on ovarian development and oocyte maturation [14,53].
In addition, JH also prompts Vg synthesis by controlling the expression of ILPs [73]. The
JHs modulate the Vg expressions through an insulin-like peptide signaling pathway in
the T. castaneum. Both JHs and feeding are found to be required for the proper synthesis
of Vg in the fat body, while the JHs’ signaling pathway acted via Met and increased the
production of ILP2. Feeding triggered the production of ILP3, and later the insulin like
peptides stimulated the phosphorylation of AKT resulted in the FOXO phosphorylation
and ultimately its depletion from the nucleus. The depletion of FOXO later allowed the
expression of the Vg gene. Therefore, these results suggested that the JHs modulated the
Vg expressions through the insulin-like peptide signaling pathway, which ultimately affect
FOXO localization in the fat body. The JHs also indirectly regulate the vitellogenesis by
inducing the production of insulin-IGF, which in turn activates IIS [73]. Meanwhile, in
the cockroaches, including B. germanica and P. americana, JHs’ biosynthesis is promoted by
insulin-IGF signaling (IIS) [76,77].

4. Microbiomes and Endocrine System

Insects harbor different microbial communities that affect their biology. However, in
this review, we specifically focused on the regulation of insect reproduction by the interac-
tion of microbiomes and the endocrine system. Both endocrine hormones and microbiota
influence each other. Endocrine hormones affect the metabolism of microbiota by a number
of different channels [78]. Reproductive microbiome affects the reproductive fitness of both
male and female insects. The microbiomes significantly affect the reproductive system
of insects, either by affecting the evolution of reproductive organs and or by producing
their effect on sexual selection [79]. Reproductive organs of female harbor microorganisms
that are transferred to their partner during copulation and even to their offspring [80].
Female copulation might also respond to microbial load. Fecundity of Anopheles gambiae
significantly reduced when the female was infected with Serratiochelin and Pyochelin [81].
A bacterium, Candidatus Erwinia, increases the female reproductive output of Bactrocera
oleae by increasing the production of essential amino acids [82]. Meanwhile, in another fruit
fly, Ceratitis capitata, a group of nitrogen-fixing bacteria from Enterobacteriaceae family
supports reproduction [83].

The microbiota has also been used to produce adverse effects on the reproduction of
insects. For example, Beauveria bassiana is an entomopathogenic fungus, and it affected
different life stages of Bemisia tabaci [84]. Meanwhile, Metarhizium anisopliae significantly
influenced the reproductive system of Plutella xylostella, by decreasing the life span and
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egg laying ability. A significant difference in the fecundity of treated insects was observed,
where the mean number of laid eggs was reduced to 101.55 eggs/female as compared
with control of 192.55 eggs/female [85]. In addition, plants also synthesize and store
ecdysteroids, and the concentration of these phytoecdysteroids increases significantly with
damage done by insects. Such phytoecdysteroids have been known to affect the adult
reproduction by reducing the female fecundity. Further, both adults and larvae are also
found to be repelled by such phytosteroids synthesized by plants [86]. The transcriptional
regulatory molecular mechanism behind the overall improvement of physio-morphological
attributes is also important in sustainability perspectives [87,88]. Syntech TrackSphere
LC-100 locomotion compensator was used to analyze the locomotion of Ostrinia nubilalis
larvae concerning to the odors from plants of genus Chenopodium. Except for C. album
and C. polyspermum, the neonate larvae showed repellent behavior from all the tested
phytosteroid-positive species [89], while treatment of 20E, a phytoecdysteroid, decreased
the levels of soluble proteins in larvae of T. castaneum [90]. Owing to their significance, the
microbiota is considered as important endocrine organ. The microbiota also synthesizes
different compounds that circulate and affect the function of reproduction by regulating the
endocrine system [91]. For example, a virus, betaentomopoxvirus, synthesizes sesquiter-
penoid juvenile hormone through encoding JHs’ methyltransferase [92]. When the fourth
instar larvae of Mythimna separata was treated with the entomopoxovirus, it reduced the
titer of ecdysone and resulted in the death of sixth instar larvae. Further, JHs’ titer was
increased in such treated insects (Figure 2) [93]. However, Vairimorpha necatrix infection
against Lacanobia oleracea increased the JHs titer up to 10-fold [94]. Besides, modulating the
hormone–receptor interactions, in the reproductive tissues, the metabolites of microbes can
also modify the motility of gametes [95].

Biology 2021, 10, x  7 of 12 
 

different life stages of Bemisia tabaci [84]. Meanwhile, Metarhizium anisopliae significantly 
influenced the reproductive system of Plutella xylostella, by decreasing the life span and 
egg laying ability. A significant difference in the fecundity of treated insects was observed, 
where the mean number of laid eggs was reduced to 101.55 eggs/female as compared with 
control of 192.55 eggs/female [85]. In addition, plants also synthesize and store ecdyster-
oids, and the concentration of these phytoecdysteroids increases significantly with dam-
age done by insects. Such phytoecdysteroids have been known to affect the adult repro-
duction by reducing the female fecundity. Further, both adults and larvae are also found 
to be repelled by such phytosteroids synthesized by plants [86]. The transcriptional regu-
latory molecular mechanism behind the overall improvement of physio-morphological 
attributes is also important in sustainability perspectives [87,88]. Syntech TrackSphere LC-
100 locomotion compensator was used to analyze the locomotion of Ostrinia nubilalis lar-
vae concerning to the odors from plants of genus Chenopodium. Except for C. album and 
C. polyspermum, the neonate larvae showed repellent behavior from all the tested phy-
tosteroid-positive species [89], while treatment of 20E, a phytoecdysteroid, decreased the 
levels of soluble proteins in larvae of T. castaneum [90]. Owing to their significance, the 
microbiota is considered as important endocrine organ. The microbiota also synthesizes 
different compounds that circulate and affect the function of reproduction by regulating 
the endocrine system [91]. For example, a virus, betaentomopoxvirus, synthesizes sesquit-
erpenoid juvenile hormone through encoding JHs’ methyltransferase [92]. When the 
fourth instar larvae of Mythimna separata was treated with the entomopoxovirus, it re-
duced the titer of ecdysone and resulted in the death of sixth instar larvae. Further, JHs’ 
titer was increased in such treated insects (Figure 2) [93]. However, Vairimorpha necatrix 
infection against Lacanobia oleracea increased the JHs titer up to 10-fold [94]. Besides, mod-
ulating the hormone–receptor interactions, in the reproductive tissues, the metabolites of 
microbes can also modify the motility of gametes [95]. 

The microbiota transmits signals by electrochemical means, which also include ion 
channels [96]. However, it is still not clear how the microbiomes affect the insect endocrine 
system. Further studies are required to find out the type of molecules they make in order 
to better understand the role of microbiome in regulating adult insect’s reproduction, by 
regulating the endocrine system. The exact pathway of microbiota-hormonal signaling 
has not yet been explored. However, studies have proved that the changes in hormonal 
levels were associated with the presence of microbiota. Further, microbiota synthesizes 
hormones, responds to host hormone, and regulates the expression of host hormones [97]. 

 Figure 2. Regulation of endocrine hormones by the microbiota. The fourth instar of M. separata was inoculated with MySEV
occlusion bodies, by the droplet feeding method. The results of liquid chromatography–MS analysis, against the sixth larval
instar, revealed that the titer of juvenile hormone (JH) was significantly increased, whereas the titer of ecdysteroids was
significantly decreased in the hemolymph of infected larvae.

The microbiota transmits signals by electrochemical means, which also include ion
channels [96]. However, it is still not clear how the microbiomes affect the insect endocrine
system. Further studies are required to find out the type of molecules they make in order
to better understand the role of microbiome in regulating adult insect’s reproduction, by
regulating the endocrine system. The exact pathway of microbiota-hormonal signaling
has not yet been explored. However, studies have proved that the changes in hormonal
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levels were associated with the presence of microbiota. Further, microbiota synthesizes
hormones, responds to host hormone, and regulates the expression of host hormones [97].

In addition to the regulation of insect reproduction, the microbiota also regulates
multiple functions for host health, including food digestion, displacement of pathogens,
and synthesis of vitamin [98,99]. In vitro methods can also be used further to understand
the interaction of microbiota with the endocrine system.

5. Conclusions and Future Prospects

In recent advances, researchers have been able to identify receptors of ecdysteroids
and JHs, which helped us to better understand these signalling pathways in various insect
orders. Such studies also explained the different events of reproduction among different
insect orders. However, the interaction of these endocrine hormones between each other
is very complex. For example, fruit flies belong to Diptera. An increase in the JHs’ level
positively controls the egg development by increasing the vitellogenin uptake in the eggs.
Meanwhile, the increase in the 20E titer negatively regulates the eggs’ development by
resorption of vitellogenin. However, in mosquitoes, 20E has a major role in regulating
the reproduction, where an increase in the 20E positively regulates the egg development.
Thus, the function of these endocrine hormones contrasts among different species of the
same insect order. Whereas among Lepidoptera, the function of these endocrine hormones
also varies between different species. As adults of the tobacco cutworm feed on a diet
with less amino acids contents, the mating supports the reproduction by decreasing the
immune system to save the limited resources needed in reproduction. In addition, the
endocrine hormone (JH) is also transferred from males to females, which helps in the egg
development. On the other hand, in the diamondback moth, exogenous application of
20E results in the reduction of female fecundity. Recent findings also explained the role of
these endocrine hormones in controlling the fertility of insects. However, such a complex
interaction of these endocrine hormones is also necessary for regulating the reproduction
of such insects.

The role of AA/TOR and insulin signaling pathways not only cleared the vitellogenin
intake by the developing oocyte, but also explained its role in the biosynthesis of the
JHs’ hormones and ecdysteroids. Little information is available regarding the proper
understanding of these signaling pathways in less studied insects. Therefore, in the present
review, we also focused on the role of endocrine hormones in such less studied insects.
Further, the interaction of these endocrine hormones is also explained. However, the
comparative contribution and the interaction of these signaling pathways with each other
further require clarity.

When the insect comes into contact with the microorganism, a change in the titer of
endocrine hormones is observed. Such changes in the endocrine hormone titer significantly
affect their reproduction in several different ways. A significant increase in reproduction of
the olive fruit fly is observed after treatment with C. Erwinia. Such bacteria increased the
female reproductive output by increasing the production of essential amino acids. Female
insects also transfer microorganisms to their partner as well as to their offspring. Therefore,
in this review, we not only focused on the mechanism of transcriptional activation of
20E and JHs, but also discussed the complex interaction of these signaling pathways
together with each other and with other signaling pathways (insulin signaling pathway). In
addition, the role of microbiomes in regulating the endocrine hormones has been discussed.
However, further studies should focus on the entire microbiome and the type of molecules
they create in order to better understand their interaction with the endocrine hormones. As
endocrine analogs are environmentally safe, the proper understanding of female endocrine
system and reproductive system together with the microbiota will help us to control the
insect pest more effectively.
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