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Nematode dauer formation repre-
sents an essential survival and dis-

persal strategy and is one of a few
ecologically relevant traits that can be
studied in laboratory approaches. Under
harsh environmental conditions, the
nematode model organisms Caenorhab-
ditis elegans and Pristionchus pacificus
arrest their development and induce the
formation of stress-resistant dauer larvae
in response to dauer pheromones, repre-
senting a key example of phenotypic plas-
ticity. Previous studies have indicated
that in P. pacificus, many wild isolates
show cross-preference of dauer phero-
mones and compete for access to a lim-
ited food source. When investigating the
genetic mechanisms underlying this
intraspecific competition, we recently
discovered that the orphan gene dauerless
(dau-1) controls dauer formation by copy
number variation. Our results show that
dau-1 acts in parallel to or downstream
of steroid hormone signaling but
upstream of the nuclear hormone recep-
tor daf-12, suggesting that DAU-1 repre-
sents a novel inhibitor of DAF-12.
Phylogenetic analysis reveals that the
observed copy number variation is part
of a complex series of gene duplication
events that occurred over short evolution-
ary time scales. Here, we comment on the
incorporation of novel or fast-evolving
genes into conserved genetic networks as
a common principle for the evolution of
phenotypic plasticity and intraspecific
competition. We discuss the possibility
that orphan genes might often function
in the regulation and execution of ecolog-
ically relevant traits. Given that only few
ecological processes can be studied in
model organisms, the function of such
genes might often go unnoticed,

explaining the large number of uncharac-
terized genes in model system genomes.

Introduction

Evolutionary developmental biology
(evo-devo) aims for a comprehensive
understanding of the evolutionary forces
and the developmental processes that gen-
erate biological diversity.1-3 The fact that
diverse organisms have highly conserved
developmental control genes but funda-
mentally different regulatory mechanisms
for the specification of homologous struc-
tures resulting in developmental systems
drift is a central finding of evo-devo
research and by now, a truism of modern
biology.4,5 However, explaining the link
between genetic variation and phenotypic
diversity requires a more integrative
approach combining evo-devo with popu-
lation genetics and evolutionary ecol-
ogy.6,7 Over the last 2 decades, evoluti-
onary biologists have attributed increasing
importance to the influence of ecology on
evolution and development, demonstrated
by the growing number of studies on phe-
notypically plastic traits.8,9

Phenotypic plasticity describes the abil-
ity of an individual organism to develop
alternative forms of a trait in response to
changing environmental conditions. In
the last decade, phenotypic plasticity has
been suggested to not only be of ecological
but also evolutionary importance because
it can facilitate morphological innovations
that result in the origin and evolution of
novel traits.8 Nematode dauer formation
is an example of phenotypic plasticity in
an ecologically relevant trait, which exists
as a choice that many free-living nemato-
des have between direct development into
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reproductive adults and indirect develop-
ment into stress-resistant dauer larvae
(Fig. 1A).10,11 The dauer stage is an alter-
native third larval stage, induced by a
dauer pheromone, and formed under
harsh environmental conditions, such as
food shortage or high population den-
sity.12,13 Dauer formation is also consid-
ered to be of relevance for the evolution of
parasitism. Many theoretical studies have
discussed dauer larvae of free-living

nematodes and their morphological simi-
larities to infective juveniles of parasitic
nematodes as a preadaptation toward the
evolution of parasitism.14-17 In this con-
text, it is important to note that in the
wild P. pacificus predominantly exists as
dauer larvae, which live in a necromenic
association with scarab beetles.18,19 Only
after the natural death of its host, does P.
pacificus exit the dauer stage and resume
its development by feeding on bacteria,

fungi, and other organisms growing on
the dead beetle. Therefore, dauer forma-
tion represents a survival and dispersal
strategy, enabling individuals of a popula-
tion to endure and escape unfavorable
conditions. In contrast to many other
nematode associations with invertebrates
that are often unspecific, such as C. elegans
with slugs and isopods,20 the association
of Pristionchus nematodes with scarab bee-
tles is mostly species-specific, an impor-
tant prerequisite for the evolution of
parasitism.15,16

Cross-preference of dauer
pheromones and intraspecific
competition

The huge advantage of working with P.
pacificus is our extensive understanding of
its natural ecology and population genet-
ics. Since P. pacificus is a cosmopolitan
species, many wild isolates have been col-
lected and are available for ecological stud-
ies.7,21 We previously used a natural
variation approach to compare various
aspects of dauer formation among diverse
P. pacificus strains.22,23 Our results indi-
cate high levels of natural variation in
dauer longevity, as well as in dauer forma-
tion in response to individual small mole-
cules and dauer pheromone, the complex
blend of small molecules extracted from
each strain. Furthermore, we observed sig-
nificant qualitative and quantitative differ-
ences in production of and response to
individual small molecules. Specifically,
some strains synthesize considerable
amounts of a certain compound, although
they do not respond to it, whereas other
strains form many dauers in response to
compounds they do not produce them-
selves.23 Indeed, most strains show cross-
preference of dauer pheromones, whereby
a strain forms more dauers in response to
another strain’s pheromone extract than
in response to its own pheromone, sug-
gesting intraspecific competition as a pre-
viously unconsidered aspect of dauer
formation.

Following these initial experiments, we
developed a novel assay to directly test for
competition.23 In contrast to our previous
dauer formation assays, involving the
response of an individual strain to a specific
small molecule or pheromone extract, the
competition assay was designed to enable

Figure 1. P. pacificus dauer formation and intraspecific competition. (A) P. pacificus life cycle. (B)
Experimental design of Ussing chamber competition assay. (C) Dauer formation observed over
time, showing intraspecific competition between RS2333 and RS5134. In the competition experi-
ment (e) one compartment of the Ussing chamber contains RS2333 and the other RS5134, whereas
in control experiments (c) the same strain is grown in both compartments.24
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the observation of the dauer formation of 2
strains in a common environment in
response to their naturally secreted phero-
mones. Using the Ussing chamber system
(Fig. 1B, C), our results confirm the pres-
ence of cross-preference of dauer phero-
mones and reveal intraspecific competition
among both allopatric and sympatric
strains.23,24 Competitive interactions
among organisms have been suggested to
be associated with evolutionary arms
races.25 Intraspecific competition for sur-
vival and access to limited resources under
changing environmental conditions repre-
sents a strong selective force driving the
divergence among different populations of
the same species.8 Strategies for surviving
and competing in changing environments
are well known in bacteria and involve the
regulation of the expression of specific
genes in response to different environmen-
tal conditions.26 However, little is known
about the molecular mechanisms of com-
petitive interactions in eukaryotes.

Intraspecific competition in P. pacificus
dauer formation probably occurs at multi-
ple levels of dauer entry but also after dauer
exit when the dauer larvae start to feed on a
limited food source, such as bacteria and
other organisms growing on a beetle car-
cass. Such competition for a limited food
source may result in an evolutionary arms
race regarding the dauer formation pheno-
types of different P. pacificus strains and
lead to changes in dauer pheromone pro-
duction and response. Two different sur-
vival strategies may have evolved due to
intraspecific competition in P. pacificus
dauer formation. Strains with low dauer
formation phenotypes, such as the P. pacif-
icus reference strain RS2333 from

California, can drive other strains into
early dauer formation, thereby gaining the
advantage of reproducing for a longer
time. In contrast, strains with high dauer
formation phenotypes, such as RS5134
from Ohio, can avoid competition, over-
population, and potential starvation by
optimizing their dispersal as dauer larvae.
Indeed, RS5134/Ohio is a champion of
survival in the dauer stage. Under stable
laboratory conditions, this strain survives
for almost one year in distilled water at
8�C, in contrast to P. pacificus RS2333 and
C. elegans N2, the latter of which only sur-
vives for 18 weeks.22

A new element in the dauer regulatory
network

Since RS2333/California and RS5134/
Ohio show a large difference in their
dauer formation phenotypes (Fig. 1C),
we selected these 2 strains to investigate
the molecular mechanisms that determine
intraspecific competition by generating
recombinant inbred lines and performing
quantitative-trait-loci mapping.24 We dis-
covered that the orphan gene dauerless
(dau-1) regulates dauer formation by copy
number variation (CNV) (Fig. 2). A sin-
gle dau-1 copy is responsible for the high
dauer formation phenotype of RS5134/
Ohio, whereas 2 dau-1 copies, resulting
from a very recent gene duplication event,
lead to reduced dauer formation in
R2333/California. These findings are sup-
ported by experimental studies using
transgenic animals. Specifically, transgenic
animals expressing multiple dau-1 copies
in either strain do not form dauer larvae at
all. We detected dau-1 expression in the
CAN neurons, indicating a previously

unknown role of these neurons in dauer
formation. Ablation of the CAN neurons,
as well as mutations in the dau-1 locus
generated by the CRISPR/Cas9 system,
causes increased dauer formation. Finally,
we performed epistasis experiments to
determine where dau-1 acts in the dauer
regulatory network. The key factor in the
dauer regulatory network is the nuclear
hormone receptor DAF-12 that acts as a
developmental switch, induces dauer for-
mation in its ligand-free form, and is con-
served among many free-living and
parasitic nematodes.27,28 Our results show
that dau-1 acts in parallel to or down-
stream of steroid hormone signaling but
upstream of daf-12, suggesting that DAU-
1 represents a novel inhibitor of DAF-12.

CNV, gene duplication, and orphan
genes

Phylogenetic analysis reveals that the
observed CNV of dau-1 is part of a com-
plex series of gene duplication events that
occurred over short evolutionary time
scales.24 Gene duplication is a form of
CNV and represents an important mecha-
nism for adapting to changing environ-
mental conditions, which has been
studied extensively in bacteria.29 Prevalent
in a variety of organisms, gene duplication
has been suggested to facilitate the evolu-
tion of novel phenotypic traits.30 After a
duplication event, one gene copy may
retain the ancestral function, while the
other copy may acquire a new func-
tion.30,31 Therefore, gene duplication may
emerge as a common principle for the evo-
lution of novel traits and may drive the
evolution of genetic networks and the
divergence among populations.30,32 An

Figure 2. dau-1 regulates dauer formation by CNV. One copy leads to high dauer formation in RS5134, 2 copies cause low dauer formation in RS2333,
and the expression of multiple copies completely inhibits dauer formation in transgenic animals. In contrast, the absence of dau-1 results in an extremely
high dauer formation phenotype.24
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interesting aspect of gene duplication
events is their ability to promote the rapid
evolution of certain gene families and thus
induce the formation of orphan genes.33

Orphan genes lack significant sequence
similarity to genes in other organisms and
thus, they are defined as not being con-
served above the genus level.34 They may
evolve de novo from previously non-coding
sequences or originate from gene duplica-
tion events followed by rapid evolution.33

Comparative genome sequencing projects
have revealed a large number (10–20%) of
orphan genes in all taxonomic groups,
including nematodes.34,35 For example, in
P. pacificus, orphan genes constitute
approximately one third of the predicted
27,000 protein-coding genes.36,37 Interest-
ingly, follow-up experiments have indi-
cated that more than half of these orphan
genes are transcribed.37 Approximately
30% of the P. pacificus orphan genes can
be grouped into distinct protein families
that have homologues in very closely
related species of the same genus but not in
C. elegans. This suggests that these orphan
genes belong to fast-evolving gene families
and diverge so rapidly that no homologues
can be identified at greater phylogenetic
distances,37 an assumption that has now
been confirmed in the case of dau-1.

Since orphan genes are taxonomically
restricted, they may have evolved to enable
the adaptation to the ecology of the organ-
ism and specific environmental condi-
tions.35 For example, it has been shown
that the expression of many P. pacificus
orphan genes is upregulated in the dauer
stage, suggesting a crucial role in the evolu-
tion of P. pacificus dauer formation, which
differs in its specific functions from that of
C. elegans.38 Furthermore, proteomic and
transcriptomic studies have provided
strong evidence that orphan genes are
expressed and of functional impor-
tance,37,38 yet they are not conserved.
Thus, although developmental control
genes and signaling pathways are often
conserved throughout the animal kingdom
– the truism of modern biology discussed
above, a relatively large part of genes in an
animal shows limited or no sequence simi-
larity to genes in other organisms. Our
work on the orphan gene dau-1 and its role
as a novel inhibitor of dauer formation
therefore shows that rapidly evolving genes

are of developmental and ecological rele-
vance. In addition, our studies suggest that
the incorporation of orphan genes into
conserved regulatory networks may repre-
sent a general evolutionary mechanism.

Conclusions

Ever since the C. elegans genome was
sequenced as the first metazoan repre-
sentative,39 researchers have been puz-
zled by the following overarching
pattern. While a small number of con-
served genes was identified as develop-
mental control genes that are shared
between C. elegans, Drosophila, and sev-
eral vertebrate models, the vast majority
of genes has no associated function and
limited or no sequence similarity to
genes in other taxonomic groups. This
observation, when combined with the
results of developmental genetics at
large, resulted in an ascertainment bias.
While developmental geneticists identi-
fied the same (homologous) genes over
and over again, most genes found in
genome sequencing projects are not
conserved and often novel.31 As a
result, we are clueless about the func-
tion of the majority of genes, even in
some of the best-studied model organ-
isms of the life sciences, such as C. ele-
gans.40 Do all of these genes have any
function at all or are they just rapidly
evolving units of the genome that come
and go? To answer these questions, we
have to appreciate that the highly suc-
cessful model system approach has one
important downside: the ecology and
the environment, in which organisms
normally live and evolve, is not consid-
ered. Rather, we study them in (sterile)
laboratory environments. Could it be
that many orphan genes have functions
in the environment? These questions
will only begin to be addressed in
future studies. However, the story of P.
pacificus dau-1 tells us that orphan
genes can find a home in ecology and
are incorporated into preexisting regula-
tory networks.
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