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HGPEC: a Cytoscape app for prediction of
novel disease-gene and disease-disease
associations and evidence collection based
on a random walk on heterogeneous
network
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Abstract

Background: Finding gene-disease and disease-disease associations play important roles in the biomedical area
and many prioritization methods have been proposed for this goal. Among them, approaches based on a
heterogeneous network of genes and diseases are considered state-of-the-art ones, which achieve high prediction
performance and can be used for diseases with/without known molecular basis.

Results: Here, we developed a Cytoscape app, namely HGPEC, based on a random walk with restart algorithm on a
heterogeneous network of genes and diseases. This app can prioritize candidate genes and diseases by employing
a heterogeneous network consisting of a network of genes/proteins and a phenotypic disease similarity network.
Based on the rankings, novel disease-gene and disease-disease associations can be identified. These associations
can be supported with network- and rank-based visualization as well as evidences and annotations from biomedical
data. A case study on prediction of novel breast cancer-associated genes and diseases shows the abilities of HGPEC.
In addition, we showed prominence in the performance of HGPEC compared to other tools for prioritization of
candidate disease genes.

Conclusions: Taken together, our app is expected to effectively predict novel disease-gene and disease-disease
associations and support network- and rank-based visualization as well as biomedical evidences for such the associations.

Keywords: Cytoscape app, Disease-gene association, Disease-disease association, Random walk with restart algorithm,
Heterogeneous network, Gene prioritization, Disease prioritization

Background
The goal of gene and disease prioritization, one of the chal-
lenging issues in biomedicine, is to predict the most prom-
ising genes and diseases associated with a disease of
interest. Many network-based methods have been proposed
for this purpose [1, 2]. Among them, methods based on a
heterogeneous network of genes and diseases are proven to
outperform those solely based on a homogeneous network

of genes/proteins [3–5]. In addition, these methods can not
only prioritize candidate genes but also diseases; therefore,
not only novel disease-gene relationships but also novel
disease-disease associations can be identified. Moreover,
prediction of novel genes associated with a disease, of
which molecular basis is unknown, can be performed. In
parallel with the proposed methods, a number of tools have
been developed. However, they only focus on prediction of
disease-gene associations [6, 7].
In a recent study, we have developed a tool, namely

GPEC [8], which uses a random walk with restart
(RWR) algorithm on a homogeneous network of genes/
proteins to prioritize candidate genes. This RWR-based
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method is state-of-the-art among ones solely based on
protein interaction network [9]. However, it can only
prioritize candidate genes of diseases with known mo-
lecular basis and cannot directly figure out novel
disease-disease associations.
Recently, a variant of RWR algorithm on a heterogeneous

network, namely RWRH, has been proposed and used to
identify novel disease-gene and disease-disease associations
on a heterogeneous network of genes and diseases [3]. This
method was proven to overcome limitations of the RWR-
based method. More importantly, the RWRH algorithm
can be extended to use any network of genes/proteins in
the heterogeneous network. Indeed, a recent RWRH-based
method has used a semantic similarity network of genes in-
stead of the protein interaction network [10] and shown to
outperform the original one [3]. We also note that there is
no tool which employs this method available in public do-
main [11]. Therefore, we develop a tool, namely HGPEC,
for identification of novel disease-gene and disease-disease
associations. This tool can make use those advances of the
RWRH-based method.
A common issue of gene prioritization tools is collection

of biomedical evidence for novel promising associations be-
tween highly ranked genes and the disease of interest [6, 7].
For instance, network-based tools such as PRINCIPLE [12]
and NetworkPrioritizer [13] just provide rankings for candi-
date genes but do not support evidences for associations
between highly ranked genes and the disease of interest. In
GPEC, we employed gene ontology [14], KEGG pathway
[15], GeneRIF [16], PubMed [17], and OMIM [18] to
support novel promising disease-gene associations. Note
that, recent studies have demonstrated roles of shared
known disease-associated genes, protein complexes, path-
ways and disease ontologies [19–22] in disease-disease
associations. Therefore, in HGPEC, we additionally used
protein complexes from CORUM [23] and terms from
Disease Ontology [24] to support novel promising disease-
disease associations.
To demonstrate functions of HGPEC, we first showed

its ability in predicting novel genes and diseases associated
with breast cancer. To this end, we selected top 20 ranked
candidate genes and top 20 ranked candidate diseases,
then performed visualization and evidence collection.
Visualization results showed that most of the top ranked
candidate genes are directly connected to known breast
cancer-associated genes. Also, the top ranked candidate
diseases are directly connected to either breast cancer or
known breast cancer-associated genes. In addition to
visualization, we collected evidences for promising associ-
ations between the top ranked candidate genes/diseases
and breast cancer. Evidence collection results showed that
each of the promising associations between the top ranked
candidate genes and breast cancer is supported by at least
two data sources. Meanwhile, seventeen out of the top 20

ranked candidate diseases have at least one gene, one
pathway, one protein complex or one disease ontology
term shared with breast cancer. Three remaining ones are
highly phenotypically similar to breast cancer since they
are directly connected to breast cancer in the phenotypic
disease similarity network. Second, we compared the over-
all prediction performance of HGPEC with other tools,
GPEC [8] and PRINCIPLE [12]. Simulation result on 330
diseases showed that HGPEC is much superior to these
tools for prediction of disease-associated genes.

Methods
Ranking/prioritization of candidate genes/diseases is to
predict novel genes/diseases associated with a disease of
interest. In this section, we first provide a summary of
the RWRH-based method, which is used for ranking
candidate genes/diseases in HGPEC. Then, we describe
the implementation and databases used in HGPEC.

RWRH-based method
The heterogeneous network of genes and diseases can be
represented as a connected weighted graph G(V, E) with a
set of nodes V = {v1, v2, …, vN}, a set of links E = {(vi, vj)|
vi, vj∈V} and a N × N adjacency matrix W of link weights.
Figure 1 shows an illustrative heterogeneous network of
genes and diseases. Given a disease of interest d1, the

Fig. 1 An illustrative heterogeneous network of genes and diseases. A
phenotypic disease similarity network and a network of genes/proteins
are connected by known disease-gene associations (i.e., a bipartite
network) to form a heterogeneous network of genes and diseases
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rankings of candidate genes/diseases are based on their
relative importance to a set of source S ⊆ V (including d1
and known d1-associated genes). The relative importance
measures how much a candidate gene/disease is associ-
ated with d1. Here, we introduce the RWRH algorithm for
such task. This algorithm was proposed for prediction of
disease-associated genes on a heterogeneous network of
genes and diseases [3, 10, 25], drug-target interaction pre-
diction on a heterogeneous network of drugs and targets
[26] and identification of novel disease-microRNA associ-
ations based on heterogeneous network of diseases and
microRNAs [27].
RWRH mimics a walker that moves from a current node

to a randomly selected adjacent node or goes back to
source nodes with a back-probability γ∈(0, 1) in a heteroge-
neous network. RWRH was formally defined as follows:

P tþ1 ¼ 1−γð ÞW ′Pt þ γP0

where Pt is a N × 1 probability vector of all nodes in the
network at a time step t of which the ith element repre-
sents the probability of the walker being at node vi∈V,
and P0 is the N × 1 initial probability vector. W′is the
transition matrix of the graph, the (i, j) element in W′,
denotes a probability with which a walker at vi moves to
vj among V\{vi}. All nodes in the network are eventually
ranked according to the steady-state probability vector
P∞. The steady-state of each node represents its relative
importance to the set of source nodes S.
For the heterogeneous network of diseases and genes,

the transition matrix W′was defined as follows:

W ′ ¼ W ′
G W ′

GD
W ′

DG W ′
D

� �

where W ′
G and W ′

D are intra-subnetwork transition
matrices of the network of genes/proteins and the pheno-
typic disease similarity network, respectively. W ′

GD , W
′
DG

are inter-subnetwork transition matrices. Let λ be the
jumping probability the random walker jumps from the
network of genes/proteins to the phenotypic disease simi-
larity network or vice versa. Then, these matrices were
defined as follows:

W ′
GD

� �
i;j ¼ p dj; jgi

� �

¼
λ WGDð ÞijP
j WGDð Þij

if
X

j
WGDð Þij≠0

0 otherwise

8><
>:

W ′
DG

� �
i;j ¼ p gj; jdi

� �

¼
λ WGDð ÞjiP
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0 otherwise
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X

j
WGDð Þij ¼ 0

1−λð Þ WGð ÞijP
j WGð Þij

otherwise
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>>>>:

W ′
D

� �
i;j ¼

WDð ÞijP
j WDð Þij

if
X

j
WGDð Þji ¼ 0

1−λð Þ WDð ÞijP
j WDð Þij

otherwise

8>>>><
>>>>:

where WG ,WD and WGD are adjacency matrices of the
gene/protein, the phenotypic disease similarity and the
bipartite networks, respectively.
By letting η be the parameter to weight the importance

of each network, the initial probability vector was defined
as follows:

P0 ¼
1−ηð Þ 1

Sj j if vi∈S

η if vi≡d1
0 otherwise

8>><
>>:

In case we are interested in a disease class/group,
which contains set of diseases (D), we additionally define
P0 as follows:

P0 ¼

1−ηð Þ 1
Sj j if vi∈S

η
1
Dj j if vi∈D

0 otherwise

8>>>>><
>>>>>:

All remaining diseases in the phenotypic disease
similarity network are specified as candidate diseases,
whereas candidate genes can be specified by users in
different ways such as all remaining genes, neighbors of
known associated genes, etc...

Implementation
HGPEC is developed based on the RWRH-based method
as an app of Cytoscape v3.x, which is a platform for data
integration, network analysis and visualization [28].
Therefore, it can work on any operating system such as
Windows, Linux and Mac OS X, where Cytoscape is
designed to work on. Figure 2 shows the implementation
of HGPEC. In particular, HGPEC runs on a heterogeneous
network consisting of a phenotypic disease similarity net-
work, a network of genes/proteins and a bipartite network
(Part A of Fig. 2). Given a disease of interest, training data
including the given disease and its known associated genes
is specified (Part B of Fig. 2). Candidate gene and disease
sets are then provided. In which, candidate disease set in-
cludes non-training diseases. Meanwhile, candidate gene
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set can be easily constructed in several ways such as
neighbors of training genes in the network, neighbors
of training genes in the same chromosome, non-
training genes in the network, susceptible chromosome
regions/bands and freely defined by user (Part C of
Fig. 2). The RWRH-based method then uses the training
data to rank all candidate genes and diseases in the
heterogeneous network (Part D of Fig. 2). Ranked genes
and diseases are shown for further investigation (Part E of
Fig. 2). For instance, highly ranked candidate genes and
diseases (Part F of Fig. 2) can be further investigated by: i)
network- and rank-based visualization (Part G of Fig. 2)
and ii) supporting evidences including annotations for
genes/diseases and evidences for novel promising disease-
gene and disease-disease associations with preinstalled
and automatically retrieved biomedical data (Part H of
Fig. 2). Beside preinstalled data of gene and protein,
gene ontology annotation and KEGG pathway like
those in GPEC, we additionally preinstalled other

biomedical data such as protein complex from
CORUM [23] and disease ontology [24]. These data is
used to annotate and support evidences for novel
promising gene-disease and disease-disease associa-
tions. In addition, such associations can be further
supported with evidence searched from GeneRIF,
PubMed and OMIM. In HGPEC, the network of
genes/proteins can be freely provided by users. By
default, we loaded a human protein interaction network
containing 10,486 genes and 50,791 interactions col-
lected from ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/
interactions.gz. This is a collection of human protein
interactions from BIND [29], BioGRID [30] and HPRD
[31]. Meanwhile, the phenotypic disease similarity
network was collected from MimMiner [32] and the
bipartite network are known disease-gene associations
collected from either DisGeNET [33] or OMIM (http://
ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene_medgen) [18].
These networks were also preinstalled in the app.

A

D

E G

F

H

C

B

Fig. 2 Implementation of HGPEC. Implementation of HGPEC consists of following steps: i) Constructing a heterogeneous network of genes and
diseases (Part A); ii) Giving a disease of interest (d1) and identifying training (source) genes and diseases (Part B); iii) Providing candidate genes and
diseases (Part C); iv) Prioritizing all genes and diseases in the network (Part D); and v) Displaying all ranked genes and diseases (Part E) and selecting
highly ranked candidate genes and diseases for further investigation (Part F). Novel promising disease-gene and disease-disease associations can be
supported with network- and rank-based visualization (Part G) as well as evidences and annotations from biomedical data (Part H)
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Results and discussion
Case study: Prediction of novel breast cancer-associated
genes and diseases
Here, we show the ability of HGPEC in identifying novel
genes and diseases associated with breast cancer (OMIM
ID: 114480). Particularly, after ranking, sets of highly
ranked candidate genes and diseases were further ana-
lyzed to find evidences about their associations with
breast cancer. These associations were shown in a
network-based view as well as evidences and annotations
from biomedical data. To complete this task, we per-
formed five following steps (see Fig. 3 and more detail in
User manual in Additional file 3):
First, we constructed a heterogeneous network of genes

and diseases. This network includes: i) a phenotypic dis-
ease similarity network containing 5080 diseases and
19,729 interactions, which was extracted from a pheno-
typic disease similarity matrix data collected from Mim-
Miner [32] where only five interactions having largest
weight to each disease were selected; ii) the default human
protein interaction network and iii) the bipartite network
containing known disease-gene associations collected
from OMIM [18].
Second, we selected breast cancer (OMIM ID: 114480)

for investigation. There are 21 known breast cancer-
associated genes in the human protein interaction net-
work. These genes and the disease of interest are played
as training genes and disease.
Third, we selected all remaining genes (i.e., non-

known breast cancer-associated genes) in the human
protein interaction network as candidate genes and all
remaining diseases in the phenotypic disease similarity
network as candidate diseases. As a result, the candidate
gene and disease sets include 10,465 genes and 5079
diseases, respectively.
Fourth, all genes and diseases in the heterogeneous

network are ranked by applying the RWRH-based
method with back-probability (i.e., γ), jumping probabil-
ity (i.e., λ) and subnetwork importance weight (i.e., η)
were set to 0.5, 0.6 and 0.7, respectively.
Finally, the associations between highly ranked candidate

genes/diseases and breast cancer are then investigated by
two means: i) Network- and rank-based visualization and ii)
Collection of evidences including annotations for
genes/diseases and evidences of promising associations.
For network- and rank-based visualization, we first

investigated topological relationships between highly
ranked candidate genes and breast cancer. To this end, we
selected top 20 ranked candidate genes and 21 known
breast cancer-associated genes for visualization. Fig. 4a
and b show that most highly ranked genes are directly
connected to known genes (only two candidate genes, KIT
and FGFR3, are isolated). In addition, we explored
topological relationships between highly ranked candidate

diseases and breast cancer. More specifically, we selected
top 20 ranked candidate diseases, breast cancer and its 21
known associated genes for visualization. Fig. 4c shows
that highly ranked candidate diseases are directly con-
nected to either breast cancer or the known breast cancer-
associated genes. This means that candidate diseases
which are phenotypically similar to or share known associ-
ated genes with the disease of interest are highly ranked.
For collection of evidences, we first collected annota-

tions for highly ranked candidate genes and evidences for
promising associations between them and breast cancer.
In particular, we annotated the top 20 ranked genes with
pathways, protein complexes, disease and gene ontology
terms. Then, we collected evidences for promising associ-
ations between these genes and breast cancer from Gen-
eRIF [16, 34], PubMed [35] and OMIM [18, 36]. As a
result, at least one data source provides evidences for such
the associations. In addition, all collected annotations and
evidences for genes and promising disease-gene associa-
tions can be exported for further use (See Table S1 in
Additional file 1). Second, we collected annotations and
evidences for promising associations between highly
ranked candidate diseases and breast cancer. To this end,
we also annotated top 20 ranked candidate diseases with
pathways, protein complexes, disease and gene ontology
terms. Based on reports that common associated genes,
protein complexes, pathways and annotated disease ontol-
ogy terms can play important roles in disease-disease
associations [19–22], we additionally checked whether or
not these candidate diseases share genes, pathways,
protein complexes and disease ontology terms with breast
cancer. Table 1 shows that twelve of them (i.e., ranks: 1, 2,
6, 10, 11, 12, 13, 14, 15, 16, 19 and 20) have at least one
gene, pathway, protein complex and disease ontology term
shared with breast cancer. Meanwhile, five of them (i.e.,
ranks: 3, 4, 8, 17 and 18) have at least one pathway, pro-
tein complex and disease ontology term shared with
breast cancer, but they do not share any gene with breast
cancer. This means that if we only based on shared genes
to associate these diseases with breast cancer, we could
not find any association. However, other biomedical data
such as pathway, protein complex and disease ontology
can provide evidences for these associations. Finally, three
remaining ones (Ranks: 5, 7 and 9) do not share any gene,
pathway, protein complex or disease ontology term with
breast cancer, but they have high rankings. This is because
they are phenotypically similar to breast cancer as they are
directly connected to it in the phenotypic disease similar-
ity network (see Fig. 4c). Similarly, evidences of the prom-
ising associations between the selected candidate diseases
and breast cancer can be collected from GeneRIF,
PubMed and OMIM based on associations between their
known associated genes and breast cancer. In addition, all
collected annotations and evidences for diseases and
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Fig. 3 A workflow for prediction of novel breast cancer-associated genes and diseases. This task is completed after five following steps: 1)
Construct a heterogeneous network by selecting a phenotypic disease similarity network and a network of genes/proteins. 2) Select breast cancer
(OMIM ID: 114480, a disease of interest), then identify training genes (i.e., known breast cancer-associated genes) and training disease (i.e., breast
cancer). 3) Select a set of candidate genes; all remaining diseases in the network are selected as candidate diseases by default. 4) Rank/prioritize
all candidate genes and diseases by the RWRH-based method. 5) Examine ranked genes and diseases by two means: ii) network- and rank-based
visualization and ii) collection of annotations and association evidences for highly ranked candidate genes and diseases
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promising disease-disease associations can be exported for
further use (See Table S2 in Additional file 2). Moreover,
all of the collected annotations and association evidences
can be viewed in more detail in below panels (see User
manual in Additional file 3).

Comparison to other network-based tools for
prioritization of candidate disease gene
Many web-based tools, which are based on different com-
putational methods, have been introduced for disease gene
prediction [6, 7]. These tools only focus on prioritization of
candidate genes. In addition, some tools require users
uploading their own data. Recently, a number of Cytoscape
apps have been designed for disease gene prioritization.
The underlying methods of these tools are network-based
since they can utilize functions of network integration, ana-
lysis and visualization of Cytoscape. Indeed, PRINCIPLE
[12] is a tool for associating genes with diseases via net-
work propagation algorithm PRINCE [37]. Given a query

disease, PRINCIPLE prioritizes candidate disease genes
based on their closeness in a protein interaction network
to genes causing phenotypically similar disorders to the
query disease. Therefore, this tool cannot directly figure
out novel disease-disease associations. In addition, novel
disease-gene associations predicted by this tool are not
provided with biomedical evidences. Another Cytoscape
app, NetworkPrioritizer [13], which is also designed for
prioritization of candidate disease genes. This tool com-
putes a number of important centrality measures to rank
nodes based on their relevance for network connectivity
and provides different methods to aggregate and compare
rankings. Based on the final rankings, novel disease-
associated genes can be predicted. However, it has the
same limitation as in PRINCIPLE because there is no
function in NetworkPrioritizer which helps user to search
evidences for predicted disease-gene associations. In
addition, it is not designed to find novel disease-disease as-
sociations. As aforementioned, we have recently developed

(See figure on previous page.)
Fig. 4 Topological relationships between highly ranked candidate genes/diseases and breast cancer. a Topological relationships between 20
highly ranked candidate genes and known breast cancer-associated genes in the human protein interaction network. b Topological relationships
between 20 highly ranked candidate genes and breast cancer. c Topological relationship between 20 highly ranked candidate diseases and breast
cancer. Nodes in octagon, rectangle, triangle and rhombus shape are candidate genes, candidate diseases, training genes and training disease,
respectively. Nodes with high rankings are in red, relative high are in pink, medium are in white and light green, low are in green

Table 1 Evidence of associations between top 20 ranked diseases and breast cancer

Rank OMIM ID Name # Shared
genes

# Shared protein
complexes

# Shared
pathways

# Shared disease
ontology

1 MIM176807 PROSTATE CANCER 3 10 19 71

2 MIM259500 OSTEOGENIC SARCOMA 2 14 23 55

3 MIM113705 BREAST CANCER 1 GENE; BRCA1 0 14 0 27

4 MIM120435 LYNCH SYNDROME I 0 1 2 35

5 MIM155720 MELANOMA, UVEAL 0 0 0 0

6 MIM151623 LI-FRAUMENI SYNDROME 1; LFS1 1 14 23 71

7 MIM102660 ADAMANTINOMA OF LONG BONES 0 0 0 0

8 MIM273300 TESTICULAR GERM CELL TUMOR; TGCT 0 3 8 34

9 MIM211410 CANCER, FAMILIAL, WITH IN VITRO RADIORESISTANCE 0 0 0 0

10 MIM114500 COLORECTAL CANCER; CRC 3 20 64 99

11 MIM137215 GASTRIC CANCER, HEREDITARY DIFFUSE; HDGC 3 8 60 93

12 MIM211980 LUNG CANCER 3 10 62 118

13 MIM114550 HEPATOCELLULAR CARCINOMA 3 27 62 81

14 MIM208900 ATAXIA-TELANGIECTASIA; AT 1 4 3 37

15 MIM605027 LYMPHOMA, NON-HODGKIN, FAMILIAL 1 1 3 5

16 MIM260350 PANCREATIC CANCER 2 14 45 54

17 MIM151410 BREAKPOINT CLUSTER REGION; BCR 0 0 1 10

18 MIM604370 BREAST-OVARIAN CANCER, FAMILIAL, SUSCEPTIBILITY
TO, 1; BROVCA1

0 14 0 27

19 MIM155255 MEDULLOBLASTOMA; MDB 1 3 3 36

20 MIM181500 SCHIZOPHRENIA; SCZD 1 3 40 84
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a Cytoscape app, GPEC [8], for disease gene prediction and
evidence collection based on the RWR-based algorithm.
This app was shown more useful than the above Cytoscape
apps since it has functions for collecting biomedical evi-
dences for predicted disease-gene associations. However, it
also cannot directly predict novel disease-disease associa-
tions. In addition, like the above tools, it can only work
with diseases with known molecular basis. Therefore,
HGPEC is introduced to overcome all of these limitations.
In addition, HGPEC is designed based on a state-of-the-art
network-based method (i.e., RWRH-based method), which
was shown to outperform the methods used in GPEC as
well as PRINCIPLE. To compare overall performance of
HGPEC with that of GPEC and PRINCIPLE, we used the
human protein interaction network and set the best
settings for the three methods as reported in previous
studies [3, 37, 38] (i.e., back-probability and weight param-
eter were set to 0.5 in GPEC and PRINCIPLE, respectively.
Meanwhile, back-probability, jumping probability and
subnetwork importance weight were set to 0.5, 0.6 and 0.7
for HGPEC, respectively). Due to using leave-one-out cross
validation method, we selected a set of 330 diseases with at
least two known associated genes to compare the perform-
ance of these tools in terms of AUC (i.e., area under the
ROC curve) values. Figure 5 shows that HGPEC
(AUC = 0.987) performs much better than GPEC
(AUC = 0.788) and PRINCIPLE (AUC = 0.789).

Conclusions
HGPEC employs the random walk with restart algorithm
in a heterogeneous network of genes and diseases. It is
developed to overcome the limitations of existing disease
gene prediction tools. Beside the capability of prioritization

of candidate genes, HGPEC can also rank candidate
diseases. Therefore, it can discover not only novel gene-
disease associations but also new disease-disease associa-
tions. In addition, it can identify novel genes associated with
diseases without known molecular basis. Moreover, it is
also convenient for users with freedom input of network of
genes/proteins. Furthermore, novel promising gene-disease
and disease-disease associations can be supported with
network- and rank-based visualization as well as evidences
and annotations collected from biomedical data. A case
study on prediction of novel breast cancer-associated genes
and diseases was performed to show the abilities of
HGPEC. In addition, we also showed that HGPEC is much
better than other tools (i.e., GPEC and PRINCIPLE) in pri-
oritizing candidate disease genes. Note that, disease similar-
ity network (i.e., diseasome) can be constructed based on
shared disease gene [19], shared pathways [21], shared
miRNA [39], shared protein complex [40], shared disease
ontology [22] and disease comorbidity [41]. Therefore, in
our future study, the phenotypic disease similarity network
will be replaced by any diseasome, which are able to be
provided freely by users. Moreover, we are going constantly
to upgrade HGPEC so that it will be compatible with latest
Cytoscape series and therefore become more popular.

Availability and requirements
• Project name: HGPEC
• Project home page: https://sites.google.com/site/

duchaule2011/bioinformatics-tools/hgpec
• Operating system(s): Windows/Linux/MacOS
• Programming language: Java
• Other requirements: Java 1.7 or higher, Cytoscape

3.x (Cytoscape 3.3 or higher)
• License: None
• Any restriction to use by non-academics: None
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Additional file 1: Table S1. All collected annotations and evidences for
associations between top 20 ranked candidate genes and breast cancer. (TXT 622 kb)

Additional file 2: Table S2. All collected annotations and evidences for
associations between top 20 ranked candidate diseases and breast cancer.
(TXT 278 kb)

Additional file 3: User manual. (PDF 2710 kb)
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