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Abstract: The flavin-based indirect electron transfer process between electroactive bacteria and solid
electrode is crucial for microbial fuel cells (MFCs). Here, a cellulose-NaOH-urea mixture aerogel
derived hierarchical porous carbon (CPC) is developed to promote the flavin based interfacial electron
transfer. The porous structure of the CPC can be tailored via adjusting the ratio of urea in the
cellulose aerogel precursor to obtain CPCs with different type of dominant pores. According to the
electrocatalytic performance of different CPC electrodes, the CPCs with higher meso- and macropore
area exhibit greatly improved flavin redox reaction. While, the CPC-9 with appropriate porous
structure achieves highest power density in Shewanella putrefaciens CN32 MFC due to larger active
surface for flavin mediated interfacial electron transfer and higher biofilm loading. Considering
that the CPC is just obtained from the pyrolysis of the cellulose-NaOH-urea aerogel, this work also
provides a facile approach for porous carbon preparation.

Keywords: cellulose; porous carbon; hierarchically porous structure; microbial fuel cells; interfacial
electron transfer

1. Introduction

The microbial fuel cell (MFC) is a promising environment remediation technology that can degrade
pollutants like azo dyes, heavy metal ions in wastewater and generate electricity simultaneously [1].
It also has been used as biosensors for toxicity evaluation of wastewater [2]. It is believed that the
micro- or nanostructure dependent interfacial electron transfer between the electroactive microbes and
the solid electrode is a key process in the anode that determines the MFC performance [3,4]. As an
important endogenous electron mediator, flavin allows bacteria such as Shewanella spp to achieve long
distance electron transfer to the electrode [5–7]. At the same time, the flavins bound to the electrode
also play a key role in the direct electron transfer between the outer membrane cytochrome protein
and the electrode [8–10]. In this case, appropriate porous structure of the MFC anode are essential for
the flavin based interfacial electron transfer. In our previous work, it has been demonstrated that the
size and curvature of mesopores are critical for the redox reaction of the endogenous flavin mediators
in bacteria cellulose derived carbon fibers [11] and sucrose derived ordered mesoporous carbon [12].
However, the effect of hierarchical porous structure with different proportion of meso- and macro-pores
on the flavin based interfacial electron transfer process is not very clear.
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Biomass-derived activated carbon materials, benefiting from the inherent porous architecture, high
conductivity, low-cost and eco-friendly properties, have been testified to be effective electrode in both
electrochemical energy storage systems and bioelectrochemical systems [13,14]. However, the porous
structure of biomass derived porous carbon often depends on the native structure of biomass precursors
and is hard to tailor. Recently, the cellulose aerogel has been widely used to prepare porous carbon,
especially the hierarchical porous carbon [15–19] for supercapacitor electrodes or CO2 adsorption.
Typically, the cellulose aerogel was prepared by dissolving cellulose precursors in NaOH/urea/H2O
solution at −12 ◦C, gelling at 40 ◦C for more than 36 h and subsequent freeze-drying [17,18]. To
increase the specific surface area of the obtained porous carbon, a subsequent alkali activation process
is also required [15,19], which makes the preparation more complicated and time-consuming. Since
the cellulose dissolved in NaOH/urea solution could form stable cellulose/NaOH/urea sol [20], it is
possible to skip the gelling step to use the cellulose/NaOH/urea aerogel as carbonization precursor.
It has been reported that the urea could accumulate on the cellulose hydrophobic region to prevent
dissolved cellulose molecules from re-gathering [21]. In this case, the interspace of the cellulose chain
might be tailored by adjust the ratio of urea in the sol.

In this work, cellulose-derived porous carbon (CPC) materials with hierarchical porous structure
obtained by dissolving cellulose in an aqueous alkali-urea solution at −12 ◦C, followed by freeze
drying and pyrolysis (Scheme 1). The pore structure and specific surface area of porous carbon can
be adjusted by different urea content in the cellulose/NaOH/urea aerogel and a simultaneous alkali
activation. The obtained hierarchical porous CPC materials were applied as MFC anode to investigate
the pore structure dependent interfacial electron transfer.
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Scheme 1. Preparation of cellulose aerogel derived hierarchical porous carbon.

2. Materials and Methods

2.1. Materials

Cellulose (α-cellulose, ≤25 µm, CAS: 9004-34-6), sodium hydroxide (ACS, 97%, CAS: 1310-73-2),
urea (ACS, 97 %, CAS: 57-13-6), and lithium hydroxide (anhydrous, 98 %, CAS: 1310-65-2) were obtained
from Aladdin Inc., Shanghai, China. Hydrochloric acid (GR) was obtained from CHUANDONG
CHEMICAL (Chong Qing, China). The water used in the experiment was deionized water.

2.2. Porous Carbon Preparation

Cellulose was used as carbon precursor, which was dissolved in an NaOH/urea/H2O solution.
In detail, the 4.5 g cellulose was added into pre-cooled NaOH/urea solution to form a 50 g aqueous
solution containing the 6 wt. % NaOH and different ratio of urea, which was 6 wt. %, 9 wt. %,
and 12 wt. % respectively. After the transparent cellulose sol was obtained, it was freeze-dried and
pyrolyzed in a tube furnace at 500 ◦C for 1 h with a heating rate of 2 ◦C min−1 and 800 ◦C for 2 h with a
heating rate of 5 ◦C min−1 under Ar atmosphere. The obtained samples were washed thoroughly with
hydrochloric acid and deionized water in order to remove the residual chemicals. Finally, the porous
carbon materials were obtained after drying the prepared samples at 60 ◦C for 12 h. The obtained
carbon materials were named as CPC-n (cellulose-derived porous carbon, CPC; n was the ratio of urea,
which was 6 wt. %, 9 wt. %, 12 wt. %, n = 6, 9, 12).
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2.3. Calculation of Molecular Weight of Cellulose

The molecular weight of the cellulose was calculated with Mark-Houwink equation based on
the measured viscosity of cellulose solution [22]. 0.02 g cellulose was dissolved in 4.6 wt % LiOH/15
wt % urea aqueous solution precooled to −12 ◦C for 30 min. The cellulose solution was then filtered
through a 450 nm filter to purify. The molecular weight is obtained by viscosity measurement. Intrinsic
viscosities of the solutions were obtained by using a capillary viscometer, and these values were
converted to viscosity average molecular weight by using the Mark-Houwink equation, [η] = KMα,
Here, the Mη = 2.398 ∗ 105.

2.4. Bacteria Culture

A single clone of Shewanella putrefaciens (S. putrefaciens) CN32 was grown anaerobically in 100 mL
of Luria Bertani (LB) broth medium overnight, which was a mixture of 10 g L−1 sodium chloride,
10 g L−1 tryptone, 5 g L−1 yeast extract, and then 10 mL aliquot of bacterial culture suspension was
inoculated in 200 mL of fresh LB broth and incubated with shaking at 30 ◦C until the optical density at
600 nm (OD600) reached about 1.5. The cell pellets were further harvested by centrifuging at 20 ◦C
(6000 rpm, 5 min), and then resuspended in 100 mL M9 buffer (Na2HPO4, 6 g L−1, KH2PO4, 3 g L−1,
NaCl, 0.5 g L−1, NH4Cl, 1 g L−1, MgSO4, 1 mM, CaCl2, 0.1 mM), which was supplemented with 18 mM
lactate. The resulted cell suspension was transferred into the anodic chamber of the MFC and purged
with nitrogen gas for 30 min to remove the dissolved oxygen before every test.

2.5. MFC Set-Up and Operation

Traditional H-type dual-chamber MFC reactors were used in this paper. They consist of an anode
chamber, a cathode chamber and a proton exchange membrane (Nafion 117). The carbon cloth with
1 mg cm−2 CPC was used as anode and the carbon fiber brush was used as cathode. The cathodic
electrolyte was 50 mM potassium ferricyanide in 0.01 M phosphate buffered saline (PBS) (pH 7.4).
The polarization and power curves were obtained at the steady state of the MFCs by measuring the
stable voltage generated at various external resistances (1–80 kΩ).

2.6. Physical Characterization

The morphologies were observed with a field emission scanning electron microscope (FESEM, JEOL
7800F, Tokyo, Japan) and a transmission electron microscopy (TEM, JEOL JEM-2100F, Tokyo, Japan).
Before morphology observation, the biofilm adhered anodes were immersed in 4% polyoxymethylene
for 12 h and then sequentially dehydrated with ethanol (30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%)
and dried in vacuum at room temperature overnight. The Brunauer-Emmett-Teller (BET) surfaces
areas and porosity of the samples were evaluated by nitrogen sorption isotherms that measured
using an automatic adsorption instrument ASAP 2020 (Micromeritics Instrument, Norcross, Georgia,
United States). The thermal stability of CPC precursors was studied using Q50 TGA (TA Instruments
NewCastle, DE, USA). The samples were run at the rate of 10 ◦C/min under nitrogen atmosphere in
the range of 30–800 ◦C. X-ray photoelectron spectroscopy (XPS) measurements were performed on a
Thermo Scientific ESCALAB 250Xi electron spectrometer (Waltham, MA, USA).

2.7. Electrochemical Characterization

All the electrochemical measurements were conducted with an electrochemical working station
(CHI 760E, CHI Instrument, Shanghai, China). The composite-modified CC electrode was used as
the working electrode, and the titanium plate and saturated calomel electrode (SCE) were used as
counter and reference electrodes, respectively. The electrolyte was 0.1 M phosphate buffer with 2 µM
flavin mononucleotide (FMN) or an anaerobic M9 buffer supplemented with S. putrefaciens CN32 cell
suspension (S. putrefaciens CN32 MFC half-cell). The cyclic voltammogram (CV) was recorded at a
scan rate of 1 mV s−1 after poised at 0.2 V (vs. SCE) for over 72 h. Differential pulse voltammetry
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(DPV) was performed with a potential step of 4 mV, an amplitude of 25 mV, and a frequency of 1 Hz.
Electrochemical impedance spectroscopy was carried out in a frequency range of 0.01 Hz to 100 kHz
with a perturbation signal of 10 mV at −0.45 V.

3. Results & Discussion

The morphologies of prepared porous carbon materials were examined by FESEM and TEM.
From Figure 1, all of the CPC materials exhibited a macroporous foam structure with open and
interconnected pores while the carbonized raw cellulose did not show a porous structure (Figure S1).
The uniform impregnation of NaOH and urea into cellulose chain apparently promoted the form of
porous structure. It is noted that the pore size of CPC-6 seems smaller than that of CPC-9 and CPC-12.
The high magnification SEM images (insets) and TEM images show that the pore size of CPC-6 was
less than 100 nm while the pore size of CPC 12 was around several hundred nanometers. It indicates
that the pore size of the CPCs increased as the amount of the urea in the precursors increased. The
enlarged pores could be due to the large amount of gas generated from decomposed urea [23].
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Figure 1. Field emission scanning electron microscopy (FESEM) image and transmission electron
microscopy (TEM) image of cellulose-derived porous carbon (CPC)-6 (a,d), CPC-9 (b,e), and the
CPC-12 (c,f).

The specific surface area and detailed porous structure properties of the CPCs were further
examined by using nitrogen adsorption-desorption isotherm analysis. The BET surface area values of
three CPCs were compared with that in other reports. As shown in Table 1, the CPCs possessed higher
specific surface area than that of the porous carbon without alkali activation process and comparable
with that of the activated ones. It is also noted that the CPC-9 possessed highest specific surface area
over the three CPCs and the value was higher than that of bamboo cellulose and straw cellulose derived
activated carbon in previous reports. From Figure 2a, the three CPCs exhibited type IV isotherms
with steep initial region and hysteresis loop, which suggests the existence of micropores, mesopores
and macro-pores [24]. This result can be demonstrated by the pore size distribution data calculated
from the DFT (Density functional theory) model, which are shown in Figure 2b,c. The volume of
micropores was higher than 0.5 m3g−1 for all CPCs, which contributed a lot to the specific surface area.
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It is noted that with the increase of urea content, the volume of mesopores, especially the macropores,
was greatly decreased. It is possible that the decomposing of excessive urea caused the aggregate of
the gas to form large bubbles, which is in agreement with the TEM and SEM results that the dominant
pore size of CPCs increased from several tens nanometers to several hundred nanometers as the urea
ratio increased. Considering that the micropores were not accessible for flavin mediators [11], the
cumulative pore area distribution was also calculated with the BJH (Barrett-Joyner-Halenda) model
to evaluate the accessible surface area for three CPC materials. The results (Figure 2d) show that the
CPC-9 possessed much higher pore area than the other two materials in small mesopores (2–4 nm)
while the CPC-6 possessed higher pore area in large mesopores and macropores. In this case the CPC-9
and CPC-6 may provide a similar active surface for flavin redox reaction, which was larger than that
of CPC-12.

Table 1. Comparison of Brunauer-Emmett-Teller (BET) surface area of cellulose derived porous carbon.

Precursor Gelation/
Regeneration

NaOH wt%:
Urea wt% Atmosphere Subsequent

Activation

Max. SBET
(m2 g−1)

@temperature
(Cº)

Ref

cellulose
(cotton
linter)

Y 12:7 NH3 N.A. 615@800 [16]

microcrystalline
cellulose Y 7:12 N2 N.A. 781@600 [17]

microcrystalline
cellulose Y 7.5:12 N2 N.A. 646@700 [18]

cellulose
(cotton
linter)

Y 12:7 CO2 N.A. 1364@800 [25]

bamboo
fibers Y 7:12 Ar KOH 1085@900 [19]

cellulose
extracted

from bagasse
Y 7.5:11.5 N2 KOH 2065@900 [15]

cellulose N 8(KOH):12 N2 N.A. 1854@800 [23]

α-cellulose N 6:6 Ar N.A. 1308@800 this work

α-cellulose N 6:9 Ar N.A. 2052@800 this work

α-cellulose N 6:12 Ar N.A. 1562@800 this work

The thermal stability analysis results (TG and derivative TG curves) of the CPC precursors are
shown in Figure 3a,b. The weight lost at 160 ◦C~300 ◦C could be due to the decomposition of urea [26]. It
is noted that the decomposition of urea in CPC-6 was slower than that in CPC-9 and CPC-12. The reason
might be that the decomposition of excessive urea in CPC-9 and CPC-12, which was not bound in
cellulose chain, was faster than that of the bound one. The weight lost at around 300 ◦C~400 ◦C could
be attributed to the pyrolysis of cellulose together with the urea decomposition [23,26]. The pristine
cellulose exhibited fast weight loss at 350 ◦C~450 ◦C. It suggests that the intercalation of NaOH and
urea into cellulose chain might decrease the thermal stability of cellulose. The XPS results (Figure 3c)
show that the CPC-9 and CPC-12 possessed a little bit higher oxygen and nitrogen content than that of
CPC-6, which reveals that increase of urea in precursor could promote the doping of nitrogen in the
porous carbon. As the nitrogen doped carbon electrodes often exhibited superior performance in the
MFC anode [27], the CPC-9 may achieve better bioelectrocatalysis performance than that of CPC-6
in MFCs.
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CPC materials.

To evaluate the electrochemical behavior of flavins on the CPC electrodes, the cyclic
voltammograms (CVs), differential pulse voltammograms (DPVs) and electrochemical impedance
spectra (EIS) were measured in 0.1 M phosphate buffer with 2 µM FMN. From the CVs (Figure 4a), the
CPC-9 electrode possesses largest capacitive current as well as the redox peak current. It is reasonable
as CPC-9 possesses highest specific surface area. The CPC-6 possesses comparable redox peak current
with CPC-9 that is higher than that of CPC-12, which has larger specific surface area than the former
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one. It suggests that the redox peak current of flavins depends on the active surface area rather than
specific surface area of the porous electrode. It is further demonstrated by the DPV curves shown in
Figure 4b, which exclude the effect of background current [28]. At the same time, the charge transfer
resistance of CPC-12 is larger than that of CPC-9 and CPC-6. It suggests that the CPC-6 and CPC-9
electrode could provide the higher active surface area and the faster interfacial charge transfer for
flavin redox reaction, which is in agreement with the above discussions about Figure 2d.
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2 µM FMN.

To further investigate the electrocatalytic and interfacial electron transfer behavior of the CPC
anodes, the electrochemical tests were further conducted in S. putrefaciens CN32 half-cells. From the
steady state CVs shown in Figure 5a, one catalytic wave with starting potentials at around −0.45 V
(vs. SCE) can be observed on three curves, which is attributed to the flavin mediated interfacial
electron transfer [29]. It is noted that the CPC-9 had highest catalytic current. In previous reports, the
starting potentials of catalytic waves that associated with flavin-dependent indirect electron transfer
and cytochrome-dependent direct electron transfer was proposed as −230 mV and 200 mV (vs. SHE)
respectively [10]. In this case, the flavins mediated indirect electron transfer should be the main
interfacial electron transfer pathway on these CPC anodes. From the DPV curves (Figure 5b), the
CPC-6 and CPC-9 have similar flavin redox peak that is higher than that of CPC-12, which is in
agreement with the results in Figure 4. It is noted that there was a small peak at around -0.3V vs SCE
at the DPV curve of CPC-9 anode, which could be attributed to direct electron transfer occurring via
flavocytochrome [10,29]. The Nyquist plots (Figure 5c) reveal that the CPC-9 possessed the smallest
interfacial charge transfer resistance. According to the electrochemical analysis results, the CPC-9
possessed the best bioelectrocatalytic performance, which could achieve superior performance in
MFCs. The SEM images of the three CPC anodes in S. putrefaciens CN32 MFC half-cells suggest that the
bacteria loading amount on the electrode is limited. The reason might be that the biofilm formation is
still on-going during the short-term half-cell investigation. In this case, the flavin mediated interfacial
electron transfer could be the dominant pathway for the extracellular electron transfer of CN32 cells on
CPC anodes.
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Lastly, the bioelectrocatalytic performances of different CPC anodes were examined in a batch feed
MFC for two cycles. The polarization and power density curves were determined by using various
external loading resistances (1–80 kΩ) and the results are shown in Figure 6. The CPC-9 exhibited
highest maximum power density of 446 mW cm−2 while CPC-6 anode and CPC-12 anode delivered a
maximum power density of 408 mW cm−2 and 381 mW cm−2 respectively. Considering that the CPC-6
and CPC-9 possessed similar flavin redox peak current, the superior performance of CPC-9 over CPC-6
in power output might be due to its higher capacitive current [30] or perhaps higher bacteria loading.
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Figure 6. Polarization curves (a) and power curves (b) of MFCs equipped with different porous
carbon anodes.

After 14 days operation of the MFCs, the surface morphologies of anodes were immediately
examined by FESEM. Figure 7 shows that the rod-shaped S. putrefaciens CN32 cells adhered on the
anodes to form layered biofilm. It seems that there was thicker biofilm on CPC-9 anode than that on
CPC-6 and CPC-12 anodes. The protein content on CPC-9 was a little bit higher than that on CPC-6 and
CPC-12. As the interfacial electron transfer of the anode mostly relies on the self-generated flavins, the
thicker biofilm will guarantee higher interfacial flavin concentration and thus promote the interfacial
electron transfer. In this case, the superior power generation performance of CPC-9 anode could be
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due to its high active surface area for flavin redox reaction, high capacitive current and also the thicker
biofilm on the electrode surface.
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(c): CPC-12.

According to the above results, the function of different pores in hierarchical porous electrode for
anodic interfacial electron transfer and power generation in MFCs could be summarized as follows.
Both the mesopores and macropores contribute active surface for flavin mediated interfacial electron
transfer, which might be the dominant interfacial electron transfer pathway in these CPC-anode
MFCs. The micropores would increase the specific surface area as well as the capacitive current of the
anode, which could enhance the power density of the MFCs. The micropores might also promote the
adsorption of flavins on electrode surface to achieve flavocytochrome based direct electron transfer but
it needs further evidence.

4. Conclusions

In summary, the cellulose/NaOH/urea aerogel derived hierarchical porous CPC can be obtained
through one step pyrolysis and the pore structure could be tailored via adjusting the weight ratio of
urea. Increased urea cased enlarged meso- and macropores as well as the doping of nitrogen atom. The
CPCs with high meso- and macropore area exhibit greatly improved flavin based interfacial electron
transfer. While, the large amount of micropores generated from the reaction of NaOH and carbon
during pyrolysis resulted in high specific surface are as well as high double layer capacitance, which
enhanced the power generation performance in S. putrefaciens MFC. Considering that the CPC is
just obtained from the pyrolysis of the cellulose-NaOH-urea aerogel, this work also provides a facile
approach for hierarchical porous carbon preparation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/3/664/s1,
Figure S1: SEM images of cellulose powder before (a) and after (b) pyrolysis.
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