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Arsenic contamination in drinking water and associated adverse outcomes are one

of the major health issues in more than 50 countries worldwide. The scenario is

getting even more detrimental with increasing number of affected people and newer

sites reported from all over the world. Apart from drinking water, the presence of

arsenic has been found in various other dietary sources. Chronic arsenic toxicity

affects multiple physiological systems and may cause malignancies leading to death.

Exposed individuals, residing in the same area, developed differential dermatological

lesion phenotypes and varied susceptibility toward various other arsenic-induced disease

risk, even after consuming equivalent amount of arsenic from the similar source, over the

same duration of time. Researches so far indicate that differential susceptibility plays an

important role in arsenic-induced disease manifestation. In this comprehensive review,

we have identifiedmajor population-based studies of the last 20 years, indicating possible

causes of differential susceptibility emphasizing arsenic methylation capacity, variation

in host genome (single nucleotide polymorphism), and individual epigenetic pattern

(DNAmethylation, histone modification, and miRNA expression). Holistic multidisciplinary

strategies need to be implemented with few sustainable yet cost-effective solutions like

alternative water source, treatment of arsenic-contaminated water, new adaptations in

irrigation system, simple modifications in cooking strategy, and dietary supplementations

to combat this menace. Our review focuses on the present perspectives of arsenic

research with special emphasis on the probable causes of differential susceptibility

toward chronic arsenic toxicity and sustainable remediation strategies.

Keywords: arsenic toxicity, differential susceptibility, arsenic methylation, single nucleotide polymorphism,

epigenetic pattern, sustainable remediation

INTRODUCTION

Arsenic exposure is one of the major threats to public health in more than 50 nations including
China, Australia, India, Bangladesh, Argentina, Brazil, Thailand, Vietnam, Pakistan, Chile,
Bulgaria, Canada, Czech Republic, Egypt, Iran, parts of USA, etc. (1). The worldwide scenario of
arsenic contamination has been changing with the discovery of newer sites and increasing number
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of affected people. The latest global count of arsenic-affected
individuals, exposed above theWHO safety standard for drinking
water of 10 µg/L (1), is ∼140 million, which has increased
substantially over the decade (2). Since World War II, the
initial reports of arsenic toxicity came up-front (3, 4) and
have been a prime focus of environmental health research
spanning various fields of research including geologists, chemists,
pharmacologists, and more so biologists. Arsenic is a metalloid,
its inorganic form (e.g., arsenic trioxide, sodium arsenite, and
arsenic trichloride are trivalent forms, and lead arsenate and
calcium arsenate are pentavalent forms) being found within
the natural elements, while organic form circulates within
the ecosystem. Common forms of organic arsenic compounds
are methylarsonic acid, dimethylarsinic acid, arsanilic acid,
etc., formed during metabolism inside living organisms in
most of the cases (5). Inorganic arsenic is predominantly
found in drinking water and dietary sources like dairy
products, meats, cereals, etc. On the other hand, organic form
like arsenobetaine is mostly present in seafood, fruits, and
vegetables. Arsenic contamination in the groundwater of Indo-
Gangetic region occurs from rapid weathering of arsenic-bearing
rock in the upper Himalayan catchments, and various river
systems get buried in young, low-lying alluvial floodplains of
various riverine deltas. The elevated concentration depends
on biogeochemical and hydrogeochemical process along with
higher sedimentation rate. The slow aquifer-flushing rate is
the primary reason for the higher sedimentation in these
regions. A potential source of arsenic in the ecosystem is
attributed to anthropogenic activities like mining, smelting,
and industrial processes, use of arsenic-laden pesticides, etc.
(2). Arsenic has three ionized states: arsines As(III−), arsenite
As(III+), and arsenate As(V+), the latter two being most
mobile in both organic and inorganic forms (2, 5). Both
acute and chronic arsenic toxicities generate various deleterious
effects in multiple organs and tissues, like hyperkeratosis and
change in skin pigmentation, cardiovascular diseases, pulmonary
disease, peripheral neuropathy, and developmental and cognitive
impairments. Moreover, long-term arsenic exposure even at very
low-level causes development of carcinogenic changes in the skin,
liver, lung, bladder, and prostate (2). According to recent reports,
chronic arsenic exposure around the WHO recommended level
(10 µg/L) is also associated with increased risk of urinary
tract cancer (6, 7). These evidence indicate that the current
guideline for maximum permissible limit of arsenic in drinking
water may still present a hazard to the population that are
chronically exposed for a long time (8). Earlier researches on
arsenic toxicity were primarily focused on population-based
epidemiological outcomes, analysis of particular disease risk,
chemical, and physiological aspects of arsenic metabolism, study
of related gene expression profile, cancer, and DNA damage; all
were associated with the mechanism of toxicity and subsequent

Abbreviations: As, arsenic; DMAIII, dimethylarsonous acid; DMAv,

dimethylarsonic acid; DNA, deoxyribonucleic acid; iAs, inorganic arsenic; miRNA,

microRNA; MMAIII, monomethylarsonous acid; MMAv, monomethylarsonic

acid; RNA, ribonucleic acid; SAM, S-adenosyl-methionine; WHO, World

Health Organization.

outcome or disease manifestation. At present, the research
perspective shifts toward the study of epigenetic alterations
(DNA methylation, histone modification, and miRNA) to
justify differential susceptibility toward arsenic exposure, detailed
“omics” analysis (whole genome microarray, proteomic, and
metabolomic profiling, etc.) of arsenic-induced cancer cases,
bioremediation, and development of new therapeutic strategies,
which are necessary for combating the outcome of arsenic
toxicity as the affected population is increasing around the world.
Since the year 2000, with advancement in high throughput
techniques, arsenic research has evolved, and newer insights have
been discovered (source: PubMed1, Figure 1). Research trends
from the year 2010 to 2019 indicate that “arsenic metabolism”
remained the key focused area for arsenic research (Figure 1).
It is indeed important to know the arsenic methylation
status, which has been discussed in the following section
to understand its toxic effects on biological system, related
disease manifestation, and individual susceptibility. The next
important focused area was found to be DNA damage and
cancer. Understanding epigenetics was increasingly emphasized
for the last 5–6 years, where the researchers attempted to
explore the role of DNA methylation, histone modification, and
miRNA alteration in arsenic toxicity as well as in arsenic-induced
carcinogenesis. In this review, we try to string together the
recent perspectives of arsenic research with special focus on
understanding differential susceptibility in exposed population
and how the innovative thinking may soon formulate better
remedial strategies against this menace (Figure 2).

UNDERSTANDING THE PRESENT STATE
OF RESEARCH

Sources of Arsenic Exposure
Arsenic is the 20th most abundant element found in the earth’s
crust, with an average concentration of 1–2 mg/kg in the
continental crust (9). However, there are some geographical
hotspots where the content is very high. It includes parts of
South America and South and Southeast Asia, the latter two
being most populated among all the regions and harboring
nearly 75% of the total affected humans mentioned earlier.
Arsenic is mobilized into the environment by naturally occurring
processes like rainwater leaching, weathering, and seismic and
volcanic activities. Another potent source of arsenic is through
the emissions of arsenic-laden fumes and wastes that are
carried by natural vectors like wind and water, expanding
the topological periphery. To date exposure to arsenic is
mostly due to groundwater contaminations where inorganic
arsenic (iAs) normally exists in the form of arsenite/As(III+)

or arsenate/As(V+). Depending on the oxidation potential of
the microenvironment, the two states are interconvertible. The
pH of the microenvironment regulates the ligand exchange
process between the metallic oxides and hydroxides of iAs
and the organic intermediates (microbiota) to release arsenic
species (10). Higher concentration of arsenic tends to occur
in association with metal oxides of iron as well as minerals

1https://www.ncbi.nlm.nih.gov/pubmed/ (accessed February 20, 2019).
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FIGURE 1 | Graphical representation showing trends in research publications on arsenic toxicity (from year 2000 to 2018).

FIGURE 2 | Graphical abstract representing the overall theme of the present review.

with high sulfur content. In the Indian subcontinent, the
Ganga–Brahmaputra–Meghna basin of the Indo-Bangladesh
delta has high deposition of alluvial soil rich in sulfide drained
down from the Chota Nagpur region. Increased weathering
and rhythmic leaching of arsenic into the water table reflects

that the increase in human intervention in abuse of chemical
fertilizers laden with arsenic to aid agricultural yield have been
associated with incidence of arsenic toxicity (11). Earlier, it was
proposed that the organometallic component of arsenic in the
groundwater might form complex and subsequently associate
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FIGURE 3 | Graphical representation showing recent country-wise reports about arsenic concentration found in (A) drinking water, (B) rice, (C) fish, and (D) egg

(detailed report is in Supplementary Table 1 with all references).

strongly with the dissolved arsenic anions, decreasing the release
of arsenic, but research has shown that organic decomposition
by certain bacteria generates anaerobic conditions whereby
they release the arsenic species from these solid phases (12,
13). Apart from drinking water, relevant amount of arsenic
exposure has been accounted for diet, especially through rice
(Figure 3, Supplementary Table 1). The exposure becomesmore
pronounced in the region of Bangladesh and India, as the arsenic-
affected zone have population whose staple is rice, grown and
consumed locally (14). This shows that the dynamic spectrum
of arsenic transports into the human physiological domain, the
effects of which are being discussed in the following section.

Arsenic Metabolism: Toxic Nature
Chemistry
Majority of the affected population are exposed to arsenic
primarily through drinking water and food. Several studies
have described the mechanism of arsenic metabolism inside
human biological system (15–17). The inorganic form of oxy-
anions, including pentavalent arsenite (H2AsO

−

4 ) and trivalent
arsenate (H3AsO3) is present abundantly in natural water.
Organic form of arsenic is rarely found in the environment (18).
The major metabolic pathways of iAs in humans includes
several biochemical reactions like oxidation, reduction,
methylation, thiolation, and glutathiolation (15, 19), of which
methylation is critically important for the toxic pathology,

tissue distribution, and cellular retention of arsenic. Arsenic
in the form of arsenite/As(III+) or arsenate/As(V+) is absorbed
in the gastrointestinal tract (GIT) of human, where arsenite
is absorbed more rapidly than arsenate. As(III+) enters into
the cell through aquaglyceroporins [AQP3, AQP7, AQP9, and
AQP10], and As(V+) uses phosphate transporters, respectively,
whereas cellular efflux of arsenic primarily occurs through
ATP-binding cassette transporters (MRP1, MRP2, and MRP5).
Apart from these, certain glucose transporters (GLUT1 and
GLUT5) and organic anion transporting polypeptides were
also reported to be responsible for cellular arsenic uptake
under different circumstances (15). The initial reduction
in arsenate to arsenite is done by liver enzyme arsenate
reductase. It is then methylated by arsenic(III) methyl transferase
(AS3MT) in the presence of S-adenosyl-methionine (SAM)
as methyl donor to monomethylarsonic acid (MMAv), which
is reduced to monomethylarsonous acid (MMAIII). MMAIII

is again methylated to dimethylarsinic acid (DMAv), which
is subsequently reduced to dimethylarsinous acid (DMAIII).
The main metabolites monomethylarsonic acid (MMAv) and
dimethylarsinic acid (DMAv), where arsenic is in the pentavalent
state, are less toxic compared to inorganic arsenic (iAs) and
readily excreted in urine. In humans, during metabolism,
some arsenic is accumulated (about 40–60%) in skin, hair,
nails, muscle, bones, and teeth as iAs and MMA (MMAIII

and MMAv), which may impart toxic effects in multiple
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tissues and organs in their later life (16, 18, 19). Another
pathway of arsenic metabolism shows sequential addition of
methyl groups to trivalent arsenicals and its conjugation with
glutathione generating intermediate derivatives like arsenic
triglutathione (ATG), monomethyl arsenic diglutathione
(MADG), and dimethyl arsenic glutathione (DMAG). A third
pathway explained about the formation of iAs/protein conjugate
and subsequent generation of methylated metabolites (17).
Various studies have also shown effect of folate intake and
folate metabolism on arsenic metabolism and related disease
risks. The amount of folate intake and genetic variants of folate
metabolizing enzymes might be responsible for interindividual
variation in arsenic metabolism and differential disease
susceptibility (19). Relative distribution of arsenic metabolites
in urine is commonly used as a biomarker of current exposure
and indicates the individualistic metabolism efficiency, which
is one of the major causes of differential susceptibility (16, 20).
The percentage of urinary metabolite varies between individuals;
most of the literature suggests 10–30% iAs, 10–20% MMA,
and 60–80% DMA (19, 20). Conventionally, concentration
ratios of MMA/iA and DMA/MMA in the urine indicate the
methylation capacity of the affected individual. In addition, the
activity of AS3MT might have an association with the tissue-
specific retention of various arsenic metabolites in the body
and subsequently with individual susceptibility (21, 22). Very
few reports are available on thio-DMA as urinary metabolite.
Raml et al. (23) identified thio-DMA in the urine samples of
Bangladeshi women, and also reported from in vitro studies
that it was about 10-fold more cytotoxic than dimethylarsinate;
however, the specific health consequences of such metabolites
are not yet known (22). In another work by Taylor et al. (24), the
urine samples from arsenic-contaminated seaweed consumers
had been analyzed, and thio-DMA was detected as urinary
metabolite. Future studies are required to identify and evaluate
the possible outcome of such unique metabolites for better
understanding of the toxic nature of this metalloid.

Physiological Manifestations of Arsenic
Toxicity
The major hallmark of arsenic toxicity is the occurrence
of dermatological lesions of various types like raindrop
hypopigmentation, pigmentation, keratosis (palmer and plantar),
and even skin cancers like basal cell carcinoma (BCC), squamous
cell carcinoma (SCC), and Bowen’s disease. Interestingly, only
15–20% of the population show such manifestations (25, 26).
Based on the toxic outcome on human health, arsenic is
considered as Group I human carcinogen. In recent years,
in vitro work with human cancer cell lines have helped to
unravel various toxic mechanisms related to dermatological
health outcomes and cancerous outcomes of the liver, lungs,
bladder, and neuronal disorders, but most of the common
health outcomes in human to date are dermatological lesions,
peripheral neuropathy, liver damage, respiratory disorders,
ocular inflammation and irritations, etc. (27–31). In the last
decade, arsenic research at the cellular level revealed that arsenic
alters the gene expression pattern within the cell and alters

telomere length, epigenomic profile, cell cycle, etc. (32–36). One
of the most explored aspects of arsenic toxicity in last decade
has been on DNA damage and repair mechanism. Studies both
in humans as well as cell lines have yielded results, which have
made the detection of genetic damage as a reliable biomarker for
arsenic-induced toxic outcomes (31, 37–39). Both chromosomal
aberrations as well as micronucleus have been associated strongly
with arsenic exposure and have shown prominent correlation
to arsenic toxicity when compared with unexposed human
subjects (40–42).

New Efforts Toward Understanding
Differential Susceptibility
Arsenic-induced characteristic skin lesions have been considered
for years as the hallmark of chronic toxicity. We have found
that exposed individuals, residing in the same area, show
varied dermatological lesion phenotypes even after consuming
equivalent amount of arsenic over the same duration of time. In
fact, our observation suggests that only a smaller percentage of
the exposed individuals show arsenic-induced characteristic skin
lesions (43). On the other hand, the precancerous lesions like
plantar and palmer hyperkeratosis often lead toward detrimental
malignancies in some of the affected individuals, whereas others
retain only the precancerous forms lifelong. Different researches
indicate several factors like individual arsenic methylation
capacity, genetic susceptibility, epigenetic profile, etc. as major
role players behind the differential susceptibility (16, 44).

Arsenic Methylation Capacity and Differential

Susceptibility
The interindividual variation in arsenic methylation potential
could be an important predictor of individual’s susceptibility.
Majority of the researchers found that people with skin lesions
and high arsenic exposure are likely to have reduced arsenic
methylation capacity with high trivalent species MMA in urine
(45–48). The methylation capacity might reduce with increasing
dose of arsenic, smoking and alcohol consumption, age, and
nutritional folate deficiency (46, 49, 50). On the contrary, one
study from China reported about higher methylation capacity
among people above 40 years of age compared to below 40
years, but they also found positive correlation between %MMA
and risk of skin lesion. On the other hand, women, especially
at pregnancy, have increased methylation capacity than men
and non-pregnant women, respectively, which may be due to
the effect of estrogen, and children also have better methylation
capacity than adults (51–53). A case–control study from China
reported similar total arsenic concentration in skin lesion and
no skin lesion group, but they found increased concentration of
MMA among the skin lesion individuals (54), which indicates
that efficiency of arsenic methylation is indeed important for
differential susceptibility. A detailed account of recent studies
regarding arsenic methylation efficiency and risk of skin lesion
is summarized in Table 1. Arsenite methyltransferase (As3MT;
EC: 2.1.1.137) catalyzes both monomethyl arsenate (MMA)
as well as dimethyl arsenate (DMA) using SAM and arsenite
and MMA as substrates, respectively. It oxidizes SAM to S-
adenosyl L-homocysteine (SAH) in both cases. Recently, using
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TABLE 1 | Summary of studies on individual arsenic methylation capacity and risk of skin lesions in chronic arsenic exposed population.

Region and sample size Source and analyte Association with primary methylation index (PMI) and

arsenic-induced skin lesion individuals (cases)

References

1 Taiwan, 52 Drinking water (urine) Cases had higher percent of iAs and PMI than matched controls (55)

2 Central Mexico,104 Drinking water (water and urine) Cases had higher average MMA concentration compared to no skin

lesions

(56)

4 Araihazar, Bangladesh,

1,635

Drinking water (water and urine) The %MMA in urine and PMI were positively associated in cases, whereas

SMI was inversely and % iAs was not associated

(57)

5 Pabna, Bangladesh, 1,200 Drinking water (water and urine) A 10-fold increase in primary methylation ratio was associated with a

1.50-fold increased risk of skin lesions

(58)

6 China, 327 Drinking water (hair, water, and

urine)

The relative proportion of MMA was positively related with skin lesion

grade, SMI was negatively related with cases

(59)

7 Matlab, Dhaka, Bangladesh,

504

Drinking water (urine) Cases had three times higher PMI (60)

8 Matlab, Dhaka, Bangladesh,

1,030

Drinking water (water and urine) Higher %MMA was found in cases (61)

9 South of Shaanxi Province

(China), 57

Coal combustion (urine) Cases had higher urinary arsenic and lower SMI (51)

10 Inner Mongolia, China, 31 Drinking water (blood) High PMI and low SMI in cases (62)

11 Yunnan province, China,

146

Arsenic smelting plant (water,

urine)

Cases with increased percentage of MMA (63)

12 Gansu Province, China, 155 Drinking water (urine) Increased PMI, and reduced SMI in cases (54)

13 Huhhot Basin, China, 302 Drinking water (water, urine) Cases had higher levels of urinary iAs and MMA (64)

14 Huhhot Basin, China, 302 Drinking water (urinary As) Cases with higher urinary MMA% (46)

15 Peoples republic of China,

548

Drinking water (water, urine) Increased urinary MMA was associated to hyperkeratosis (65)

16 Araihazar, Bangladesh,

4,794

Drinking water (water and urine) MMA% was higher in skin lesions and DMA% was higher in without skin

lesion group

(52)

17 Inner Mongolia, China, 207 Drinking water (water, urine) Urinary MMA and iAs concentrations were positively associated with

cases

(66)

18 Peoples republic of China,

479

Drinking water (water, urine) Higher iAs and MMA was associated with cases (45)

19 Shaanxi province, Inner

Mongolia, China, 96

Coal combustion and drinking

water (air, water, urine)

Subjects with skin lesions had higher urinary contents of iAs, MMA, and

DMA

(67)

20 Pakistan, 398 Drinking water (water and urine) Higher iAs% and MMA%, lower DMA%, indicating high PMI and low SMI

among cases

(48)

21 Araihazar, Bangladesh,

1,464

Drinking water (water and urine) Decreased urinary %DMA in cases (68)

22 China, 119 Drinking water (water and urine) Higher PMI in cases and higher SMI in patient recovery and improvement (50)

As, arsenic; iAs, inorganic arsenic; MMA, monomethylated arsenic species; DMA, dimethylated arsenic species; PMI, primary methylation index; SMI, secondary methylation index.

X-ray crystallography, the molecular structure of As3MT in
conjugation with AsIII and SAH have been resolved (69). Several
single nucleotide polymorphic (SNP) forms of As3MT have been
identified in relation to arsenic. In the next section, we try to
evaluate the structural aspects of As3MT polymorphisms along
with SNPs in other relevant genes in relation to arsenic-induced
toxic outcomes.

Single Nucleotide Polymorphism and Differential

Susceptibility
Previous reports indicate that arsenic-induced health effects
might be more deleterious among the exposed population
carrying susceptible variants of genes primarily related to arsenic
metabolism, oxidative stress, DNA damage repair pathways, etc.
Variations in the gene forAS3MT have been shown to be themost
influential parameter in urinary arsenic metabolites and different

disease manifestations including carcinogenic outcome. Several
population-based association studies were conducted with a
number of SNP sites, among which G>A change in the C10orf32
region (rs 9527) was found to be associated with increased
skin lesion risk in Indian (70) and Bangladesh population
(71). AS3MT, Met287Thr polymorphisms (rs11191439) were
reported to be having different arsenic methylation efficiency
compared with the wild type and associated with risk of
development of skin lesions, bladder cancer, and increased
micronucleus frequency (72, 73). Apart from AS3MT, other
important genes related to arsenic metabolism are Purine
nucleoside phosphorylase (PNP), methylenetetrahydrofolate
reductase (MTHFR), methyltetrahydrofolate-homocysteine
methyltransferase (MTR), cystathionine-beta-synthase (CBS),
glutathione S-transferase omega 1 (GSTO1), and glutathione S-
transferase omega 2 (GSTO2).MTHFR catalyzes the biochemical
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conversion of 5,10-methylenetetrahydrofolate (5,10-methyl-
THF) to 5-methyltetrahydrofolate (5-methyl-THF) during the
formation of SAM, which acts as a methyl donor of arsenic
methylation. MTHFR, C677T, and C1298A polymorphism
was reported to be associated with increased urinary MMA%,
decreased DMA%, and risk of arsenic-induced skin lesion in
arsenic exposed population from Bangladesh, Argentina, and
Taiwan (57, 74, 75). Chen et al. (76) observed that individuals
with theMTHFR 677TT/1298AA and 677CT/1298AA genotypes
were 1.66 and 1.77 times more susceptible to develop skin
lesions, compared with those having 677CC/1298CC genotype.
Catalyzing the reduction in AsV to AsIII is one of the functions
of PNP during arsenic metabolism. A case–control study on
428 subjects from arsenic-exposed region of West Bengal,
India found that polymorphisms of PNP, His20His, Gly51Ser,
and Pro57Pro were significantly associated with arsenic-
induced skin lesions risk (77). Similar type of studies depicting
association between PNP SNPs and arsenic-induced health
effects were discussed in Supplementary Table 2. CBS catalyzes
the conversion of homocysteine to cystathionine, which has
an influence on arsenic methylation. Two studies on arsenic-
exposed population from Argentina found C234709T and
G4920037A variants of CBS to be associated with urinary
MMA% (19, 78). However, to date, there are no reports from any
other population regarding the CBS polymorphism, and thus,
more studies are needed to confirm its association irrespective
of ethnicity. GSTOs are another group of genes participating in
arsenic metabolism. Several studies found significant association
of GSTO1 polymorphic variants with the risk of skin lesion and
cancer. Previous studies reported that Ala140Asp was associated
with urinary MMA% and skin cancer risk in population
chronically exposed to arsenic from drinking water from
Bangladesh, Taiwan, and China (54, 57, 74). However, studies
on arsenic exposed population from India, Mexico, Hungary,
Romania, Slovakia, and USA did not find any significant
association of GSTO1 polymorphism and arsenic-induced
disease etiology (72, 77, 79, 80). Luo et al. (81) reported that, for
GSTO2, AG genotype for rs156697 and the AG genotype or at
least one G allele for rs2297235 had an increased risk of arsenic-
induced skin lesions, and for GSTO1, individuals carrying at
least one C allele for the rs11191979 polymorphism or at least
one A allele or the AA genotype for rs2164624 or at least one A
allele for rs4925 showed a significant risk of arsenic-induced skin
lesions. Glutathione S-transferases (GSTs, including GSTM1,
GSTT1, and GSTP1) are important protectors for arsenic-related
oxidative stress. GSTP1, Ile105Val polymorphism was reported
to be associated with skin lesion and urinary arsenic profile
among arsenic-exposed population from Bangladesh (82), China
(83), and Vietnam (22), whereas no association was reported
from the population of India (43) and Turkey (84). Ghosh et al.
(43) did not find any association of GSTT1 null genotype with
arsenic-induced skin lesion in a study on 422 Indian subjects but
reported that GSTM1-positive genotypes are associated with a
high risk of skin lesions. On the other hand, McCarty et al. (58)
reported that wild-type GSTT1 is associated with a higher risk
of skin lesions than null genotype, but no association was found
in case of GSTM1. In a recent study on 241 people from Italy,

no association was found between arsenic exposure and urinary
arsenic profile (85). Genetic variants in BER-pathway-associated
genes such as 8-oxoguanine DNA glycosylase (OGG), X-ray
and repair and cross-complementing groups 1 and 3 (XRCC1,
XRCC3), and apurinic/apyrimidinic endonuclease (APE1) may
alter the genotoxicity of arsenic. Multiple case–control studies
reported about the association of polymorphic variants of these
genes with arsenic-induced disease risk. A detailed description
of most recent (considering last 10 years) population-based
polymorphism studies stating population size, source of arsenic
exposure, and polymorphic variant associated with the particular
disease have been summarized in Supplementary Table 2.
To date, several population-based studies revealed significant
association between the genotypic variants and arsenic-induced
disease manifestation; however, the exact mechanistic aspect
behind the role of single nucleotide polymorphism of a
specific gene in understanding differential susceptibility still
remains questionable.

Epigenetic Alterations, Gene Expression, and

Differential Susceptibility
Recent researches identified epigenetic regulations, which
include primarily DNA methylation, histone modification,
and miRNA interaction as one of the critical regulators of
arsenic-induced disease manifestations. Dynamic reversibility of
epigenetic marks is a truly significant property, and it may pave
the pathway of epitherapeutics to overcome the road blocks
in developing potential drug targets for curing diseases due
to arsenic toxicity. Smeester et al. (86) did a comprehensive
examination of DNA methylation levels within CpG islands
for over 14,000 genes among arsenic exposed with skin lesion
(arsenicosis cases) and without skin lesion individuals. They
found 182 hypermethylated genes in arsenicosis cases, the
majority of which is involved in cancer-associated pathways.
A whole genome microarray-based study was conducted on
Bangladesh population, where 10 subjects with newly developed
skin lesion and 10 no skin lesion were selected from a
previous cross-sectional study of 957 individuals to evaluate the
possible epigenetic changes. Results indicated DNA methylation
changes over time in people having arsenic-induced skin lesions
compared to control. They found top 20 differentially methylated
CpG sites of which 13 CpGs (TCEB3B, CYC1, CDH4, RHBDF1,
CCDC154, JAKMIP3, AGAP2, PL-5283, CHPF, PPAP2C, PCNT,
SLC6A3, and MAP3K1) were increased in % methylation, and
7 CpGs (MYO3B, KIAA1683, LOC642597, C2orf81, ESRRG,
PRDM9, and TNXB) were decreased in % methylation between
baseline and follow-up (87). Majumder et al. (88) observed a
correlation pattern between different stages of arsenic-induced
skin lesion and whole genome DNA methylation. A study on
Bangladesh population showed that genomic hypomethylation
of peripheral blood lymphocyte DNA is associated with 1.8-
fold increase risk for skin lesions (89). Another genome-wide
DNA methylation study on 120 individuals from China found
changes in global DNA methylation among patients afflicted
with arsenical skin lesions. They also depicted about detectable
DNA methylation changes due to arsenic exposure over the
generations even though exposure occurred decades ago. Chanda
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TABLE 2 | Studies on arsenic induced alterations in promoter DNA methylation related to skin lesion status.

Region and sample size Source of arsenic (samples

used for estimation)

Promoter methylation status of target genes References

1 West Bengal, India, 158 Drinking water (water) Hypermethylated promoter region of p53 and p21 in skin cancer patients (95)

2 Murshidabad, West Bengal,

India, 122

Drinking water (water, urine) Significant hypermethylation in the promoters of both DAPK and p16

genes in skin lesion cases compared to no skin lesions

(96)

3 Murshidabad, West Bengal,

India, 245

Drinking water (water, urine) Significant promoter hypomethylation of ERCC2 gene with increased

expression

(97)

4 China, 208 Coal combustion (hair, urine) Promoter hypermethylation of p15INK4b in arsenical skin lesion group (64)

5 Guizhou, China, 138 Coal combustion (hair) Hypermethylation of ERCC1 and ERCC2 and suppressed gene

expression were found with skin lesion arsenicosis patients

(98)

6 Poland, 111 Copper mill (urine) Hypermethylation of NRF2 and KEAP1 and altered gene expression in

occupationally exposed group

(92)

7 Southern Taiwan, 40 Drinking water (water) Unmethylation at −56 and −54 bp CpG in the CCND1 promoter—a

predictor for invasive progression in arsenic induced Bowen’s disease

patients

(99)

8 Murshidabad, West Bengal,

India, 326

Drinking water (water, urine) Significant promoter hypermethylation of MLH1 and MSH2 gene was

observed in skin lesion individuals

(38)

9 Murshidabad, West Bengal,

India, 390

Drinking water (water, urine) Promoter hypomethylation and increased gene expression of Tfam and

PGC1α in skin lesion and skin cancer patients

(94)

et al. (90) observed GMDS gene fragment hypermethylation in
the peripheral blood leukocyte DNA of skin cancer persons
exposed to arsenic and suggested as a biomarker for arsenic-
induced cancer. AS3MT gene plays an important role in arsenic
metabolism and its toxicological response. Gribble et al. (91)
found marked promoter hypomethylation AS3MT gene in
arsenic-exposed population from Arizona, but no reports are
found regarding the relationship between skin lesion status and
AS3MT promoter methylation to date. It will be an interesting
and important finding for future researchers, which will help
in mechanistic understanding of how epigenetic modification of
AS3MT contributes in differential susceptibility. In another study
by Janasik et al. (92), significant promoter hypermethylation of
NRF2 and KEAP1 was observed among occupationally arsenic-
exposed copper mill workers from Poland. Our group had
reported about mitochondrial DNA hypomethylation among
arsenic-exposed individuals from highly arsenic affected areas
of West Bengal, India, but no significant difference between
with and without skin lesion group was observed. However,
mitochondrial DNA copy number was found to be significantly
elevated among skin lesion individuals with increased expression
of electron transport chain complex I, subunit ND6 and ND4
genes (93). Recently, we had reported about significant promoter
hypomethylation with increased expression of mitochondrial
biogenesis regulatory genes, Tfam and PGC1α, among arsenic-
induced skin lesion individuals compared to no skin lesion group,
chronically exposed to arsenic through drinking water (94).
Few studies also reported about altered promoter methylation
of various important genes and subsequent change in gene
expression among individuals with skin lesion compared to those
without skin lesion explaining the vital role of epigenetic changes
behind differential susceptibility (Table 2). High-throughput
whole genome omics studies are useful tools to analyze and
identify specific gene expression alterations in response to

arsenic toxicity. In a study of proteomic profiling of arsenic-
induced keratosis samples, three key proteins were identified,
which were consistently differentially expressed in lesional skin
compared to unaffected skin. The cadherin-like transmembrane
glycoprotein, desmoglein 1 (DSG1), was suppressed, whereas
the expression of keratin 6c (KRT6C) and fatty acid binding
protein 5 (FABP5) were significantly increased (100). Argos
et al. (101) analyzed the effect of arsenic toxicity on the
development of arsenical skin lesion status by genome-wide
gene expression patterns, where the expression of about 22,000
transcripts was evaluated between with skin lesion and without
skin lesion group. They found 468 differentially expressed
genes between the two groups. The presence of genomic
deletion(s) in a number of genes (OR5J2, GOLGA6L7P, APBA2,
GALNTL5, VN1R31P, PHKG1P2, SGCZ, ZNF658) and long
intergenic non-coding RNA (lincRNA) genes (RP11-76I14.1,
CTC-535 M15.2, RP11-73B2.2) were associated with higher risk
for development of skin lesions independent of gender, age,
and arsenic exposure (102). In one study, HaCaT cell line
was treated with low dose of arsenic (100 nM sodium arsenite)
for 6 months, and then, SILAC-based quantitative proteomics
approach resulted in the identification of 2,111 proteins, among
which 42 proteins were found to be overexpressed and 54
downregulated upon chronic arsenic exposure (103). Altogether,
these studies provide insight into molecular alteration behind
differential susceptibility.

Another important regulator of epigenetic machinery is
the different miRNAs, which may play vital roles behind
arsenic-induced individual susceptibility. In a recent study, total
miRNA expression analysis was done on premalignant and
malignant skin lesion tissues (basal cell carcinoma and squamous
cell carcinoma) from an Indian population chronically exposed to
arsenic. A total of 35 miRNAs were reported to be differentially
expressed among the three lesion types analyzed. Two miRNAs
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(miR-425-5p and miR-433) were increased in both BCC and
SCC relative to hyperkeratosis, indicating their association with
malignancy. Two other miRNAs (miR-184 and miR-576-3p)
were activated in SCC relative to both BCC and hyperkeratosis,
suggesting selective induction in tumors capable of metastasis.
Six miRNAs (miR-29c, miR-381, miR-452, miR-487b, miR-494,
and miR-590-5p) were selectively suppressed in BCC relative to
both SCC and hyperkeratosis (104). A previous study of Banerjee
et al. (105) reported about 4.5-fold upregulation of miR21 in
skin lesion individuals compared to the no skin lesion group.
The expression of the downstream targets of miR21 (PTEN
and PDCD4) varied inversely, but the expression of pAKT and
PI3K varied proportionately with its expression levels. Another
study on arsenic-treated HaCaT cell line identified differential
expression of 30 miRNAs of which miR-21, miR-200a, and
miR-141 might play a role in skin carcinogenesis (106). Very
few studies are so far reported regarding this area, and thus,
it is indeed an interesting field for present day researchers to
enlighten with newer findings.

Quite a few studies showed arsenic-induced alteration in
post-translational histone modifications (PTHM) including
H3K36me2, H3K36me3, H3K79me2, H3K27me3, H3K9me2,
H3K18ac, H3K9me2, H4K16ac, etc. (107, 108, 108–111)].
Most of them are either in vitro or in mouse models, but
population-based studies justifying difference between with
and without skin lesion individuals are really scarce. Cantone
et al. (112) identified that increased H3K4me2 and H3K9ac
is associated with inhaled arsenic particulate matter in steel
plant workers. Two different studies on arsenic-exposed
Bangladesh population observed alteration in H3K9me2,
H3K9ac, H3K4me3, H3K27me3, H3K27ac, and H3K36me2
moieties (113, 114). Pournara et al. (115) reported decreased
H3K9me3 and unaltered H3K9ac among a population from
Argentina, chronically exposed to arsenic through drinking
water. A study on Chinese population exposed to arsenic
from indoor coal combustion reported that modifications of
H3K18ac, H3K9me2, and H3K36me3 are associated with the
degree of oxidative damage and the severity of arsenicosis.
However, none of the studies particularly differentiate the
degree of altered PTHM between arsenic-exposed skin lesion
phenotypes compared to those with no skin lesion. Recently, our
group has reported about two different PTHMs among chronic
arsenic-exposed population from India considering the skin
lesion status (38, 116). We identified significant upregulation
of H3K79me1 in individuals with arsenic-induced skin lesion,
and H3K79me1 was found to be regulated by the upstream
methyltransferase DOT1L. Again, significant downregulation
of H3K36me3 was found in the arsenic-exposed with skin
lesion individuals with an impairment of mismatch repair
pathway activated by arsenic-induced DNA damage. Cell-line-
based in vitro studies and animal model are necessary for the
identification of detailed molecular mechanism and for the
observation of the outcome of advanced therapeutics (113).
However, it is noteworthy to mention that only population-based
studies of arsenic toxicity may confer greater opportunities in
epitherapeutic drug development and identification of early
biomarker for arsenicosis.

PLAUSIBLE MITIGATION STRATEGIES

One of the ready solutions of arsenic removal is the reduction
at source and providing an alternative source of drinking
water. Arsenic comes into our body mainly through drinking
water sources and a variable dietary intake of food grown in
contaminated areas (Figure 3, Supplementary Table 1). With
more than 140 million individuals affected, it might not be
possible to provide better infrastructure in the removal of arsenic
for daily consumption of arsenic-safe diets. The huge economic
burden due to the population size makes it difficult to implement
the strategies. Though beneficial for the population, the cost of
installation of new wells of 1,000 ft deep or more is prohibitive.
Another major challenge is the maintenance of already installed
filters. After few years of installation, these filters either did not
work properly or gets saturated with arsenic.

Reduction in Arsenic at Source
This reduction can be done in two ways: (i) alternative arsenic-
safe water source and (ii) treatment of arsenic-contaminated
water. A comprehensive report is available with detailed pros
and cons of the several methods (Wilsonweb, Water supply
options2). Alternative sources include groundwater [deep tube
well, shallow shrouded tube well (SST) and very shallow shrouded
tube well (VSST), dug well, infiltration galley], surface water
(protected ponds, pond sand filters, combined filters, household
filters), and rain water harvesting. Apart from these alternative
water sources, arsenic can also be removed from water by
various treatments. For example, solar oxidation of arsenic
kept in transparent bottles effectively reduce the arsenic load
by increased oxidation from As(III+) to As(V+). The common
rural practice of storing water for longer period of time
in clear container reduces the arsenic concentration through
sedimentation (Figure 4). Another effective way to remove
arsenic is through coprecipitation and adsorption processes after
reduction of As(III+) to As(V+) by bleaching powder (chlorine) or
potassium permanganate. Aluminum alum, Al2(SO4)3.18H2O,
ferric chloride, FeCl3, and ferric sulfate, Fe2(SO4)3.7H2O, are
some of the commonly used coagulants. This technology can be
used in our daily households with some simple adaptations—
popularly known as Bucket Treatment Unit (BTU) (Wilsonweb,
Water supply options2). Additionally, various sorptive media
columns with activated alumina, iron-coated sand, granular
ferric hydroxide, etc. are commercially available. The most
efficient way to remove arsenic is the use ofmembrane techniques
like reverse osmosis, nano filtration, and electrodialysis, but these
are highly expensive for mass scale installation.

Adaptation of Cooking and Irrigation
Practices
Rice being the staple food for billions of people, it significantly
contributes more arsenic than any other food source (16, 117).
Irrigation with arsenic-contaminated groundwater poses another
major threat to public health through food-chain contamination.

2http://wilsonweb.physics.harvard.edu/arsenic/conferences/Feroze_Ahmed/

Sec_3.htm (accessed February 20, 2019).
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FIGURE 4 | Sustainable solution strategies to combat arsenic toxicity.

Conventional irrigation system in flooded paddies increases the
arsenic uptake further (117). Recent studies have ascertained that
the adaptation of different agronomic techniques can effectively
reduce bioaccumulation in rice grains (118). For example, rice
grown aerobically significantly has low arsenic accumulation
compared to those grown in flooded condition (119). Again,
another study reported the reduction in the total As during
Sprinkler irrigation compared to traditional flooding (120). Few
adaptations in cooking method can effectively lessen levels of
arsenic within the grains. For example, a significant decrease was
observed by thoroughly rinsing and then cooking the grains in
an excessive amount of water, thereby increasing the percolation
rate as arsenic is “mobile” in liquid water (117). A study in
West Bengal showed that the traditional cooking method is
most effective in lowering the concentration and the atab rice
type with the lowest arsenic content (121). A recent review
has discussed the possibility of genetically modified rice that
would accumulate less arsenic within the rice grains (122). Very
recently, rice varieties have been screened and developed that
accumulate lesser arsenic, as consumption of arsenic-containing

rice has been reported to cause genetic damage in humans (123–
126). A recent review has discussed the possibility of genetically
modified rice that would accumulate less arsenic within the rice
grains (122).

Effects of Microbial Interactions
Microbiological interactions are crucial for the mobilization of
arsenic into the aqueous phase leading to arsenicosis (127).
Several arsenate-resistant microbes (ARMs) reduce As(V) to
As(III) to thrive on the extreme conditions with high arsenic
exposure. Recently, scientists have isolated a microorganism,
which uses arsenic to “breathe,” from Searles Lake with extremely
unfavorable conditions (10 times saltier and 70 times more
caustic, alkaline, pH 9.8) and loaded with toxic arsenic (∼300
mg/L total arsenic) (Toxic Substances Hydrology Program, The
U.S. Geological Survey3). These organisms could be used as
a way of arsenic removal from water. Later, the applicability
of the study remains undetermined (128). Water-usage switch

3https://toxics.usgs.gov/ (accessed February 20, 2019).
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from surface to groundwater to reduce the risk of microbial
contamination increased the risk of arsenic contamination. Two
rod-shaped Gram-positive bacteria was reported to remove
51.45 and 51.99% of arsenite and 53.29 and 50.37% of
arsenate, respectively, from arsenic-containing culture media
isolated from Purbasthali block of Burdwan, West Bengal,
India (129).

Dietary Supplementations
Studies have found that administering dietary supplements like
vitamin C, different spectra of medicinal plants, drugs, etc.
have reduced the effects of arsenic toxicity, although such
observations have not been reported or worked out in humans
(130–132). Vitamin C or ascorbic acid is a good antioxidant,
which explains the reduction in oxidative stress created by
arsenic-induced generation of reactive oxygen species (ROS) and
in turn ameliorates the ill effects of arsenic within the body.
Activation of antioxidative defense system within the body may
be better and quicker. Nrf2 pathway is one of the prime pathways
for the activation of antioxidant enzymes in the body (133–135).
Research has shown that tea polyphenol brings about systemic
activation of the Nrf2 pathway (136–138). We discussed in
earlier sections that arsenic exposure depletes the methylation
pool within the system. Studies suggest that administration of
SAM reverses and/or reduces the degree of arsenic-induced
DNA damage and anomalies in vitro (126, 139). Hence, a
concoction of dietary supplements and reduction in arsenic
intake can lead to better lives of the population affected by arsenic
(Figure 4).

DISCUSSION

Interindividual susceptibility plays a key role in arsenic toxicity,
which is already evident from the multiple research outcomes.
Other than the variation in arsenic biotransformation, host-
specific genetic make-up, and epigenetic regulation, an array
of other environmental and physiological factors including
nutritional status, lifestyle, effect of any other inherited or
sporadic disease stage, and coexposure toward other heavy
metals may regulate the extent of arsenic-induced skin lesion.
Differential rate of arsenic methylation has been reported in
many studies, where primarily a correlative outcome suggests
that a higher primary methylation index is related to risk of
skin lesion (Reduction in Arsenic at Source, Table 1). However,
the complex mechanism of biotransformation behind skin
lesion manifestation still remains elusive. Association studies
on SNP and arsenic exposure in different populations have
identified risk variants for developing skin lesion, several types
of cancer, and other adverse diseases (Adaptation of Cooking and
Irrigation Practices, Supplementary Table 2). However, there is
inconsistency in the results because of population from different
geographic areas, ethnicity, source of exposure, sample size,
etc. Some studies are also limited on a single population
and thus needed further validation [Supplementary Table 2,
e.g., arsenic-metabolism-related genes PEMT and DHFR SNPs
were validated only in Bangladesh population (140); similarly
CBS SNP was analyzed only in Argentina population by

(19, 78); in case of DNMTs, Adiponectin, and INPP5A genes
single reports were found to date by Seow et al. (140–142),
respectively]. The role of epigenetic modification to explain
differential susceptibility is one of the most recent advances
in arsenic research, having an interesting future prospect in
the development of epitherapeutics. Besides the arsenic-related
health effects, there are several other problems among the
exposed population living in the arsenic-affected countries like
India and Bangladesh, such as socioeconomic status, orthodox
beliefs and stigma, lack of awareness, and poor maintenance
of infrastructure. One of the best ways to counter arsenic-
induced health problems is the intake of a protein-rich diet, as
study showed that low intake of protein, choline, or methionine
can reduce arsenic metabolism and excretion through urine.
With a very low income, such a diet is not possible by the
majority of the exposed population, leading to an ever-increasing
number of susceptible individuals. It is suggested that citrus-
based fruits with loads of ascorbic acid can also help in countering
such a toxic effect (143, 144). Furthermore, different social
stigma, superstitions, and prejudices about the skin symptoms
further worsen the situation. In our own studies (38, 93, 116),
while performing random sampling in such affected areas, we
have faced discontent and discomfort among individuals and
family members to acknowledge the fact of skin lesions like
skin darkening, black spots, nodules, gangrene, and cancer
in limbs, which causes social isolation of the victims. This
stigma makes it difficult for our onboard dermatologists to
determine whether an individual’s dermatological lesion is due to
arsenic or something else. While the public health communities
and individual research organizations attempted to reach these
populations, they refuse to interact with them, as no direct
benefit could be offered toward them. Though years of research
have been done, clinical implementation remained unsuccessful
due to lack of risk–benefit analysis. Large population size is
another major hindrance to implement any preventive measure
like potable water supply to population at risk. Till now,
no comprehensive therapeutic strategy has been tested. The
natural means includes reduction in arsenic load in the drinking
water, consuming protein-rich diet; ascorbates and polyphenols
contained in regular beverages like tea seem to be the likely
source of relief. In many parts of India and Bangladesh, the
rural population fails to avail of arsenic-free water or high-
protein diet due to lack of knowledge, financial restraints, and
poor government infrastructure, and, on top of that, social
taboo has kept the situation worse. Governments of developing
countries cannot support the huge financial burden to set up
arsenic-free deep tube wells or to distribute the arsenic removal
domestic filter at individual scale. Even though, in few areas,
arsenic filtration units have been installed, the durability of these
units is less due to lack of filter replacement, poor monitoring,
and delayed implementation. Therefore, the combating strategy
is preferred to be bottom–up approach, where people will be
aware of alternative and safe water sources along with suggested
modification in cooking and irrigation practice (Figure 1). A
comprehensive plan of action needs to be implemented, which
should be disseminated among the affected people through
awareness sessions.
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CONCLUSION

The problem of arsenic poising is intertwined with several other
factors like social beliefs, geological risk factors, poverty, and
lack of awareness apart from its associated health risks that
further worsen the scenario. Arsenic-induced dermatological
anomalies often causes social isolation of affected individuals
due to beliefs that arsenic poisoning is a “curse” or may be
“contagious” in nature. Researches across the globe are trying
to develop a sustainable solution, which is still missing. A
holistic multidisciplinary approach is needed to combat with
the menace. A lot of data have been generated, and several
aspects have been explored. Research is now focused more on
mechanistic detailing of individual risk of toxicity and developing
strategies to counter arsenic toxicity both at the molecular
and environmental perspectives. It needs a conjoint/consensus
and a multidisciplinary approach to counter this environmental
menace, a slow killer and showing an ever-increasing presence
over the years.
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