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SUMMARY

Advances in the treatment of Ewing’s sarcoma (EWS) are desperately needed,
particularly in the case of metastatic disease. A deeper understanding of collat-
eral sensitivity, where the evolution of therapeutic resistance to one drug aligns
with sensitivity to another drug, may improve our ability to effectively target this
disease. For the first time in a solid tumor, we produced a temporal collateral
sensitivity map that demonstrates the evolution of collateral sensitivity and resis-
tance in EWS. We found that the evolution of collateral resistance was predict-
able with some drugs but had significant variation in response to other drugs. Us-
ing this map of temporal collateral sensitivity in EWS, we can see that the path
toward collateral sensitivity is not always repeatable, nor is there always a clear
trajectory toward resistance or sensitivity. Identifying transcriptomic changes
that accompany these states of transient collateral sensitivity could improve
treatment planning for patients with EWS.

INTRODUCTION

Ewing’s sarcoma (EWS) is the second most common primary malignant bone cancer in children (Ries, 1999;

Esiashvili et al., 2008). Localized disease has a 50%–70% 5-year survival rate, and metastatic disease has a

devastating 18%–30% 5-year survival rate (Esiashvili et al., 2008; Grier et al., 2003; Hunold et al., 2006). Ad-

vances in the treatment of EWS are desperately needed, particularly in the case of metastatic disease. Un-

fortunately, all recent attempts to improve the chemotherapy regimen for EWS have only yielded modest

results for non-metastatic cancer with little to no impact on the course of metastatic disease (Grier et al.,

2003; Huang and Lucas, 2010). Researchers have tried adding ifosfamide and etoposide to standard

EWS chemotherapy, increasing the drug doses administered, and decreasing the interval between doses,

all without meaningful improvement to metastatic disease outcomes (Grier et al., 2003; Huang and Lucas,

2010; Womer et al., 2012). Even when treatment is initially successful, EWS often evolves therapeutic resis-

tance, which ultimately leads to disease relapse (Ahmed et al., 2014). A deeper understanding of the evolu-

tionary dynamics at play as EWS develops therapeutic resistance may improve our ability to effectively

target this disease (Scott and Marusyk, 2017).

During the evolution of therapeutic resistance, both bacteria and cancer can exhibit a phenomenon termed

collateral sensitivity, where resistance to one drug aligns with sensitivity to another drug (Pluchino et al.,

2012; Pál et al., 2015; Hall et al., 2009). Likewise, collateral resistance occurs when resistance to one drug

aligns with resistance to another drug. The relationship between genotype (e.g., gene expression, somatic

mutations) and fitness of a cell line can be represented by a fitness landscape. In the case of drug response,

we define fitness as the EC50 of a cell line to a given drug, where increasing EC50 denotes higher fitness in

the presence of this drug. EC50 is defined as the concentration of drug that achieves half-maximal effective

response. Of importance, a cell line with the same genotype may have varying fitnesses (EC50s) under the

selection pressure of different drugs.

In collateral resistance, the fitness landscapes of the organism (bacteria or cancer) in the presence of each

drug would show ‘‘positive correlation’’ (Nichol et al., 2019). This is because genotypic changes that cause

increased fitness in the presence of the first drug also allow increased fitness in the presence of the second

drug as well. Next, comparing fitness landscapes in the setting of collateral sensitivity will show ‘‘negative
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correlation,’’ where genotypic changes leading to increased fitness in the presence of the first drug will

cause decreased fitness in the presence of the second drug. Finally, comparing fitness landscapes in the

presence of different treatments will not always demonstrate clear positive or negative correlation. Instead,

the evolution of resistance to one drugmay lead to variable changes in response to the second drug. In this

setting, the evolutionary landscapes would be ‘‘uncorrelated.’’ Here, predictive models would be espe-

cially useful in treatment planning, as relative collateral sensitivity or resistance cannot be inferred based

solely on treatment history.

In the case of collateral sensitivity, a clinician could ideally control disease progression by switching to a

collaterally sensitive drug whenever resistance develops. Even if the illness was never completely eradi-

cated, the pathogen or neoplasm would be dampened enough to minimize harm to the patient. Yet evo-

lution is rarely so easy to predict. Several studies have aimed to identify examples of collateral sensitivity in

either bacteria or cancer, and many have shown that exposure to identical therapies has resulted in

different responses between evolutionary replicates (Imamovic and Sommer, 2013; Munck et al., 2014;

Nichol et al., 2015, 2019; Zhao et al., 2016; Dhawan et al., 2017; Maltas and Wood, 2019). Additionally,

Zhao et al. examined changes in collateral sensitivity in acute lymphoblastic leukemia (ALL) over time

(Zhao et al., 2016). Here, they produced temporal collateral sensitivity maps to show how drug response

evolved over time and between evolutionary replicates (Zhao et al., 2016). Although Zhao et al. did examine

these changes through time, many collateral sensitivity experiments compare only initial and final drug re-

sponses after resistance to the primary treatment has evolved (Dhawan et al., 2017; Nichol et al., 2019).

These intermediate steps are crucial for determining whether the evolution of therapeutic resistance leads

to a collateral fitness landscape that is consistently positively/negatively correlated or uncorrelated

through time.

For the first time in a solid tumor, we examine the repeatability of collateral sensitivity across time as cells

evolve resistance to standard treatment. In doing so, we use two EWS cell lines, A673 and TTC466. The

A673 cell line contains the t(11;22) translocation resulting in the EWSR1/FLI1 gene fusion (Szuhai et al.,

2006; Martınez-Ramırez et al., 2003). This fusion is the most common genetic aberration found in 90%–

95% EWS tumors (Sankar et al., 2014; Szuhai et al., 2006). In contrast, the TTC466 cell line has a t(21;22)

translocation resulting in the EWS-ERG gene fusion, which occurs only in 5%–10% of EWS tumors (Sankar

et al., 2014; Szuhai et al., 2006). After splitting the cell lines into evolutionary replicates, they were exposed

to standard chemotherapy and their response to a panel of drugs was assessed over time. All drugs

included in this study may be found in Table 1. We hypothesize that Ewing’s sarcoma cell lines repeatedly

Drug Name Abbreviation Class

Dactinomycin ActD Antineoplastic antibiotic

Cyclophosphamide Cyclo Alkylating agent

Ifosfamide Ifo Alkylating agent

Doxorubicin Doxo Anthracycline

Etoposide Etp Topoisomerase II inhibitor

Olaparib Ola PARP inhibitor

Pazopanib Paz Tyrosine kinase inhibitor

Vorinostat SAHA Histone deacetylase inhibitor

Irinotecan (active metabolite) SN38 Topoisomerase I inhibitor

SP-2509 SP [l] Lysine-specific demethylase 1 inhibitor

Temozolomide TMZ Alkylating agent

Vincristine Vin Alkaloid

Sodium thiosulfate NaThio Drug activation reagent

Table 1. All Drugs Referenced in the Study, Their Abbreviations, and Classifications
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exposed to standard chemotherapy will demonstrate divergent evolutionary paths between evolutionary

replicates despite nearly identical experimental conditions and initial genotype. Finding patterns of collat-

eral resistance (positively correlated landscapes), sensitivity (negatively correlated landscapes), or variation

(uncorrelated landscapes) within these divergent paths may provide useful insight in exploring new treat-

ment options for patients with EWS.

RESULTS

The Long-Term Evolution of Therapeutic Resistance

This work examines the evolution of collateral sensitivity and resistance in two EWS cell lines during

repeated exposure to a standard chemotherapy regimen over time. At the onset of the experiment,

each cell line was split into eight evolutionary replicates, five experimental and three control. Owing to

contamination, Replicate 2 from the A673 cell line was excluded from the analysis, leaving four

experimental and three control replicates in this cell line. Each experimental evolutionary replicate

then underwent the same drug cycling, as demonstrated in Figure 1. Briefly, experimental replicates

were incubated in cycles of vincristine-doxorubicin-cyclophosphamide (VDC) and etoposide-

cyclophosphamide (EC) combinations (Grier et al., 2003). This procedure models standard of care

given to patients with EWS, which consists of cycles of VDC and etoposide-ifosfamide (EI) combinations.

Because ifosfamide requires metabolic activation and no activated compound is commercially available,

we chose to substitute ifosfamide with cyclophosphamide, as these compounds are analogs (Fleming,

1997). Control replicates were maintained in only vehicle control. More details can be found in Transparent

Methods.

After proliferating to sub-confluent density in maintenance medium, a fraction of cells from all evolutionary

replicates were snap frozen for RNA extraction, another fraction underwent drug sensitivity assays to 12

drugs, and another fraction of the cells were plated for exposure to the next cycle of the alternate drug

combination. For each drug at each time point, the EC50 of each evolutionary replicate was derived by

fitting the drug-response triplicate data to a four-parameter log-logistic model as described in Transparent

Methods. A plot of all dose-response triplicates with their estimated EC50 can be found in the GitHub Re-

pository referred to in Data and Code Availability.

Discerning Changes in Chemo-Sensitivity and -Resistance across Time

Figures 2 and 3 display the changes in drug response to nine agents over time in the A673 cell line. In addi-

tion to the nine drugs displayed in this figure, two additional drugs (Pazopanib and Vincristine) and a drug

Figure 1. Overview of Experimental Evolution of Resistance in Ewing’s Sarcoma Cell Lines

As cells recovered from each exposure, cells were tested for their sensitivity to a panel of drugs and samples were frozen

for potential use in RNA sequencing. The drug dosage was only increased once throughout the experiment, at the fifth

exposure to the VDC combination, described in Transparent Methods. Although each cell line began with five

experimental and three control evolutionary replicates, the A673 cell line lost one experimental replicate owing to

contamination.
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activation reagent (sodium thiosulfate) were included in the drug sensitivity assays. Data for these drugs are

included in Figures S1 and S2.

Unlike the A673 cell line, the TTC466 cell line develops resistance to only a few of the tested drugs, and

when it is developed, it is not maintained across evolutionary time. It is unsurprising, therefore, to see

that Figures S3 and S4 demonstrate that changes in collateral sensitivity responses are not significantly

different between experimental and control replicates for the TTC466 cell line. As such, we focus our anal-

ysis on the A673 cell line, and the heatmap and point-range plots for the TTC466 cell line can be found in

Figures S3 and S4, respectively.

Figure 2 shows a temporal collateral sensitivity map that represents the log2 fold change of EC50 to a drug

(columns) for an experimental replicate at a given time point (rows) compared with the average EC50 of the

three control evolutionary replicates to the same drug, at that time point. In the top right of the figure, we

see the drug response of Replicate 3 to SP-2509 after its fourth exposure to VDC (VDC4), along with the

three control evolutionary replicates at this time point. This example demonstrates a move toward sensi-

tivity in the experimental replicate. In the bottom right, we can interrogate Replicate 5 at the same time

point in response to dactinomycin, where the EC50 of this experimental replicate is more resistant than

the control replicates. The temporal collateral sensitivity maps found in Figures S1 and S3 include the

log2 fold change for each control evolutionary replicate from the average of the three control evolutionary

Figure 2. Temporal Collateral Sensitivity Map Representing EC50 Changes to a Panel of Drugs as the A673 Cell Line Develops Resistance to

Standard Treatment

Left:A heatmap representing how the EC50 to a panel of nine drugs changes in four A673 cell line evolutionary replicates as they are exposed to the VDC/EC

drug combinations over time. Color represents the log2 fold change of EC50 to a drug (columns) for a replicate at a given evolutionary time point (rows)

compared with the average EC50 of the three control evolutionary replicates at the corresponding time point. Values above log2(3) or below log2(-3) are

represented by log2(3) and log2(-3), respectively. Time points are denoted as the drug combination that a given replicate has recently recovered from. For

example, the data representing dose-response models after the first application of the VDC drug combination would be labeled with VDC1. Of note, the

EC50 of olaparib in Replicate 5 at the VDC5 time point is indeterminate owing to a poorly fit dose-response model. This value in the heatmap is denoted as

gray, but Figure S1 remains uncensored. Right: Top, a plot of the dose-response curves for Replicate 3 and all control replicates (Replicates 6, 7, 8) in

response to SP-2509 (SP) at the VDC4 time point. Bottom, a plot of the dose-response curve for Replicate 5 and all control replicates in response to

dactinomycin at the VDC4 time point. Cellular activity is measured by enzymatic conversion of alamarBlue, normalized to background florescence. Estimated

EC50 for each replicate is denoted with a red circle. These two dose-response plots demonstrate how the heatmap (left) values were calculated, where the

control EC50 values are averaged, and the heatmap values represent the log2 fold change between a given replicate and this mean EC50 value.
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Figure 3. Point-Range Plots Demonstrating EC50 Changes in A673 Experimental and Control Replicates Over Time

Bottom: Point-range plots representing the changes in drug response to a panel of nine drugs. Experimental time points (x axis) represent which step in the

drug cycle the replicates have just recovered from. Points on the plot represent the average EC50 for the group, either experimental or control. Lines

represent the range for the entire group. The EC50 of olaparib for Replicate 5 after the fifth exposure to VDC is indeterminate owing to a poorly fit dose-

response model and has been removed from this drug’s VDC5 time point experimental group EC50 average and range calculations. This value has not been

censored in Figures S1 and S2. The y axis of all the point-range plots has mM units, except Cyclo, where the unit is percent of chemically activated 4-

hydroxycyclophosphamide solution by volume. Top: Two plots demonstrating a more detailed view of the dose-response data represented at the EC3 and

VDC5 time points in the Doxo point-range chart. Cellular activity is measured by enzymatic conversion of alamarBlue, normalized to background florescence.

Comparing these two plots shows the clear divergence in drug response between experimental and control evolutionary replicates as the treatment

regimen continued.
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replicates at the corresponding time point. Ideally, this value will be close to zero (white), because the three

control replicates should have similar EC50s.

Figure 3 contains point-range plots for the nine drugs included in our analysis demonstrating the average and

range of EC50 values for experimental and control replicates at each time point in the experiment. In response

to doxorubicin, the control replicates remained stable across each progressive time point, but the experimental

replicates became increasingly more resistant as they were repeatedly exposed to standard treatment. Exam-

ining these point-range plots also allows us toobserve the overall stability of drug response in control replicates,

which are not being evolved under the selection pressure of the VDC/EC drug cycling. For example, the EC50

range for control replicates to dactinomycin is so minimal that the lines representing range are not visible for

most time points in the ActD panel of Figure 3. On the other hand, control replicates show significant variation

in their response to SN38 and temozolomide (TMZ) at many time points.

The point-range plots in Figure 3 also allow for a more nuanced interrogation of the log-ratio changes dis-

played in Figure 2. For example, although all experimental replicates appear to become more sensitive in

response to SP in Figure 2, the point-range plots in Figure 2 demonstrate that the control evolutionary rep-

licates are becoming more resistant over time, whereas the experimental evolutionary replicates remain

somewhat stable. This relative sensitivity between experimental and control evolutionary replicates is visu-

alized as a negative log2 fold change in Figure 2. Yet, because the control, not experimental, evolutionary

replicates changed over time, it is less clear whether or not this negative log-ratio should be interpreted as

a move toward sensitivity in the experimental replicates. Early in the treatment series, the experimental and

control replicates have very similar average EC50 measurements, demonstrating divergence over time. It is

likely that the control conditions caused increased resistance to SP in the cell lines (leading to increasing

EC50 in control replicates), whereas the application of the VDC/EC drug cycling regimen promoted sensi-

tivity (leading to the appearance of stable EC50 through time).

Surveying the Stochasticity of Evolution

While examining Figures 2 and 3, we see predictable development of collateral resistance to some drugs,

but evolutionary stochasticity and divergence in collateral response between replicates was observed in

the response to others. For example, the cells were initially sensitive to dactinomycin and moved into a

distinct state of collateral resistance in all replicates. This leads us to the preliminary conclusion that the

evolutionary landscape of the cells under the VDC/EC selection pressure and the landscape of the cells un-

der the dactinomycin selection pressure would show strong positive correlation. Next, all replicates ac-

quired relatively consistent resistance to doxorubicin and etoposide over time, which is to be expected,

because these two reagents are included in the treatment regimen. All replicates relatively consistently

evolved from sensitive to resistant in response to olaparib, SN38, and temozolomide. In response to vor-

inostat (SAHA), all replicates appear to show minor sensitivity across time but no discernible trend toward

greater sensitivity or resistance. Finally, there was moderate sensitivity to SP seen in all A673 replicates,

again with no discernible trends through time. Owing to the variation in response to SAHA or SP over

time, we would conclude that the fitness landscapes of cells exposed to these drugs compared with the

landscapes of cells exposed to VDC/EC are relatively uncorrelated.

Unexpectedly, most replicates acquired only mild resistance to cyclophosphamide, a drug that is included

in both cycles of the treatment regimen. Additionally, one of the control evolutionary replicates has an

outlier EC50 estimate, which causes the pre-treatment (Pre-Tx) experimental evolutionary replicates to

appear more sensitive to cyclophosphamide than the control evolutionary replicates. Although this outlier

replicate is likely experimental noise, as it does not remain an outlier at future time points, the dose-

response model is well fit to the data and we determined that censoring this replicate’s time point EC50

estimate would be inappropriate.

Differential Gene Expression Analysis Provides Insight into the Mechanisms of Drug

Response

Eighteen samples from the A673 cell line were RNA sequenced, visualized in the left panel of Figure 4. All

the samples were ranked based on their response to the 12 drugs included in the drug sensitivity panels.

These rankings are visually represented in waterfall plots of the log2 fold change in EC50 for all sequenced

samples against all drugs and can be seen in Figures S5–S16. For each drug, differential gene expression

(DE) analysis was performed between samples that rank in the top and bottom third of responses toward
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the drug. Results for each drug’s DE analyses, including the analyses highlighted below, may be found in

Table S1.

In many cases, it is clear that ranking samples by their change in drug response also ranks them based on how

long they have been exposed to the treatment regimen. Although this is not unexpected, interpreting the DE

results in this context becomes more difficult. Significant differences in gene expression may be related to a

sample’s chemosensitivity/chemoresistance, but causation cannot be inferred, because these differentially ex-

pressedgenesmay simply be altered in response to continued exposure to the treatment regimen.We chose to

highlight the DE analyses where ranking samples in response to a given drug did not consistently arrange them

in the order that they were isolated from the drug-cycling treatment. To that end, the waterfall plots in Figures

S5–S16 have darker sample labels (x axis) depending on how long they have been exposed to the treatment

regimen (e.g., a sample label from the IE2 time point will be lighter than a sample from the IE3 time point).

This makes it easier to visualize whether the time points are well distributed in the log2 fold change rankings.

The right panel of Figure 4 demonstrates how samples were ranked based on their response to vorinostat

(SAHA) and SP-2509 (SP). Genes with significantly increased expression in a SAHA-resistant or SAHA-sen-

sitive state are listed in Table 2, whereas genes with significantly increased expression in an SP-resistant or

SP-sensitive state are listed in Table 3.

DISCUSSION

In this work, we evolved two EWS cell lines, A673 and TTC466, with repeated exposure to standard-of-care

chemotherapy in order to investigate the evolution of collateral sensitivity and resistance through time. We

Figure 4. RNA Sequencing and Differential Gene Expression Analysis Provide Insight into States of Collateral Sensitivity and Resistance

Left: The temporal collateral sensitivity map from Figure 2, where all samples that were not sequenced are overlayed with gray. Right: Two waterfall plots

representing the samples ranked by their responses to the two drugs, vorinostat (SAHA, top) and SP-2509 (SP, bottom). Sample labels on the x axis are

represented by darker colors the longer they have been evolved in the evolutionary experiment.
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produced a temporal collateral sensitivity map to examine the drug sensitivity assays for nine of these

drugs through time in the A673 cell line (see Figure 2). Likewise, Figure 3 demonstrates how the average

and range EC50 between A673 experimental replicates and control replicates diverged as the experi-

mental replicates continued the drug cycling treatment regimen. Figures S1 and S2 contain the drug

response changes to all 12 drugs, with no censored data. Figures S3 and S4 also exhibit the changes in

drug response within the TTC466 cell line; however, the main text focuses on the A673 cell line due to min-

imal shifts in resistance observed in response to the treatment regimen in the TTC466 cell line.

Figure 2 shows that, as the A673 experimental replicates were repeatedly exposed to the treatment

regimen, states of collateral resistance emerge consistently toward some drugs, whereas responses to

other agents remain variable. For example, despite no exposure to the drug, all replicates consistently

moved to a state of collateral resistance toward dactinomycin, providing an example of positively corre-

lated evolutionary landscapes. On the other hand, all replicates demonstrate possible collateral sensitivity

to SP over time, although these results are not conclusive as the control evolutionary replicates moved to-

ward resistancemore than the experimental evolutionary replicates moved toward sensitivity. All replicates

show variable minimal collateral sensitivity to SAHA, but no state of collateral resistance or sensitivity dom-

inates for many time points or between replicates. Both of these drugs would have uncorrelated evolu-

tionary landscapes in comparison with the landscape under the VDC/EC selection pressure. Additionally,

these results imply that, although there are consistent changes that allow for collateral resistance to dacti-

nomycin, these changes do not invariably cause a consistent pattern of collateral sensitivity to SAHA or SP.

When collateral sensitivity or resistance cannot be consistently identified, gene signatures or other predic-

tive models would be especially helpful in treatment planning.

We also note that the A673 experimental replicates consistently becomemore resistant to doxorubicin and

etoposide, and there is a moderate shift toward resistance to cyclophosphamide. All of these drugs, in

addition to vincristine, are included in the drug combination treatment regimen, whichmakes the evolution

of resistance unsurprising. Although response to the drug combinations (VDC and EC) themselves was not

measured, increased resistance to the treatment regimen was demonstrated by the decreased time

required to reach sub-confluence after each cycle as time. As seen in Methods, this necessitated an in-

crease in the final VDC drug combination concentration. Importantly, drug sensitivity changes in response

to drug combinations may be the result of a variety of changes in response to the individual drug combi-

nation components, and this analysis would have been improved by measuring response to the drug com-

bination triplicates and duplicates through time.

After analyzing the repeatability (or lack thereof) of the evolution of collateral sensitivity and resistance in

the A673 EWS cell line, 18 samples from across various time points were sent for RNA sequencing (Figure 4).

We identified significantly increased expression of ABCB1 (also known asMDR1) in the state of SAHA-resis-

tance, seen in Table 2. This gene has previously been implicated in chemotherapeutic multi-drug resis-

tance (Chen and Sikic, 2012). Additionally, CCL2 was found to have increased expression in a SAHA-sensi-

tive state. Using an in vitro experiment, Gatti and Sevko et al. describe how adding SAHA to the

temozolomide treatment of melanoma may stymie cancer growth by interfering with CCL2 signaling.

This is consistent with increased CCL2 expression leading to SAHA sensitivity, as cells that are more reliant

on CCL2 signaling could experience a stronger effect from its disruption (Gatti et al., 2014).

Next, we see a greater number of differentially expressed genes when examining response to SP than

SAHA. SP inhibits lysine-specific demethylase 1 (LSD1, also known as KDMA1), which primarily acts as a his-

tone demethylase (O’Leary et al., 2016). Increased expression of LSD1 has been implicated inmany types of

cancers (e.g., breast, prostate), and its targeted inhibition is being investigated for therapeutic potential in

EWS (Yang et al., 2018). Owing to the novelty of LSD1 inhibitors (including SP-2509), there is very little

known regarding genomic biomarkers of sensitivity or resistance. In Table 3, however, we see some notable

trends in the significantly differentially expressed genes between good and poor responders to SP. First,

many zinc protein fingers, which often play a role in transcriptional regulation, have increased expression in

both SP-sensitive and -resistant states (Klug, 1999). Additionally, three TATA-box-binding-protein (TBP)

associated factor (TAF) proteins have increased expression in SP-resistant states. Again, these genes are

implicated in transcriptional regulation (Hampsey and Reinberg, 1997). Although these results do not imply

any onemechanism for SP-sensitivity or -resistance, it is evident that the regulation of gene expression may

play a significant role in the response to this drug.
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As noted previously, states of collateral sensitivity and resistance are often not immutable. Instead,

these states are frequently the result of many fleeting evolutionary contingencies. For instance, Nichol

et al. demonstrated that, after E. coli evolved resistance to cefotaxime (a b-lactam antibiotic) in 60

evolutionary replicates, there were highly heterogeneous changes in collateral sensitivity and resistance

to alternative antibiotics (Nichol et al., 2019). Genotypic heterogeneity was discovered as well, with five

variants of the b-lactamase gene, which likely played a role in the variable drug responses. Addition-

ally, Dhawan et al. derived cell lines of ALK-positive non-small cell lung cancer, where each cell line

was resistant to a second-line therapy (Dhawan et al., 2017). Subsequently, the cell lines were exposed

to the same panel of second-line treatments in an effort to identify drug combinations that elicit collat-

eral sensitivity. The study found that collateral sensitivity was most often evolved toward etoposide and

pemetrexed. Although these drugs had the most optimal response, it was inconsistent, leading to the

conclusion that collateral sensitivity is a dynamic state, which is a ‘‘moving target’’ instead of a predict-

able outcome.

With this understanding, our experiment would, of course, benefit from even more experimental evolu-

tionary replicates to confirm the repeatability of some observations. For example, the evolution of

collateral resistance to dactinomycin in all four A673 experimental replicates is consistently stable in

the data presented here. However, given the vast genetic contingencies that lead to changes in

drug response, observing said stability over many additional replicates would provide a more

convincing argument for the consistent evolution of dactinomycin collateral resistance following expo-

sure to VDC/EC.

Performing this experiment in a greater number of cell lines would provide improved insight into the spec-

trum of responses across various EWS cases. Using increased replicates and additional cell lines would also

enhance the analysis of differential gene expression results between responders and non-responders, as

we could examine whether differentially expressed genes are consistently dysregulated across different

cell lines after exposure to the same experimental conditions. Finally, this work could be improved by

examining how collateral drug response in EWS changes during relaxed selection after many drug cycles

of the treatment regimen have been applied (Card et al., 2019). This would represent a model that is even

more consistent with refractory EWS in a clinical setting, as patients will often have a gap between the initial

standard treatment and the selection of second-line treatments.

Despite these caveats, this work provides valuable insight into the evolution of collateral resistance and

sensitivity in EWS throughout exposure to standard treatment. Although many studies have examined

the role that collateral sensitivity and resistance play in therapeutic response, they frequently ignore inter-

mediate time points during the development of resistance to a primary treatment. In this work, we aimed to

examine collateral sensitivity and resistance across time during development of therapeutic resistance to

EWS standard of care. We believe this is the first temporal map of collateral sensitivity and resistance in a

solid tumor cell line. Using this map, we can see that the path toward collateral sensitivity or resistance is

not always straight. Likewise, evolutionary replicates can demonstrate varying collateral drug responses

through time, even if their drug response near the end of the experiment is similar. Gene expression sig-

natures can provide clarity when choosing a new treatment in the setting of a tumultuous trajectory toward

the evolution of collateral sensitivity or resistance.

Genes with [ Expression in SAHA-Sensitive State

ACOT ACPP AHR B3GNT5

CCL2 FOS GAL NUP188

RN7SL5P SCNN1G TRAV5

Genes with [ Expression in SAHA-Resistant State

ABCB1 KAZALD1 RPS26 SMAD6

TRGC1

Table 2. Genes with Significant Differential Expression between SAHA-Resistant and SAHA-Sensitive Samples

Differential gene expression analysis was performed using EBSeq in R, with maxround set to 15 and FDR of 0.05.
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Limitations of the Study

Our experiment would benefit from even more experimental evolutionary replicates to confirm the repeat-

ability of some observations. For example, the evolution of collateral resistance to dactinomycin in all four

A673 experimental replicates is consistently stable in the data presented here. However, given the vast ge-

netic contingencies that lead to changes in drug response, observing said stability over many additional

replicates would provide a more convincing argument for the consistent evolution of dactinomycin collat-

eral resistance following exposure to VDC/EC. Performing this experiment in a greater number of cell lines

would provide improved insight into the spectrum of responses across various EWS cases. Using increased

replicates and additional cell lines would also enhance the analysis of differential gene expression results

between responders and non-responders, as we could examine whether differentially expressed genes are

consistently dysregulated across different cell lines after exposure to the same experimental conditions.

Finally, this work could be improved by examining how collateral drug response in EWS changes during

relaxed selection after many drug cycles of the treatment regimen have been applied (Card et al., 2019).

Genes with [ Expression in SP-Sensitive State

ALX1 AMZ2 APOBEC3C ARHGEF6

CD63 DCN FAM72D FAM92A

HIST1H1T IL33 IRX3 LINC00326

LITAF LYN MRPS18C NPIPA5

NRG1 PCSK6 PTGR1 PYCARD

RTN SP100 SSTR1 TMEM192

TSPAN5 YAF2 ZFAND1 ZNF277

Genes with [Expression in SP-Resistant State

ADGRL2 ANKS6 AP3B2 AP5Z1

ARHGEF9 C7 CAMKV CCAR2

CD24 CDH4 CHGA CORO7

CRMP1 DGCR8 DHCR7 DPP3

EPHA4 FASN FOXO3B FRG2FP

GALNS HBA2 HDAC10 INCENP

INTS1 KSR1 LIN28B LINC01089

LRCH2 MAN2C1 MEG3 MEG8

MRGPRF MRNIP MSRA NEB

NEFM NOM1 NUP210 PBX1

PC PCBP2-OT1 PCDH17 PLXNB1

PPP1R1B PRRC2B PTPRG-AS1 PPYGO1

RNF130 RNF44 SBNO2 SCAMP4

SCARA3 SLC16A7 SLC29A2 SLITRK3

SYK TAF15 TAF1C TAF6L

TMEM271 TUBB3 VAX1 WDR17

WDR27 ZNF354C ZNF414 ZNF667

ZNF667-AS1 ZNF675 ZNF730 ZNF736

Table 3. Genes with Significant Differential Expression between SP-Resistant and SP-Sensitive Samples

Differential gene expression analysis was performed using EBSeq in R, with maxround set to 15 and FDR of 0.05.
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This would represent a model that is even more consistent with refractory EWS in a clinical setting, as pa-

tients will often have a gap between the initial standard treatment and the selection of second-line

treatments.
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Supplementary Information

1. Supplementary Figures and Legends

1.1. Complete A673 EC50 Data

The following plots mirror Figures 2 and 3, respectively. EC50 for Replicate 5 against olaparib at the
VDC5 timepoint is not censored, as seen in Figures 2 and 3. Additionally, the drugs removed from main
text analysis, vincristine, pazopanib, and sodium thiosulfate are included. These drugs were censored in the
main text due to poorly fit dose-response models. Interpretation of these plots can be found in the main
text.



Supplementary Figure 1: Uncensored temporal collateral sensitivity map representing EC50 changes to panel
of drugs in A673 cell line as it develops resistance to standard treatment, related to Figure 2. A heatmap
representing how the EC50 to a panel of nine drugs changes in 4 experimental and 3 control evolutionary replicates from the
A673 cell line as they are exposed to the VDC/EC drug combinations over time. Color represents the log2 fold change of
EC50 to a drug (columns) for a replicate at a given evolutionary time point (rows) compared to the average EC50 of the three
control evolutionary replicates at the corresponding time point. Time points are denoted as the drug combination that a given
replicate has recently recovered from. For example, the data representing dose-response models after the first application of
the VDC drug combination would be labeled with VDC1.



Supplementary Figure 2: Uncensored point-range plots demonstrating EC50 changes in A673 experimental and
control replicates over time, related to Figure 3. Point-range plots representing the changes in drug response to a panel
of 12 drugs. Experimental time points (x-axis) represent which step in the drug cycle the replicates have just recovered from.
Points on the plot represent the average EC50 for the group, either experimental or control. Lines represent the range for the
entire group. The y-axis of all the point-range plots has uM units, except Cyclo and NaThio, where the units are percent by
volume.



1.2. Complete TTC466 EC50 Data

Supplementary Figures 3 and 4 display the changes in drug response to all 12 agents over time in the
TTC466 cell line. In comparing the two cell lines, it is clear that the A673 cell line displays more stable
behavior, while the TTC466 cell line shows much more variability over time. In other words, as the treatment
cycles progress, the A673 cell line tends to move steadily towards a resistant or sensitive state, while the
TTC466 cell line tends to fluctuate more. The TTC466 control replicates also tend to have more fluctuation
between time points, despite being exposed to only media and having relative agreement between technical
replicates. For this reason, we chose to focus our analysis on the A673 cell line, while the TTC466 cell line
results can be found in the Supplementary Information.

In Supplementary Figure 3, we see that after the first exposure to the VDC drug combination (VDC1)
in the TTC466 cell line, resistance to cyclophosphamide suddenly emerges. This doesn’t occur in any other
replicate, nor at any other time point. These findings were confirmed by examining the drug-response
curve at this time point to ensure a well-fit model. Two hypotheses for why the replicate didn’t retain
the cyclophosphamide-resistant trait in the next generation include an equally rapid loss of this trait in
the next generations or a bottleneck selection during the procedure where the cells that were resistant to
cyclophosphamide were not plated for the next round of the drug treatment cycle. Next, another example of
drug-response fluctuation in the TTC466 cell line may have been mistaken as a rare shift in drug response if
only one evolutionary replicate had been performed. In Supplementary Figure 3, we see that after the second
exposure to the EC combination (EC2), the EC50 of every experimental replicate has increased chemoresis-
tance to olaparib before returning to a more sensitive state after the next drug cycle. Supplementary Figure
4, demonstrates that there is a large range in the control replicates at the corresponding time point, which
makes the comparison between the experimental and control replicates less reliable; however, it is clear that
from the time points before and after EC2, the EC50 increases significantly at EC2.



Supplementary Figure 3: Uncensored temporal collateral sensitivity map representing EC50 changes to panel of
drugs in TTC466 cell line as it develops resistance to standard treatment, related to Figure 2. A heatmap
representing how the EC50 to a panel of nine drugs changes in 5 experimental and 3 control evolutionary replicates from the
TTC466 cell line as they are exposed to the VDC/EC drug combinations over time. Color represents the log2 fold change of
EC50 to a drug (columns) for a replicate at a given evolutionary time point (rows) compared to the average EC50 of the three
control evolutionary replicates at the corresponding time point. Time points are denoted as the drug combination that a given
replicate has recently recovered from. For example, the data representing dose-response models after the first application of
the VDC drug combination would be labeled with VDC1.



Supplementary Figure 4: Uncensored point-range plots demonstrating EC50 changes in TTC466 experimental
and control replicates over time, related to Figure 3. Point-range plots representing the changes in drug response to a
panel of 12 drugs. Experimental time points (x-axis) represent which step in the drug cycle the replicates have just recovered
from. Points on the plot represent the average EC50 for the group, either experimental or control. Lines represent the range for
the entire group. The y-axis of all the point-range plots has uM units, except Cyclo and NaThio, where the units are percent
by volume.



1.3. Waterfall plots for sequenced samples against all drugs

Supplementary Figure 5: Waterfall of EC50 values for sequenced samples against dactinomycin, related to Figure
4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows
a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-
to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.



Supplementary Figure 6: Waterfall of EC50 values for sequenced samples against cyclophosphamide, related to
Figure 4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red
shows a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from
least-to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.



Supplementary Figure 7: Waterfall of EC50 values for sequenced samples against doxorubicin, related to Figure
4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows
a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-
to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.



Supplementary Figure 8: Waterfall of EC50 values for sequenced samples against etoposide, related to Figure
4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows
a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-
to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.



Supplementary Figure 9: Waterfall of EC50 values for sequenced samples against sodium thiosulfate, related to
Figure 4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red
shows a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from
least-to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.



Supplementary Figure 10: Waterfall of EC50 values for sequenced samples against olaparib, related to Figure
4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows
a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-
to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.



Supplementary Figure 11: Waterfall of EC50 values for sequenced samples against pazopanib, related to Figure
4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows
a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-
to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.



Supplementary Figure 12: Waterfall of EC50 values for sequenced samples against vorinostat (SAHA), related to
Figure 4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red
shows a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from
least-to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.



Supplementary Figure 13: Waterfall of EC50 values for sequenced samples against irinotecan (active metabolite,
SN38), related to Figure 4. Color represents log2 change in EC50 between the sample and average control EC50 at the
given time point. Red shows a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked
along the x-axis from least-to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have
been evolved in the evolutionary experiment.



Supplementary Figure 14: Waterfall of EC50 values for sequenced samples against SP-2509, related to Figure
4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows
a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-
to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.



Supplementary Figure 15: Waterfall of EC50 values for sequenced samples against temozolomide, related to
Figure 4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red
shows a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from
least-to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.



Supplementary Figure 16: Waterfall of EC50 values for sequenced samples against vincristine, related to Figure
4. Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows
a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-
to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment. The EC50 for the first replicate after the fourth exposure to the EC drug combination (R1-EC4) was
indeterminant and removed from the waterfall plot.



2. Transparent Methods

Materials

EWS cells (A673 and TTC466 cells) were generous gifts from Dr. Stephen Lessnick at Nationwide
Children’s Hospital, Columbus, OH.

4-hydroperoxycyclophosphamide and sodium thiosulfate were purchased from Toronto Research Chemi-
cals (North York, ON, Canada). Dactinomycin, SP-2509, doxorubicin, etoposide, temozolomide, pazopanib,
olaparib, SAHA, and vincristine were products of Cayman Chemical (Ann Abor, MI). SN-38 was obtained
from SelleckChem.com (Houston, TX). The classifications and abbreviations used for all these compounds
are found in Table 1.

Cell culture

A673 cells were maintained in Dulbecco’s Modified Eagle Medium (D-MEM) supplemented with 10%
Fetal Bovine Serum (FBS) and penicillin and streptomycin at 37◦C under humidified atmosphere containing
5% CO2. TTC466 cells were cultured in the same way except Roswell Park Memorial Institute (RPMI)
medium was used instead of D-MEM.

In vitro combination drug treatments to induce drug resistance

Through drug toxicity assays, we determined EC50 concentrations of chemotherapeutics that are used
as standard-of-care to treat EWS (Grier et al., 2003). This standard-of-care treatment for EWS con-
sists of a vincristine-doxorubicin-cyclophosphamide (VDC) combination cycle followed by an etoposide-
ifosfamide (EI) combination cycle. However, both cyclophosphamide and ifosfamide are prodrugs, requiring
metabolic activation by an in vivo model. In the VDC drug combination, cyclophosphamide is replaced
by 4-hydroxycyclophosphamide, an activated form of cyclophosphamide; however, there is no such commer-
cially available option for ifosfamide. As ifosfamide is an analog of cyclophosphamide, it was also replaced by
4-hydroperoxycyclophosphamide, due to their similar chemical structures and mechanisms of action. There-
fore, we recapitulate Ewing’s sarcoma standard-of-care treatment regimen in vitro by cycling vincristine-
doxorubicin-4-hydroxycyclophosphamide (VDC) and etoposide-4-hydroxycyclophosphamide (EC). The EC50
values were vincristine (0.8 and 0.9 nM), doxorubicin (0.015 and 0.023 nM), 4-hydroxycyclophosphamide
(0.001 and 0.001 % by volume), and etoposide (0.7 and 0.37 µM) in the A673 and TTC466 cell lines,
respectively.

In order to induce drug resistance in the A673 and TTC466 cell lines, each cell line was plated as
8 biological (evolutionary) replicates, where 5 experimental replicates were exposed to the drug combi-
nation cycles, described below, and 3 control replicates were maintained in dimethyl sulfoxide (DMSO).
Due to contamination, one of the experimental replicates (Replicate 2) in the A673 cell line was discon-
tinued. Experimental replicates were exposed to the standard-of-care drug cycles, as illustrated in Figure
1. Cells (2 × 106 cells/10cm plate) were first exposed to a combination of vincristine, doxorubicin, and
4-hydroxycyclophosphamide at their EC50 concentrations. After 5 days of incubation, the medium was
changed to maintenance medium without drugs. After they proliferate to sub-confluent density, a 10 cm
plate was set for the next cycle with etoposide and 4-hydroxycyclophosphamide at their initial EC50 con-
centrations for 5 days, 96-well plates were set for drug sensitivity assay, and a fraction of cells were snap
frozen for RNA extraction. Again, as the treated cultures grew to sub-confluence, this cycle was repeated
with alternate exposure to the two drug combinations, along with drug sensitivity assays and sampling for
RNA extraction between each drug cycle. On the fifth application of the VDC drug combination, the con-
centration of the drug combination was increased to 6 nM, 0.05 mM, and 0.006% by volume for vincristine,
doxorubicin, and cyclophosphamide, respectively.

Drug toxicity assay

Cells were plated into 96-well plates at the density of 6,000 cells/90µl/well. The next day, 10 µl of medium
containing various concentrations of drug of interest were added to each well. The final concentration of



DMSO used as solvent was kept constant (0.1% by volume for dactinomycin, SP2509, doxorubicin, etoposide,
olaparib, SAHA, SN38, and vincristine; and 1% by volume for temozolomide and pazopanib).

4-hydroxycyclophosphamide was prepared freshly just prior to each assay by incubating 1 mg of 4-
hydroperoxycyclophosphamide with 100 µL of water containing 1 mg sodium thiosulfate at room tempera-
ture for 30 sec, converting 4-hydroperoxycyclophosphamide to 4-hydroxycyclophosphamide. The resulting
solution was used for toxicity assay starting with 0.2% (by volume) as the highest concentration. Matching
dilution series of sodium thiosulfate solution was assessed as a control to assess 4-hydroxycyclophosphamide
toxicity, again using 0.2% (by volume) as the highest concentration.

After five days of incubation, cell viability of each well was determined by measuring the enzymatic
conversion of alamarBlue (Bio-Rad, Hercles, CA) (Hamid et al., 2004). After addition of alamarBlue solution
(10 µl/well), the plate was incubated for two to four hours and the fluorescence intensity (excitation 560
nm / emission 590 nm) of each well was detected by Symphony H2(BioTek, Winooski, VT), a multi-well
plate reader. Background fluorescence was determined by measuring the wells without cells incubated with
alamarBlue.

Drug response modeling and EC50 estimation

Net alamarBlue conversion for each well was calculated by subtracting the average background fluores-
cence from each of the fluorescence values. A four-parameter log-logistic (LL.4) model (Hill function) was
fit for each biological replicate, performed in triplicate, using the drm function from the drc package in R.
This function models the survival measure S(X) at a given dose X as:

S(X) = b+
a− b

1 +
(
EC50
X

)H
where S(X) is the expected response at dose X, a is the minimum response (when dose = 0), b is the highest
response (when dose = ∞), EC50 is the point of inflection (dose at which 50% of the response occurs), and
H (known as the Hill slope) is the steepest part of the curve (Gadagkar and Call, 2015). A negative value
for H, as seen in these models, denotes a descending curve, while a positive H represents an ascending curve.
Estimated EC50 from these models was solved using the ED function from the drc package (version 3.0.1)
in R.

Although there is no perfect measure of drug sensitivity and resistance, we chose EC50 as our measure
of drug response, because of its compatibility with existing literature and because of the agreement of this
model to experimental data. A caveat of this measure is the possibility for the maximum response, b changes,
while the point of inflection, EC50, for the curve does not (Jang et al., 2014). A plot of all dose-response
triplicates with their estimated EC50 can be found in the linked GitHub repository.

RNA extraction and sequencing

Ribosomal-RNA depleted RNA was prepared from 18 samples of interest using RiboMinus Eukaryote Kit
(ThermoFisher, Waltham, MA). RNA sequencing was performed at the Genomic Core, the Lerner Research
Institute (Cleveland, OH) with HiSeq 2500 (Illumina, San Diego, CA). Quality control and read trimming
was performed using fastp v0.20.0 (Chen et al., 2018). Read alignment was done using STAR v2.7.1 and
alignment quantification was done using salmon v0.14.1 against gencode v31 transcript set with average
12 million reads per sample (Dobin et al., 2013; Patro et al., 2017; Harrow et al., 2012). Transcript level
abundance estimates were then converted to gene level estimated counts using tximport R package (Soneson
et al., 2015).

Differential gene expression analysis

Samples sent for sequencing were ranked based on their EC50 to each drug. For each drug analyzed,
differential gene expression (DE) analysis compared samples in the top and bottom third of the ranked EC50
values. This DE analysis was performed using the EBSeq R package (version 1.24.0), with a false discovery
threshold of 0.05 and the maxround parameter set to 15 (Leng and Kendziorski, 2019; Žiberna, 2018).
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