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Untargeted Nuclear Magnetic Resonance (NMR) metabolomics of polar

extracts from the pancreata of a caerulin-induced mouse model of

pancreatitis (Pt) and of a transgenic mouse model of pancreatic cancer

(PCa) were used to find metabolic markers of Pt and to characterize the

metabolic changes accompanying PCa progression. Using multivariate

analysis a 10-metabolite metabolic signature specific to Pt tissue was found

to distinguish the benign condition from both normal tissue and precancerous

tissue (low grade pancreatic intraepithelial neoplasia, PanIN, lesions). The mice

pancreata showed significant changes in the progression from normal tissue,

through low-grade and high-grade PanIN lesions to pancreatic ductal

adenocarcinoma (PDA). These included increased lactate production, amino

acid changes consistent with enhanced anaplerosis, decreased concentrations

of intermediates in membrane biosynthesis (phosphocholine and

phosphoethanolamine) and decreased glycosylated uridine phosphates,

reflecting activation of the hexosamine biosynthesis pathway and protein

glycosylation.
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Introduction

Pancreatic cancer (PCa) is the fourth leading cause of cancer-related deaths, with a 5-

year survival rate of 5–6% (Siegel et al., 2011; Siegel et al., 2013), with over 80% of patients

found to be ineligible for curative surgical treatment at the time of diagnosis (Ahlgren,

1996). Metabolomics or metabolic profiling of biological samples has emerged in recent

years as a strategy for detecting aberrant metabolic behavior associated with cancer, and

other diseases, with the possibility of revealing potential metabolic biomarkers to aid

diagnosis and therapy follow-up (Madsen et al., 2010; Mamas et al., 2011; Emwas et al.,

2013; Duarte et al., 2014; Wishart, 2016). The most common use of metabolomics is in the

analysis of biofluids, either by Nuclear Magnetic Resonance (NMR) spectroscopy or mass
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spectrometry (MS)-based methods and, in the case of PCa, the

subject has been reviewed recently (Turanli et al., 2021). Most

metabolomic studies of PCa have addressed human serum/

plasma and urine samples, with fewer reports on human

saliva and pancreatic tissue extracts (Kaur et al., 2012; Di

Gangi et al., 2014; Nguyen et al., 2015; Doug and Qingyue,

2017; Lindahl et al., 2017; Mayerle et al., 2018). Studies in animal

models have considered either biofluids or pancreatic tissue,

having focused on issues such as differentiating pancreatic

ductal adenocarcinoma (PDA) from pancreatitis (Pt) or non-

cancerous tissues (Fang et al., 2007; Yabushita et al., 2013;

Nguyen et al., 2015), evaluating the effects of radiotherapy on

tumor metabolite profile (He et al., 2013), comparing the

metabolic characteristics of different xenograft models (Zhan

et al., 2017), and seeking metabolic markers of PCa-induced

wasting (Wyart et al., 2018) or of early pancreatic intraepithelial

neoplasia (PanIN) and PCa progression (Fendrich et al., 2011;

Wen et al., 2016; Schmahl et al., 2018). Genetically engineered

mouse models of PCa, which recapitulate many aspects of the

human disease, have been investigated for the metabolic changes

that occur in pancreatic tissue during the progression of

precursor lesions to PCa (Fendrich et al., 2011; Serrao et al.,

2016; Schmahl et al., 2018; Vernucci et al., 2019). Positron

emission tomography (PET) studies showed elevated glucose

metabolism in precursor lesions in a mutant Kras model

(Fendrich et al., 2011) and dynamic nuclear polarization

(DNP) (Ardenkjaer-Larsen et al., 2003) enabled 13C magnetic

resonance spectroscopic imaging measurements of

hyperpolarized [1–13C]pyruvate metabolism showed increased

lactate-labeling with disease progression (Serrao et al., 2016;

Dutta et al., 2019). NMR profiling of pancreatic tissue in this

mutant Kras model (Schmahl et al., 2018) showed increased

levels of tyrosine, taurine, glucose and a number of unassigned

resonances in the pancreas of 15-month old mice, where PanIN

tissue was found to predominate. A recent comprehensive LC-

MS/MS report evaluated intermediates in glycolysis, the pentose-

phosphate-pathway (PPP), tricarboxylic acid (TCA) cycle,

purine and pyrimidine metabolism, urea cycle and amino acid

metabolism in an equivalent Kras mouse model in order to

characterize metabolic changes taking place during PCa

progression (Vernucci et al., 2019). This showed significant

upregulation of glycolysis and PPP metabolites from the early

stages of disease. Here we investigated whether untargeted NMR

metabolomics could differentiate acute Pt from normal healthy

tissue and early precancerous tissue, as well as determining the

metabolic changes that accompany disease progression in the

LSL-KrasG12D/+-p48Cre/+ (KC) mouse model of PCa. The

metabolic signature found to describe pancreatic tissue

affected by Pt, when corrected for the cellularity differences

between Pt and normal and low-grade (LG) lesions groups,

has the potential to aid in the diagnosis of acute Pt. The

different stages of PCa progression were characterized from

predominantly LG lesions (mPanIN 1 and 1A), through high

grade (HG) lesions (mPanIN 2 and 3) to PDA, in order to build

on previously proposed metabolic markers of disease

progression.

Materials and methods

Animal model

Animal experiments complied with licenses issued under

the Animals (Scientific Procedures) Act of 1986. Protocols were

approved by the Cancer Research UK, Cambridge Institute

Animal Welfare and Ethical Review Body. Table 1 lists the

characteristics of the wild type (wt, C57BL/6) and genetically

engineered mouse groups studied. Detailed descriptions may be

found elsewhere (Olive et al., 2009; Serrao et al., 2016). Briefly,

the control group (N, normal tissue, n = 7) comprised animals

that did not develop lesions or tumors (C57BL/6 wt mice); the

pancreatitis group (Pt, n = 6) comprised C57BL/6 wt mice in

which acute pancreatitis was induced by six hourly

intraperitoneal 50 μg/kg caerulein (Sigma-Aldrich, Dorset,

United Kingdom) injections (Sakai et al., 2012; Serrao et al.,

2016); the low grade lesion group (LG, n = 5) comprised 4-

month old KC (LSL-KrasG12D/+ - p48Cre/+) mice with

predominant LG PanIN lesions (mPanIN 1 and 1A); the

TABLE 1 Characterization of mice groups studied, including corresponding sample numbers (n), strain, age and average number of pancreatic cells.

Condition designation n Mice strain Mice age/months Average cell numbers (relative error)a

Control N 7 C57BL/6 (WT) 1.5–2 1761 (19%)

Pancreatitis Pt 6 C57BL/6 (WT)b 1.5–2 4454 (8%)

Low-grade PanIN lesions LG 5 LSL-KrasG12D/+ - p48Cre/+ 2–4 2794 (19%)

High-grade PanIN lesions HG 7 9 2422 (7%)

Pancreatic ductal adenocarcinoma PDA 6 LSL-KrasG12/D+ 3–6 2318 (29%)

LSL-Tpr53R172H/+Sarcomatoid carcinoma Sarc 9 2958 (19%)

Pdx-1-Cre

aAverage cell numbers counted microscopically on sets of representative samples of each group.
bMice injected with six hourly intraperitoneal injections with 50 μg/kg (mouse weight) of caerulein (Sigma-Aldrich, Dorset, United Kingdom) to induce pancreatitis.
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high grade lesion group (HG, n = 7) comprised 9-month old KC

mice with predominant HG PanIN lesions (mPanIN 2 and 3);

the spontaneous pancreatic ductal adenocarcinoma (PDA, n =

6) and sarcomatoid (Sarc., n = 9) groups corresponded to

3–6 months old KPC (LSL-KrasG12/D+;LSL-Tpr53R172H/+;Pdx-

1-Cre) mice (Serrao et al., 2016). Tumors were studied when

they were less than 5 mm in diameter.

Metabolite extraction and NMR
spectroscopy

Mice were sacrificed by cervical dislocation and pancreatic

tissue rapidly (within a maximum of 35 s) excised and freeze-

clamped using liquid nitrogen-cooled tongs. Tissues (weights in

the 60–120 mg range) were homogenized (ca. 200 mg/ml) in

FIGURE 1
Average 600 MHz 1H NMR spectra of pancreatic polar extracts of (A) normal tissue (N), (B) tissue affected by induced acute pancreatitis (Pt) and
(C) tissue bearing low-grade PanIN 1/1A lesions (LG). Main assignments: 1, isoleucine; 2, valine; 3, 3-hydroxybutyrate (3-HBA); 4, 3-
hydroxyisovalerate (3-HIVA); 5, threonine; 6, lactate; 7, alanine; 8, lysine; 9, acetate; 10, proline; 11, glutamine; 12, glutamate; 13, succinate; 14,
aspartate; 15, creatine; 16, creatinine; 17, choline; 18, phosphocholine (PC); 19, glycerophosphocholine (GPC); 20, methanol; 21, glycine; 22,
phosphoethanolamine (PE); 23, uridine; 24, ascorbate; 25, glucose; 26, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc); 27, uridine
diphosphate (UDP); 28, uridine triphosphate (UTP); 29, adenosine monophosphate (AMP); 30, adenosine triphosphate (ATP); 31, fumarate: 32,
tyrosine; 33, histidine; 34, UDP-glucose or glucuronate (UDP-Glc/GlcA); 35, uridine monophosphate (UMP); 36, adenosine diphosphate (ADP); 37,
formate; 38, niacinamide (NAM); 39, nicotinamide adenine dinucleotide (NAD+). Arrows show visual spectral changes in Pt (middle spectrum) and in
LG lesions (bottom spectrum), compared to normal tissue (top spectrum). p: cut-off water region.
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50 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic

acid), 1 mM EDTA (ethylenediaminetetraacetic acid), 0.7%

sodium deoxy-cholate, 1% Nonidet P-40, 0.5 M lithium

chloride, pH 7.6, using a Precellys 24 homogeniser (Stretton

Scientific, Stretton, United Kingdom) and then extracted in

methanol:chloroform:water (Wu et al., 2008). High-resolution
1H NMR spectra were obtained at 14.1 T (25°C, pH 7.2) on a

Bruker 600 MHz NMR spectrometer (Bruker, Ettlingen,

Germany). The zgpr pulse sequence (Bruker library) was used

with the following acquisition conditions: 90° pulse; 7.3 kHz

spectral width; 4.5 s acquisition time; 32 k data points;

64 transients; and 12.5 s recycling time. Free induction decays

were zero-filled to 64 k and multiplied by a 0.3 Hz exponential

function prior to Fourier transformation. Proton chemical shifts

were referenced to 5 mM 3-(trimethylsilyl)-2,2′,3,3′-
tetradeuteropropionic acid (TSP; 0.0 ppm) added to the

samples. Although total inter-scan times (17 s) enabled

quantitative spectra to be obtained, the TSP intensity varied

considerably between some of the spectra (perhaps due to

intermolecular interactions), thus hindering absolute

quantitation. Therefore, only relative metabolite contents were

evaluated. Peak assignments were made by reference to the

literature, to spectral databases (Bruker

BBIOREFCODE2 database and the human metabolome

database - HMDB (Wishart et al., 2018) and by using 2D

NMR spectra (Total Correlation Spectroscopy-TOCSY,

Heteronuclear Single Quantum Coherence- HSQC and

J-resolved) recorded for selected samples.

Statistical analysis

Multivariate analysis was applied to the spectra, excluding

the water region (δ 4.7–5.0). 1D spectra were aligned using

FIGURE 2
PCA (left) and PLS-DA (right) scores scatter plots for 1H NMR spectra (normalized to total area) of (A) all samples: controls, ■ N (n = 7), ▲ (red)
pancreatitis, Pt (n=6),◆ (blue) LG PanIN lesions (n= 5), □ (pink) HG PanIN lesions (n= 7),▲ (green) pancreatic ductal adenocarcinoma, PDA (n=6),C
(orange) sarcomatoid carcinoma, Sarc (n = 9), and (B) Pt vs. Normal tissue, and (C) Pt vs. LG lesions tissue. Q2, predictive power of PLS-DAmodel; CR,
classification rate; sens., sensitivity; spec., specificity.
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TABLE 2 Polar pancreatic metabolites varying between pancreatitis induced-mice (Pt) and normal tissue (N) (left), and between Pt and LG PanIN lesions (LG) (right).

Metabolite δ/ppm (multiplicity)a Pt (n = 6) vs. N (n = 7) Pt (n = 6) vs. LG (n = 5)

Tissue signature Cell signature Tissue signature Cell signature

ES ± error p-value ES ± error p-value ES ± error p-value ES ± error p-value

3-HIVA 1.25 (s) — — −1.7 ± 1.3b 1.2E−3 −1.7 ± 1.4 4.3E−3 — —

ADP c 8.28 (s) 3.5 ± 1.7 2.9E−3 — — 3.3 ± 1.8b 4.3E−3 2.2 ± 1.5 4.3E−3

Alanine c 1.48 (d) −5.8 ± 2.5b 3.9E−5 −5.3 ± 2.3 2.4E−5 −2.1 ± 1.5b,d 4.0E−2 −1.8 ± 1.4d 3.2E−2

AMP c 8.60 (s) −4.5 ± 2.1b 1.1E−5 −4.9 ± 2.2 7.5E−6 −7.4 ± 3.3b 2.1E−6 −3.2 ± 1.8 5.1E−3

ATP c 6.14 (d) 5.2 ± 2.3 2.5E−5 — — 6.2 ± 2.9b 5.9E−6 1.7 ± 1.4d 3.1E−2

Creatine 3.04(s) −4.4 ± 2.0b 1.7E−4 −3.7 ± 1.8 3.1E−4 — — — —

Creatinine 3.05 (s) — — −2.1 ± 1.4b 4.6E−3 4.0 ± 2.0 4.3E−3 — —

Formate c 8.46 (s) −3.8 ± 1.8 1.2E−3 −6.6 ± 2.8 5.7E−7 −4.3 ± 2.1b 4.3E−3 −2.4 ± 1.6d 8.8E−3

Fumarate 6.52 (s) −1.7 ± 1.3b 1.5E−2 −3.8 ± 1.8 1.3E−4 — — −2.3 ± 1.5d 3.1E−2

Glucose 5.23 (d) 2.2 ± 1.3 2.2E−3 — — — — −1.9 ± 1.4d 4.9E−2

Glutamate 2.35 (m) 5.1 ± 2.3 7.2E−6 −1.6 ± 1.2d 4.8E−2 — — — —

Glutamine 2.45 (m) — — −2.5 ± 1.5b 3.6E−3 3.2 ± 1.8 1.2E−3 — —

GPC c 3.23 (s) −1.4 ± 1.2b,d 4.3E−2 −2.7 ± 1.5 1.0E−3 −2.0 ± 1.5b,d 4.6E−2 −2.0 ± 1.4d 2.1E−2

GSH c 4.57 (m) 9.5 ± 3.8 1.2E−3 — — 12 ± 5.3 4.3E−3 1.7 ± 1.4d 3.1E−2

Histidine 7.08 (s) −2.7 ± 1.5b 9.2E−4 −4.9 ± 2.2 9.0E−5 — — — —

Lactate 1.33 (d) — — −2.0 ± 1.3b 9.3E−3 −2.7 ± 1.7b 1.8E−2 −2.2 ± 1.5d 2.8E−2

Leucine 0.96 (t) — — −1.7 ± 1.3b 1.8E−2 1.9 ± 1.4 1.9E−2 — —

NAD+ 9.34 (s) — — −1.7 ± 1.3b 1.7E−2 2.0 ± 1.4d 3.9E−2 — —

Niacinamide c 8.94 (d) −2.9 ± 1.6b 7.6E−4 −3.2 ± 1.7 5.1E−4 −3.5 ± 1.9b 3.6E−3 −2.2 ± 1.5d 3.1E−2

PC 3.22(s),4.17 (m) −2.3 ± 1.4b 2.8E−3 −3.6 ± 1.8 1.0E−4 3.8 ± 2.0 1.7E−3 — —

Phenylacetate c 7.26 (t) 3.4 ± 1.7 2.9E−3 — — 2.0 ± 1.5d 2.9E−2 — —

Phenylalanine 7.42 (t) 4.0 ± 1.9 4.4E−5 — — — — — —

Succinate 2.41 (s) — — −2.5 ± 1.4b 1.9E−3 −2.2 ± 1.5d 2.9E−2 — —

Taurine 3.26 (t) 2.8 ± 1.5 1.2E−3 — — — — — —

TMAO c 3.27 (s) −2.0 ± 1.3b 8.6E−3 −4.0 ± 1.9 4.6E−5 −1.6 ± 1.4 4.3E−3 — —

Tyrosine 7.20 (d) −3.4 ± 1.7b 3.7E−4 −3.5 ± 1.7 1.7E−4 — — — —

UDP-Glc/GlcA 7.95 (d) — — −2.7 ± 1.5b 1.5E−3 4.1 ± 2.1 7.4E−4 — —

UDP-GlcNAc 5.52 (dd) −3.3 ± 1.7b 6.2E−4 −4.8 ± 2.1 1.8E−5 — — — —

UMP c 8.10 (d) −2.1 ± 1.4b 4.5E−4 −3.9 ± 1.8 6.8E−5 −3.3 ± 1.8b 3.0E−3 −1.9 ± 1.4d 2.9E−2

Valine 1.05 (d) −2.0 ± 1.3b 5.9E−3 −3.7 ± 1.8 5.7E−5 — — — —

(Continued on following page)
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TABLE 2 (Continued) Polar pancreatic metabolites varying between pancreatitis induced-mice (Pt) and normal tissue (N) (left), and between Pt and LG PanIN lesions (LG) (right).

Metabolite δ/ppm (multiplicity)a Pt (n = 6) vs. N (n = 7) Pt (n = 6) vs. LG (n = 5)

Tissue signature Cell signature Tissue signature Cell signature

ES ± error p-value ES ± error p-value ES ± error p-value ES ± error p-value

Unassigned resonances

U1 δ1.58 1.58 (d) −1.7 ± 1.3b 2.2E−2 −2.1 ± 1.4 1.2E−3 — — — —

U2 δ2.08 2.08 (s) −2.4 ± 1.4b 4.0E−3 −3.2 ± 1.7 2.1E−4 — — — —

U3 δ2.68 2.68 (t) 3.3 ± 1.7d 1.9E−4 — — — — — —

U4 δ5.16 (saccharide) c 5.16 (d) 10.4 ± 4.1 4.8E−9 — — 13 ± 5.6b 4.3E−3 2.2 ± 1.5 1.3E−7

U5 δ 5.56 5.56 (dd) — — −4.2 ± 1.9d 6.5E−5 — — — —

U6 δ5.70 c 5.70 (s) 3.1 ± 1.6 1.3E−3 — — 3.8 ± 2.0b 9.5E−4 3.8 ± 2.0 9.5E−4

U7 δ6.03 c 6.03 (d) 1.6 ± 1.3 2.5E−2 — — 7.1 ± 3.2 5.3E−4 — —

U8 δ6.80 6.80 (s) −1.6 ± 1.2b 2.5E−2 −1.6 ± 1.2 2.9E−2 3.5 ± 1.9b 6.7E−3 −3.1 ± 1.8 4.3E−3

U9 δ 7.49 7.49 (t) — — −3.0 ± 1.6d 1.3E−3 −3.7 ± 2.0d 4.8E−4 −2.4 ± 1.6 1.6E−2

U10 δ8.21 c 8.21 (s) −1.7 ± 1.3b 2.1E−2 −2.8 ± 1.5 1.3E−3 −2.4 ± 1.6d 3.1E−2 — —

Effect sizes (ES) were calculated using normalization to total area (Tissue metabolic signature) and to average cell numbers (Cell metabolic signature). Only variations with ES higher than the error and p-value < 0.05 are shown.
aChemical shifts of integrated peaks, within each spin system.
bVariation maintained (in direction and approximate magnitude, considering the ES error) or becoming detectable in cell signature, thus proposed to reflect cellular deviant metabolism.
cMetabolites comprised in the proposed Pt-specific metabolic signature (also underlined); s, singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet; 3-HIVA, 3-hydroxyisovalerate; ADP, adenosine diphosphate; AMP, adenosine monophosphate;

ATP, adenosine triphosphate; GPC, glycerophosphocholine; GSH, glutathione (reduced); NAD+, nicotinamide adenine dinucleotide (oxidized); PC, phosphocholine; TMAO, trimethylamine N-oxide; UDP-Glc/GlcA, uridine diphosphate glucose/

glucoronate; UDP-GlcNAc, uridine diphosphate-N-acetylglucosamine; UMP, uridine monophosphate; Ui, unassigned resonance.
dp-value > 0.05 after FDR correction.
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recursive segment-wise peak alignment (RSPA) and normalized

either using spectral total area (to measure Tissue metabolic

signatures), or using average cell counts obtained by visual

analysis of the microscopic records of paraffin-fixed samples

representative of each animal group (to measure Cellular

metabolic signatures) (Table 1). Principal component analysis

(PCA) and partial least squares discriminant analysis (PLS-DA)

were performed upon unit variance (UV) scaling of the spectra

(SIMCA-P 11.5; Umetrics, Umeå, Sweden). PCA and PLS-DA

loadings were back-transformed by multiplying each variable

by its standard deviation and colored according to each

variable’s importance to projection (VIP) (Matlab 8.3.0, The

MathWorks Inc.). For PLS-DA models, Monte Carlo cross-

validation (MCCV) (7 blocks, 500 runs) was carried out with

recovery of Q2 values (predictive power) and confusion

matrices, providing classification rates (CR), specificity and

sensitivity. For each model of interest, the relevant peaks

identified in loadings profiles were integrated (Amix 3.9.5,

Bruker BioSpin, Rheinstetten, Germany), normalized, and

variations assessed by univariate analysis (Shapiro-Wilk test

to assess data was normality, Student’s t or Wilcoxon tests for

normally or non-normally distributed data, respectively;

R-statistical software). Effect sizes and statistical significance

(p < 0.05) were calculated for the relevant metabolites and false

discovery rate (FDR) correction, based on the Benjamini and

Hochberg method to adjust p-values for multiple comparisons

(Benjamini and Hochberg, 1995; Berben et al., 2012). In some

cases, statistical total correlation spectroscopy (STOCSY) was

performed (Matlab 8.3.0) to aid peak assignment previously

attempted by 1D/2D NMR, as described in the previous section

(Cloarec et al., 2005).

Results

Metabolic profiling of pancreatitis
compared to healthy pancreas and
pancreas bearing low-grade (LG) PanIN
lesions

The average 1H NMR spectra (sum of all spectra divided by

the number of spectra) of pancreatic extracts from control

C57BL/6 (WT) mice (N), wild-type animals with induced Pt

(Pt) and KCmice with PanIN 1 and 1A lesions (LG) are shown in

Figure 1. The complete list of identified metabolites in all samples

may be found in Supplementary Table S1. The arrows in Figure 1

indicate some differences between Pt tissue or LG lesions

(Figures 1B,C) compared to normal tissue (Figure 1A). As

mouse ages were similar between N, Pt and LG groups

(Table 1), age effects on metabolism are not expected to be a

confounder in the comparison of these groups. Unsupervised

multivariate analysis using PCA of the 1H NMR spectra of

pancreatic extracts (after normalization to total spectral area)

obtained for all animal groups (N, Pt, LG, HG, PDA and

sarcomatoid) (Figure 2A, left) could distinguish mice with

induced Pt from the remaining groups, while supervised PLS-

DA analysis (Figure 2A, right) improved the separation between

Pt, N and LG. The LG group partially overlapped with HG, PDA

and Sarc groups, which clustered together. Despite the small

number of samples, pairwise PCA and PLS-DA (and subsequent

model validation by MCCV, Supplementary Table S2) confirmed

the statistically robust distinction of Pt tissue from normal tissue

(Figure 2B; Q2 = 0.97, Q2median = 0.67, 92% sens., 93% spec.)

and from LG tissue (Figure 2C; Q2 = 0.87, Q2median = 0.79, 100%

FIGURE 3
Variations in 10metabolites distinguishing Pt tissue from bothN and LG tissues (GPC variations are left out as they become non-significant upon
FDR correction, d in Table 2), represented as normalized peak integrals, either in relation to total spectra area (TA) (Tissue signature: left axes, filled
black lines) or cellularity (Cell signature: right axes, dashed grey lines). Asterisks indicate statistical relevance of pairwise comparisons in relation to Pt
(black and grey asterisks correspond to TA and Cell. data, respectively): pp-value < 0.05, ppp-value < 0.01, pppp-value < 0.001, ppppp-value <
0.0001. Boxed metabolite names refer to those suggested to reflect intracellular metabolic variations (similar black and grey lines, for the N, Pt and
LG groups). Abbreviations as defined in caption of Figure 1 and Supplementary Table S1.
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sens., 99% spec.). PLS-DA LV1 loadings plots of Pt vs. normal

tissue (N) identified several metabolites that explain the group

separation (orange/red signals in Supplementary Figure S1A).

Analysis of these data revealed 22 identifiedmetabolites and eight

unassigned compounds that exhibited significantly different

concentrations between Pt and N tissues (p-value < 0.05)

(Table 2, Tissue signature). These differences remained

significant after FDR correction (except for

glycerophosphocholine (GPC), c in Table 2). The most

significant differences in Pt samples compared to N samples

(higher effect size and lower p-value, Table 2 and Volcano plot in

Supplementary Figure S1B) comprised higher levels of ATP,

ADP, glutamate, reduced glutathione (GSH), phenylalanine

and taurine (and unassigned resonances U4 δ 5.16 and U6 δ
5.70); and lower levels of alanine, AMP, creatine, formate,

histidine, niacinamide (NAM), tyrosine and uridine

triphosphate-N-acetylglucosamine (UDP-GlcNAc) in Pt. In

addition, Pt tissue was distinguished from LG tissue by

differences in 20 assigned metabolites (and an additional six

unassigned resonances) (Table 2 and Supplementary Figures

FIGURE 4
PCA (left) and PLS-DA (right) scores scatter plots for 1H NMR spectra (normalized to total area) of (A) N, LG, HG, PSA and Sarc. classes, (B) N vs.
LG, (C) LG vs. HG, (D) HG vs. PDA. Q2, predictive power of PLS-DA model; CR, classification rate; sens., sensitivity; spec., specificity.
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S1C,D), with 15 of the identified metabolites remaining

significantly different upon FDR correction. The differences in

alanine, GPC, NAD+, phenylacetate and succinate were not

significant, after FDR correction (c in Table 2).

For those metabolites expected to be exclusively intracellular

(ATP, ADP, GSH, AMP, UDP-GlcNAc), a correction was

necessary to account for the higher tissue cellularity that

characterized Pt tissue as shown by previous histological

analysis (Serrao et al., 2016). Hence, spectra were normalized

according to the number of cells instead of by total spectral area.

This correction was applied to all those metabolites comprising

the tissue signature and allowed an approximate assessment of

TABLE 3 Polar pancreatic metabolites varying across progression from normal pancreatic tissue (N), through LG PanIN lesions, HG PanIN lesions, to
PDA and sarcomatoid carcinoma (Sarc).

Metabolite δ/ppm
(multiplicity)a

LG (n = 5) vs. N
(n = 7)

HG (n = 7) vs. LG
(n = 5)

PDA (n = 6) vs. HG
(n = 7)

Sarc (n = 9) vs. PDA
(n = 6)

ES ± error p-value ES ± error p-value ES ± error p-value ES ± error p-value

2-Phosphoglycerate 4.43 (m) — — −1.6 ± 1.3b 2.8E−2 — — — —

3-HBA 1.20 (d) — — — — 1.5 ± 1.2b 5.0E−2 — —

3-HIBA 1.08 (d) — — — 1.4 ± 1.2b 2.2E−2 — —

3-Methylxanthine 8.03 (s) — — −2.9 ± 1.6 5.1E−3 — — — —

Alanine 1.48 (d) −4.6 ± 2.2 2.5E−5 — — 1.4 ± 1.2b 3.8E−2 — —

AMP 8.60 (s) — — −1.5 ± 1.3b 2.5E−2 — — — —

Ascorbate 4.51 (d) — — — — −1.4 ± 1.2b 4.2E−2 — —

Aspartate 2.80 (d) 3.6 ± 1.8 2.8E−3 −2.2 ± 1.5b 3.1E−2 — — — —

Creatine 3.04 (s) −3.6 ± 1.8 1.3E−4 — — — — — —

Glucose 5.23 (d) 2.3 ± 1.5b 4.1E−2 1.6 ± 1.3b 3.9E−2 −3.6 ± 1.8 2.3E−3 — —

Glutamate 2.35 (m) 5.0 ± 2.3 7.3E−4 −2.8 ± 1.6 1.9E−3 — — — —

GPC 4.33 (m) — — −1.9 ± 1.4 3.7E−2 — — — —

Histidine 7.05 (s) −2.1 ± 1.4b 3.1E−2 — — — — — —

Lactate 1.33 (d) — — — — 1.9 ± 1.3b 1.7E−2 — —

Lysine 1.70 (m) −1.8 ± 1.3 2.5E−2 — — — — — —

m-inositol 4.06 (t) 2.3 ± 1.5 2.6E−2 1.8 ± 1.4b,c 4.6E−2 — — — —

PC 4.17 (m) −4.4 ± 2.1 3.7E−4 −3.1 ± 1.7b,c 8.1E−3 — — — —

PE 3.98 (m) — — — — −2.6 ± 1.5 1.2E−3 — —

Phenylalanine 7.42 (t) 2.3 ± 1.5 2.4E−2 — — — — — —

Proline 1.99 (m) — — — — 1.8 ± 1.2d 1.4E−2 — —

Sucrosee 5.42 (d) 1.9 ± 1.4 1.8E−2 1.8 ± 1.4b 2.1E−2 — — — —

Tyrosine 7.20 (d) −3.3 ± 1.7 2.4E−4 — — — — — —

UDP-Glc/GlcA 7.95 (d) −2.9 ± 1.6 3.3E−3 −2.1 ± 1.4b 1.8E−2 — — 1.4 ± 1.2b 1.2E−2

UDP-GlcNAc 5.52 (dd) −3.6 ± 1.9 4.2E−3 — — — — — —

UMP 8.10 (d) — — −3.5 ± 1.8 1.5E−4 — — — —

Valine 1.05 (d) −2.1 ± 1.4 7.4E−3 — — — — — —

U2 δ2.08 2.08 (s) −2.3 ± 1.5 3.2E−3 — — — — — —

U3 δ2.68 2.68 (t) 3.3 ± 1.7 4.9E−4 −5.1 ± 2.3 2.3E−5 — — — —

U4 δ5.16 (saccharide) 5.16 (d) — — −2.4 ± 1.5b 1.8E−2 — — — —

U5 δ5.56 5.56 (dd) −1.9 ± 1.4 2.4E−2 — — — — — —

U9 δ7.49 7.49 (t) 4.0 ± 2.0 1.5E−4 — — — — — —

U11 δ2.59 2.59 (s) 1.8 ± 1.3 1.5E−2 — — — — — —

Effect sizes (ES) were calculated using normalization to total area (tissue metabolic signature) only, as cell numbers are broadly similar for these groups. Only variations with ES higher than

the error and p-value < 0.05 are shown. s, singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet. 3-HBA, 3-hydroxybutyrate; 3-HIBA, 3-hydroxyisobutyrate; PE,

phosphoethanolamine; other compound abbreviations as defined in Table 2 and Supplementary Table S1. Ui, unassigned resonance.
aChemical shifts of integrated peaks.
bp-value > 0.05 after FDR correction.
cMetabolite changes with possible contribution from effects of mice age according to Uchitomi et al. (2019).
dMetabolite changes with possible contribution from effects of mice age according to Seo et al. (2016).
ePossibly of a dietary origin.
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changes in their intracellular concentrations. Therefore, we

defined a Tissue metabolic signature and a Cellular metabolic

signature when comparing Pt with both N and LG samples

(Table 2). Following this correction, there was no change in

the intracellular concentrations of ATP, ADP, GSH, glucose,

phenylacetate, phenylalanine and taurine between Pt and N

samples (Cell signature in Table 2). In the Cell signature of Pt

vs. N (b in Table 2), changes remained in the concentrations of

AMP and UDP-GlcNAc and another 12 metabolites, whereas

new changes were revealed for 3-hydroxyisovalerate (3-HIVA),

creatine, glutamine, lactate, leucine, NAD+, succinate and UDP-

Glucose/Glucuronate (UDP-Glc/GlcA). A similar approach was

applied to Pt vs. LG, producing a Cell signature (Table 2) which,

upon FDR correction, comprised changes in ADP and AMP

concentrations and smaller changes in 10 other metabolites (c in

Table 2). Table 2 shows that a common set of changes in

10 metabolites (excluding GPC, which was only slightly

decreased, becoming non-significant upon FDR) characterize

Pt tissue, whether compared to the N or LG groups (d in

Table 2, under Tissue signature). This Pt tissue signature

included increased concentrations of ADP, ATP, GSH,

phenylacetate, and decreased concentrations of alanine, AMP,

formate, NAM, trimethylamine N-oxide (TMAO) and UMP

(Figure 3, black lines relating to N, Pt and LG tissue groups).

We suggest that this 10-metabolite signature may be capable of

differentiating Pt tissues from both N and LG tissues. Within the

above changes, the decreases in alanine, AMP, NAM and UMP

(boxed metabolite names in Figure 3, b in Table 2) are

independent of cellularity (note the overlap between black and

grey lines in Figure 3). The remaining changes (ADP, ATP,

formate, GSH and phenylacetate) arise, at least in part due to the

higher cell density characterizing Pt tissue, but nevertheless form

FIGURE 5
Variations in (A) amino acids and derivatives, (B) nucleotides and related compounds, and (C) organic acids across pancreatic cancer
progression, represented as normalized peak integrals in relation to total spectra area (TA). Abbreviations: 2-PG, 2-phosphoglycerate; Three-letter
code used for amino acids and other abbreviations as defined in caption of Figure 1 and Supplementary Table S1. Asterisks indicate statistical
relevance of pairwise comparisons in relation to Normal tissue (N): pp-value < 0.05, ppp-value < 0.01, pppp-value < 0.001, ppppp-value < 0.0001.
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part of the overall tissue signature. The dependence of TMAO

concentrations on tissue cellularity is unclear, as it features in the

cell signature of Pt vs. N, but not in that of the Pt vs. LG

comparison.

Metabolic profiling of pancreatic cancer
progression

Application of PCA to 1H NMR spectra obtained from N,

LG, HG, PDA and Sarc pancreatic tissue, where the signal

intensities were normalized to total spectral area, showed

some separation of N samples from the later disease stages

(Figure 4A). This was improved by PLS-DA (Figure 4B). PCA

and PLS-DA analyses of pairwise comparisons between

successive stages of the disease also showed some

separation (Figures 4B,C), although with no/low statistical

robustness for classification (as shown by MCCV results,

Supplementary Table S2), which is due mainly to the

gradual stepwise variations of most metabolites. Here, cell

numbers were similar between the groups (Table 1), so only a

Tissue Signature (total area normalization) was considered.

LG lesions were distinguished from N tissue by changes in the

concentrations of 15 identified metabolites (Table 3), with

glucose and histidine showing less significant changes (b in

Table 3). In LG tissue, robust changes when compared to N

tissue comprised decreases in alanine, creatine, lysine,

phosphocholine (PC), tyrosine, UDP-Glc/GlcA, UDP-

GlcNAc and valine, while increases were noted for

aspartate, glutamate, m-inositol, phenylalanine and sucrose.

Progression from LG to HG was characterized by significantly

decreased concentrations (in HG) of 3-methylxanthine,

glutamate and UMP, in addition to smaller changes

affecting nine other metabolites (increased glucose, and

decreased 2-phosphoglycerate, alanine, aspartate, m-

inositol, PC, sucrose and UDP-Glc/GlcA (Table 3). PDA

samples were distinguished from HG by significant

decreases in glucose and phosphoethanolamine (PE) and an

increase in proline concentration, together with smaller

increases in 3-hydroxybutyrate (3-HBA), 3-

hydroxyisobutyrate (3-HIBA), alanine and lactate, and a

small decrease in ascorbate concentration. Regarding the

comparison between PDA and Sarc samples, only a small

relative increase in UDP-Glc/GlcA was observed in the Sarc

samples. However, in assessing disease progression mouse

ages differed, particularly for the HG (9 months) and PDA

(3–6 months) groups, compared to the remaining groups

(1.5–4 months). Mouse aging over considerably longer

periods has been reported to impact the metabolite profile

of skeletal muscle up to 28 months (Uchitomi et al., 2019), and

that of plasma over 18 months (Seo et al., 2016). Considering

those metabolites that have been reported to be age-

dependent, and despite the large age differences compared

with the mice studied here, the levels of m-inositol, PC and

proline (for the PDA and HG groups) may potentially include

contributions due to mouse aging (c,d in Table 3).

The individual metabolites (Figures 5, 6) showed gradual

changes in concentration with disease progression (N-LG-HG-

PDA/Sarc). These changes included a decrease in alanine

concentration from N to LG, followed by an increasing

FIGURE 6
Variations in (A) phospholipids precursors and (B) other compounds across pancreatic cancer progression, represented as normalized peak
integrals in relation to total spectra area (TA). Abbreviations as defined in caption of Figure 1 and Supplementary Table S1. Asterisks indicate statistical
relevance of pairwise comparisons in relation to Normal tissue (N): pp-value < 0.05, ppp-value < 0.01, pppp-value < 0.001, ppppp-value < 0.0001.
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concentration that differentiates PDA from HG, and increases in

lactate concentration with disease progression, particularly from

HG to PDA (Table 3 and Figure 5). These are changes that have

been observed previously in this disease model (Serrao et al.,

2016). The metabolite concentration changes that can potentially

differentiate cancer stages LG and PDA include: 1) alanine, lysine

and valine (increasing); and tyrosine, glutamate and aspartate

(decreasing) (Figure 5A); 2) nucleotides and glycosylated UDP

derivatives (decreasing) (Figure 5B); 3) lactate and the ketone

body 3-HBA (increasing) (Figure 5C); and 4) membrane

precursors PC, PE and to a lesser extent, GPC (decreasing)

(Figure 6A). Glucose levels suggest an increasing

concentration up to LG, followed by a marked decrease

between HG and PDA (Figure 6B).

Discussion

Metabolic signature of induced acute Pt

Previous metabolomic studies in animal models of Pt have

mostly characterized the metabolic changes associated with Pt,

when compared to healthy controls (Peng et al., 2021) or to

established PCa (Mehta et al., 2017). An early study showed

increased lipid content and decreased PC and GPC levels in PDA,

compared to chronic Pt (Fang et al., 2007). Studies of progressive

chronic Pt in swine (Sun et al., 2014) and rat (Tian et al., 2015)

models showed gradual decreases in PC, GPC, betaine and

glycine in the swine model, and changes in aspartate, betaine

and lipids, which in the rat model correlated with the degree of

fibrosis and/or inflammatory cell infiltration. GC-MS profiling of

tissue extracts and serum (Sakai et al., 2012) in mice with acute

induced Pt showed significant changes in tricarboxylic acid

(TCA) cycle intermediates, glutamate and O-

phosphoethanolamine, whereas serum profiling using Ultra

Performance Liquid Chromatography (UPLC)-MS suggested

that a 19-metabolite signature could distinguish animals with

acute Pt from controls (Guo et al., 2019). Recent studies in

human subjects have also reported potential blood markers that

could distinguish chronic pancreatitis from PDA (Lindahl et al.,

2017; Mayerle et al., 2018). Regarding caerulein-induced acute Pt,

this work complements a recent targeted UPLC-MS/MS

metabolomics study of the same animal model (in tandem

with proteomics), which aimed to characterize the changes in

the methionine cycle and transsulfuration pathway, which are

believed to become dysregulated due to the inflammatory process

accompanying acute Pt (Rius-Pérez et al., 2020). Here, we report

a full metabolic signature of the pancreata of mice affected by

induced acute Pt and compare it to both normal tissue and

precancerous tissue, in search of a specific metabolic signature

that may potentially be used as a clinical marker of Pt.

Our data has shown that account should be taken of the

relatively higher cellularity of Pt tissue, before results may be

interpreted as due to changes in intracellular concentrations.

This was the case for ATP, ADP, GSH, glucose, phenylacetate,

phenylalanine and taurine, the levels of which were elevated

compared to normal tissue, which may be due to the higher cell

density in Pt tissue. Independently of cellularity, we have found a

22-metabolite signature of Pt that, compared to N tissue,

comprised decreases in the amino acids alanine, glutamate,

glutamine, histidine, and tyrosine, which have been reported

previously as being related to their anaplerotic role in increasing

TCA cycle activity to meet the increased energy demand in Pt

tissue (Sakai et al., 2012). We observed additional decreases in

leucine and valine, which were reported previously to change

between acute and chronic Pt (Ma et al., 2012) and which are also

consistent with an anaplerotic role. Enhanced TCA cycle activity

is further supported by decreased levels of TCA cycle

intermediates succinate and fumarate in Pt tissue, in broad

agreement with previous reports indicating increases and

decreases of TCA cycle intermediates at the beginning and

end of the cycle, respectively (Sakai et al., 2012). Variations in

creatine and creatinine may also be indicative of a disturbance in

energy metabolism, although creatinine is also considered as a

marker of pancreatic necrosis in acute Pt (Lankisch et al., 2010).

The decreases in membrane biosynthetic precursors (GPC, PC

and PE) agree, in part, with lower GPC and/or PC levels reported

for progressive chronic Pt in pigs (Sun et al., 2014) but appear to

contradict increased choline compounds observed in Wistar rats

affected by either acute or chronic Pt, as determined by high

resolution magic angle spinning NMR, and interpreted as

indicative of higher rates of cell proliferation (Ma et al.,

2012). In the same study, lactate was decreased in Pt tissue,

in agreement with our observations in the cell signature of Pt

vs. N. However, regarding both studies mentioned above (Ma

et al., 2012; Sun et al., 2014), it is unclear if the metabolic

features of different animal models may be directly

comparable. The decreased levels of NAD+ and NAM

observed here agree with a recent study relating such

variations with macrophage activation and inflammation

(He et al., 2021). Here we found lower concentrations of

UMP in acute Pt, while increased UTP has been reported

and interpreted as accompanying higher cell proliferation

rates (Choi et al., 2013). The decrease in UMP

concentration may be the result of its conversion to UDP

and subsequently to UDP-Glc/GlcA and UDP-GlcNAc, which

are required in Pt tissue to support increased posttranslational

protein O-glycosylation (Ryczko et al., 2016). The significant

decrease in TMAO may reflect its role as a mediator of

inflammatory processes (Janeiro et al., 2018), deriving from

the oxidation of trimethylamine (TMA) generated via gut

microbial metabolism of choline, betaine (reported to increase

in chronic Pt (Tian et al., 2015)) and carnitine. We could not

confirm the changes in betaine and aspartate concentrations

reported previously for chronic Pt, in tandem with increased

fatty acids levels (Tian et al., 2015), which suggests that acute
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and chronic Pt may be characterized by different metabolic

signatures, at least in part.

The comparison of Pt with LG tissue exhibited generally

smaller, but still statistically significant, changes (compared to Pt

vs. N) both in the tissue and cell signatures. In the cell signature

of precancerous tissue, the higher levels of alanine, AMP and

lactate and lower levels of ATP, ADP and GSH may reflect

increased energy demand and mobilization of anti-oxidative

defenses in the precancerous tissue.

The differentiation of low-grade disease (LG) from both Pt or

N tissue is of potential clinical relevance. Notably, when

compared to both N and LG tissues, the pancreatic tissue of

mice with Pt exhibits a common set of changes, which we

propose to be specific to Pt tissue, namely: increased ADP,

ATP, GSH, phenylacetate, and decreased alanine, AMP,

formate, GPC, NAM, TMAO, and UMP. If confirmed in

human studies, this 10-metabolite signature may potentially

serve as a marker of pancreatic tissue affected by acute Pt.

This may help to confirm histological differentiation of this

benign condition from both control and precancerous

conditions, for instance if magnetic resonance spectroscopy is

coupled with the current magnetic resonance

cholangiopancreatography (MRCP) methods (Shah et al., 2018).

Metabolic signature of pancreatic cancer
progression

In LG tissue (composed of PanIN 1 and 1A lesions),

compared to N tissue, metabolite concentration changes were

observed for: 1) amino acids, with decreases in alanine, creatine,

lysine, tyrosine and valine; and increases in aspartate, glutamate

and phenylalanine; 2) an increase in m-inositol and decreases in

PC, UDP-Glc/GlcA and UDP-GlcNAc (Figures 5, 6). Smaller

changes were noted for glucose and histidine, and no evidence of

an early increase in lactate concentration was noted between N

and LG samples. A decrease in alanine concentration between

normal tissue and LG samples has been observed previously in

the Kras model (Serrao et al., 2016), this amino acid having been

identified as preferentially being up taken by tumor cells to feed

the TCA cycle, to support the biosynthesis of other non-essential

amino acids and lipids (Dutta et al., 2019; Pupo et al., 2019). The

specific role of alanine in PDA has been recognized as a sign that

a metabolic shift occurs to decrease tumor dependence on

glucose and glutamine-derived carbon and enhance the use of

alanine as an alternative carbon source. From LG to PDA, we

observed a small increase in alanine concentration, which may

reflect increased alanine production by pancreatic stellate cells

(Sousa et al., 2016; Pupo et al., 2019). Valine was the only

branched-chain amino acid (BCAA) observed to vary,

decreasing from N to LG, which is contrary to a

metabolomics study of a different model of PanIN

(comprising PanIN 1, 2 and 3) and PDA obtained by

injecting 7,12-dimethylbenzanthracene (7,12-DMBA) into the

pancreas of Sprague-Dawley (SD) rats (Wen et al., 2016). In this

model the three BCAAs were elevated in PanIN pancreatic

extracts compared to controls. In the Kras mouse model used

here it is possible that the decrease in valine concentration

between N and LG may reflect its enhanced use in

anaplerosis. This would be consistent with the observed

increases in plasma circulating BCAAs reported in the early

stages of PCa in mice and in humans, which is probably due to

protein catabolism to supply anaplerotic substrates (Mayers et al.,

2014; Xu et al., 2020). The valine concentrations measured here

showed a non-significant increase in the later disease stages,

which was also noted previously for 15- and 25-week old KPC

mice, affected by PanIN lesions and PDA, respectively (Vernucci

et al., 2019) Lysine and tyrosine are both ketogenic amino acids,

that produce acetyl CoA and acetoacetate, respectively, with

tyrosine also potentially acting as a gluconeogenic amino acid,

entering the TCA cycle via fumarate. The decreases in these

amino acids between N and LG are consistent with an

enhancement of TCA cycle activity. During disease

progression, lysine and tyrosine concentrations tended to

increase and decrease, respectively. These changes agree with

their proposed respective upregulation and down regulation

reported for 25-week-old KPC mice, bearing PDA (Vernucci

et al., 2019).

The decrease in creatine, which was also observed in the

pancreas of SD rats with PanIN lesions (Wen et al., 2016), may

reflect increased conversion to phosphocreatine, which buffers

the ATP concentration (Papalazarou et al., 2020). Creatine

concentrations have been shown to be inversely related to

tumor volume in pancreatic cancer patients (Chang et al.,

2021). Increased glutamate, largely arising from enhanced

glutaminolysis, is used by Kras transformed cells for

anaplerosis and nucleotide production (Pupo et al., 2019). In

PDA cells, glutamate is used by mitochondrial aspartate

transaminase GOT2 to synthesize aspartate and α-
ketoglutarate. Here we observed increases in glutamate and

aspartate concentrations in LG when compared to N.

Aspartate is eventually converted into malate and pyruvate via

aspartate transaminase GOT1 and contributes to an increased

NADPH/NADP+ ratio and maintenance of cell redox potential

(Mohelnikova-Duchonova et al., 2013). Phenylalanine and

m-inositol, a membrane component and osmolyte (Majumder

and Biswas, 2006), were also observed to increase in PanIN tissue

of an DMBA-induced SD rat model, compared to normal tissue

(Wen et al., 2016). An increase in phenylalanine, as seen here

between N and LG and, to a lesser extent, throughout disease

progression, may be indicative of inflammation and immune

activation (Neurauter et al., 2008).

PC levels decreased between N and LG samples, and

thereafter during disease progression, suggesting an enhanced

demand for membrane precursors to sustain cell proliferation.

Although there is a tendency for the concentration of choline
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compounds to increase in cancer cells, including in PDA (Penet

et al., 2015; Saito et al., 2022), our results are in agreement with a

previous report comparing PDAwith chronic Pt, which indicated

decreases in PC in PDA (Fang et al., 2007). It was suggested that

the decrease in PC concentration may result from inhibition of

Cho-kinase and PC transferase or consumption of PC through

the CDP-Cho pathway. Our observation of strongly decreased

concentrations of glycosylated uridine compounds between N

and LG is consistent with decreased uridine and UDP levels in

PanIN2 tissue in a SD rat model of PanIN and PDA (Wen et al.,

2016). This may be explained by upregulation of the hexosamine

biosynthesis pathway (HBP) by oncogenic Kras, which leads to

the production of UDP-GlcNAc and other nucleotide

hexosamines (Sousa and Kimmelman, 2014; Yan et al., 2019).

In turn, these are used in enhanced protein glycosylation. Indeed,

both the HBP and protein glycosylation are enhanced in lung and

colon cancers (Mi et al., 2011). In our Kras model, disease

progression appears to be accompanied by an increased

demand for these UMP glycosylated substrates, as well as of

3-methylxanthine, AMP and UMP.

There was no evidence, from the levels of lactate, for

increased glycolytic activity in the early stages of the disease

(from N to LG), but lactate levels clearly increased throughout

disease progression, as has been observed previously observed in

this disease model (Serrao et al., 2016; Schmahl et al., 2018). Such

an increase was particularly evident in the transition from HG to

PDA, which was also consistent with a marked decrease in

glucose concentration. This decrease followed a marked

glucose increase in the transition from N to HG, which was

also observed in a previous report of PanIN-affected 15-month

old Kras mice (Schmahl et al., 2018), in which the authors

suggested there was a reduction of glucose consumption in

PanIN cells, compared to the normal acinar cells of healthy

pancreata. The HG to PDA transition was also characterized by a

set of additional statistically significant changes, including

increased alanine, proline, 3-HBA and 3-HIBA concentrations

and decreased ascorbate and PE concentrations. This metabolic

signature may be descriptive of the HG to PDA transition and has

the potential to aid diagnosis of the later stages of disease

progression.

Conclusion

We have established that Pt tissue can be differentiated with

high sensitivity and specificity from N and LG tissues on the

basis of their corresponding metabolite signatures.

Interpretation of the accompanying metabolic changes

requires consideration of the higher cellularity of Pt tissue. A

10-metabolite tissue signature (increased ADP, ATP, GSH,

phenylacetate; and decreased alanine, AMP, formate, NAM,

TMAO and UMP) appeared to be specific for acute Pt,

differentiating this benign condition from N and LG

pancreata. LG tissue (PanIN 1/1A lesions) could be

distinguished from normal tissue with high statistical

robustness. Changes in the relative concentrations of alanine,

aspartate, creatine, glutamate, lysine, phenylalanine tyrosine and

valine, m-inositol, PC, UDP-Glc/GlcA and UDP-GlcNAc were

identified as potential markers of the precancerous stages of

PCa. These reflect early changes in amino acid metabolism,

membrane biosynthesis and the hexosamine biosynthesis

pathway, which impacts on protein glycosylation. With

progression beyond LG, changes in the concentrations of

alanine, aspartate, glutamate, lysine, proline, tyrosine, valine,

lactate, 3-HBA, glucose, phospholipid precursors (in particular

PC) and glycosylated uridine nucleotides formed a metabolic

signature that characterized PCa progression. In particular, the

HG to PDA transition was accompanied by increases in alanine,

3-HBA, lactate and proline concentrations and decreases in the

concentrations of ascorbate, glucose and PE. Possible interesting

follow-ups of this work may include validation by absolute

quantitation of the signatures’ metabolites (preferably using

targeted methods to circumvent possible effects of interaction

of internal standards with mixture components), and correlation

studies between metabolic profiles and histological

characteristics of Pt, normal and precancerous and cancerous

tissues, as such information would unveil more objective

hypotheses to explain the metabolic changes reported here.
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