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Abstract: A one-pot synthesis of triazolobenzodiazepine-containing polycyclic compounds is
introduced. The reaction process involves a decarboxylative three-component [3 + 2] cycloaddition of
nonstabilized azomethine ylides, N-propargylation, and intramolecular click reactions.

Keywords: one-pot synthesis; decarboxylative [3 + 2] cycloaddition; nonstabilized azomethine ylides;
click reaction

1. Introduction

Triazolobenzodiazepines and related scaffolds are privileged heterocyclic systems for biologically
active molecules, such as benzodiazepine-bearing bretazenil [1], midazolam [2]; protease inhibitors [3],
alprazolam [4], estazolam [5], and triazolam [6] (Figure 1). Due to their medicinal significance, the
development of synthetic methods for triazolobenzodiazepine-bearing compounds continuously
attracts the attention of organic and medicinal chemists [7–9].
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Highly efficient and atom economic synthesis such as one-pot reactions and multicomponent
reactions (MCRs) have gained increasing popularity in the synthesizing of complex molecules including
triazolobenzodiazepine-type compounds [10–15]. For example, the Martin group reported a cascade
reductive amination and intramolecular [3 + 2] cycloaddition reaction sequence for triazole-fused
1,4-benzodiazepines (Scheme 1A) [10,11]. The Djuric group modified the van Leusen imidazole
synthesis to develop an intramolecular azide-alkyne cycloaddition for imidazole- and triazole-fused
benzodiazepine compounds (Scheme 1B) [12]. The Kurth group reported a Lewis acid-catalyzed
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MCR for imidazole- and triazole-fused benzodiazepines through sequential [3 + 2] cycloaddition
and cycloaddition reactions (Scheme 1C) [13]. Introduced in this paper is a new sequence involving
decarboxylative intermolecular [3 + 2] cycloaddition of nonstabilized azomethine ylides followed by
N-propargylation and intramolecular [3 + 2] cycloaddition for triazolobenzodiazepines (Scheme 1D).
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Scheme 1. Atom economic synthesis of triazolobenzodiazepines.

1,3-Dipolar cycloaddition of primary amino esters, aldehydes, and activated alkenes is a
well-established three-component reaction [16–21]. The azomethine ylides derived from deprotonation
of iminium ions are CO2R-stabilized ylides A (Figure 2A) [22–30]. In recent years, our lab has reported
a series of azomethine ylides A-based [3 + 2] cycloadditions for diverse heterocyclic scaffolds [31–35],
including one-pot [3 + 2] and click reactions for triazolobenzodiazepines [32]. Compared to the reactions
of stabilized ylides A, cycloadditions of nonstabilized ylides B are less explored (Figure 2B) [36–42]. We
have recently reported the synthesis of α-trifluoromethyl pyrrolidines through decarboxylative [3 + 2]
cycloaddition of nonstabilized azomethine ylides B derived from α-amino acids [43]. Presented in this
paper is a new application of nonstabilized azomethine ylides in the one-pot [3 + 2] and click reactions
for triazolobenzodiazepines.

Molecules 2019, 24, x 2 of 8 

 

a cascade reductive amination and intramolecular [3 + 2] cycloaddition reaction sequence for 
triazole-fused 1,4-benzodiazepines (Scheme 1A) [10,11]. The Djuric group modified the van Leusen 
imidazole synthesis to develop an intramolecular azide-alkyne cycloaddition for imidazole- and 
triazole-fused benzodiazepine compounds (Scheme 1B) [12]. The Kurth group reported a Lewis 
acid-catalyzed MCR for imidazole- and triazole-fused benzodiazepines through sequential [3 + 2] 
cycloaddition and cycloaddition reactions (Scheme 1C) [13]. Introduced in this paper is a new 
sequence involving decarboxylative intermolecular [3 + 2] cycloaddition of nonstabilized 
azomethine ylides followed by N-propargylation and intramolecular [3 + 2] cycloaddition for 
triazolobenzodiazepines (Scheme 1D). 

 

Scheme 1. Atom economic synthesis of triazolobenzodiazepines. 

1,3-Dipolar cycloaddition of primary amino esters, aldehydes, and activated alkenes is a 
well-established three-component reaction [16–21]. The azomethine ylides derived from 
deprotonation of iminium ions are CO2R-stabilized ylides A (Figure 2A) [22–30]. In recent years, our 
lab has reported a series of azomethine ylides A-based [3 + 2] cycloadditions for diverse heterocyclic 
scaffolds [31–35], including one-pot [3 + 2] and click reactions for triazolobenzodiazepines [32]. 
Compared to the reactions of stabilized ylides A, cycloadditions of nonstabilized ylides B are less 
explored (Figure 2B) [36–42]. We have recently reported the synthesis of α-trifluoromethyl 
pyrrolidines through decarboxylative [3 + 2] cycloaddition of nonstabilized azomethine ylides B 
derived from α-amino acids [43]. Presented in this paper is a new application of nonstabilized 
azomethine ylides in the one-pot [3 + 2] and click reactions for triazolobenzodiazepines. 

 
Figure 2. Azomethine ylides from amino esters or amino acid. 
Figure 2. Azomethine ylides from amino esters or amino acid.

2. Results and Discussions

Reaction conditions for the synthesis of proline 4a through one-pot [3 + 2] cycloaddition were
developed using 1:1.2:1 of 2-azidebenzaldehyde 1a, 2-aminoisobutyric acid 2a, and N-ethylmaleimide
3a in the presence of 0.3 equiv. of AcOH for decarboxylation [43] (Table 1). After screening
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solvents including 2-methyltetrahydrofuran, toluene, EtOH and CH3CN as well as reaction time and
temperature, it was found that a reaction using CH3CN as a solvent at 110 ◦C for 6 h afforded 4a in 93%
LC (liquid chromatography) yield with a dr (diastereomer) of 6:1 (Table 1, entry 6). The stereochemistry
of 4a was determined according to the literature report [38].

Table 1. Three-component decarboxylative [3 + 2] cycloaddition a.
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ntry Solvent T (◦C) t (h) 4a (%) b dr (%) c

1 2-Me THF 80 4 trace —
2 MePh 110 4 trace —
3 EtOH 80 4 82 5:1
4 EtOH 110 6 93 6:1
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7 CH3CN 125 12 88 6:1
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Decarboxylative [3 + 2] cycloaddition product 4a was then used for the development of conditions
for the N-propargylation and sequential click reaction for the synthesis of triazolobenzodiazepine 6a.
In the presence of K2CO3, 4a reacted with propargyl bromide in CH3CN at 80 ◦C for 2 h to give 5a in 94%
LC yield (Table 2, entries 2–5). Without separation, the reaction mixture was used for intramolecular
click reaction at 100 ◦C under the catalysis of Cu salts (Table 2, entries 2–4). The CuI-catalyzed click
reaction gave 6a in 89% LC yield, which is better than the reactions catalyzed with CuCl or CuBr. In our
previous work, the intramolecular click reaction was accomplished under microwave heating and
Cu-free conditions [32]. In this work, N-propargylation compound 5a generated under the microwave
heating was continuously heated at 150 ◦C for 1 h to give 6a in 88% LC yield without CuI catalyst
(Table 2, entry 6). A Cu-free control reaction of 5a under conventional heating at 100 ◦C for 3 h only
gave 5% of 6a (Table 2, entry 5).

Table 2. One-pot N-propargylation and click reaction a.
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Entry Solvent T1 (◦C) t1 (h) 5a (%) b Cat. T2 (◦C) t2 (h) 6a (%) b

1 EtOH 80 2 trace
2 CH3CN 80 2 94 CuCl 100 3 35
3 CH3CN 80 2 94 CuBr 100 3 60
4 CH3CN 80 2 94 CuI 100 3 89
5 CH3CN 80 2 94 — 100 3 5

6 c CH3CN 110 0.5 93 — 150 1 88 (dr 6:1)

a Reaction conditions: K2CO3 (2.5 equiv.) and propargyl bromide (5.0 equiv.) under conventional or microwave
heating. b Detected by LC-MS. c Microwave heating for both N-propargylation and click reactions.

After establishing the three-component [3 + 2] cycloaddition, N-propargylation, and sequential
click reactions for 6a shown in Tables 1 and 2, we then aimed to combine these three reactions in one
pot. After modification of the conditions shown in Tables 1 and 2, the best conditions for the one-pot
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synthesis was to conduct the decarboxylative [3 + 2] cycloaddition in MeCN under conventional
heating at 110 ◦C for 6 h, then to perform the N-propargylation and spontaneous Cu-free click reaction
under microwave heating at 150 ◦C for 1 h to give 6a in 76% LC yield (Table 3, entry 3). A control
reaction using CuI as a catalyst for the click reaction didn’t give a better yield (Table 3, entry 4).

Table 3. Conditions for the one-pot synthesis of 6a a.

Int. J. Mol. Sci. 2018, 19, 3891 3 of 16

had a comparable effect to that of GdCl3 administration. We published quite dramatic changes in
gene expression of proteins considered to be involved in hepatic iron metabolism and in hepatic
gene expression of acute-phase cytokines, and demonstrated that Kupffer cells are involved in this
process [22]. Zymosan is known to trigger an inflammatory response through the activation of Kupffer
cells in the liver while the precise effects of GdCl3 on Kupffer cells are not still defined.

The current study aims to further extend the understanding of the changes in gene expression
of the main CXC- and CC-chemokines as well as of adhesion molecules induced by the uptake of
corpuscular matter by the liver macrophages. Moreover, it may be responsible for the recruitment of
neutrophil granulocytes causing a possible interaction of the Kupffer cells and granulocytes. To further
expand our findings and to rule out any changes caused by endotoxin contamination in our rat model
we used C3H/HeJ mice. These mice have a missense mutation in the third exon of toll-like receptor 4
(TLR-4), yielding a non-functional TLR-4; they are hypo-responsive to the effects of lipopolysaccharide
and are resistant to lethal endotoxin-induced shock as compared with normal mice.

One of the main objectives of this work, however, is to introduce a caveat for the interpretation of
data obtained by injecting different materials intraperitoneally without taking into account the changes
in expression of certain genes induced in the liver.

2. Results

2.1. Immunofluorescence Analysis of the Rat Liver Following Intraperitoneal Injection of GdCl3 or Zymosan

Immunofluorescence double staining showed increased numbers of myeloperoxidase positive
(MPO+) cells (recruited granulocytes) as early as 3 h (hours) after GdCl3 administration (Figure 1B)
compared to untreated animals (Figure 1A) while the number of MPO+ cells decreased at 24 h after
treatment (Figure 1C). MPO+ cells were mainly located near the portal vessel and in close vicinity to
the liver macrophages. The same liver sections showed a progressive reduction of ED-1 positivity
after GdCl3 administration, mainly near the portal vessel (Figure 1) while ED-2 positivity remained
unchanged (Figure 2). Double immunofluorescence staining showed few ED-1+ and MPO+, and ED-2+

and MPO+ cells in close contact to each other near the portal area (Figures 1 and 2).
Double immunofluorescence staining of liver sections after Zymosan treatment with antibodies

against ED-1, ED-2 and MPO showed an increased number of MPO+ cells at 3 h (Figure 3B,D),
which were located near the portal vessels but also through the liver parenchyma, compared to
controls (Figure 3A). Double immunofluorescence staining showed few MPO+/ED-1+ as well as
MPO+/ED-2+ cells near the portal area (Figure 3A–D).

Figure 1. Double immunofluorescence staining of rat liver sections (GdCl3 treatment) with antibodies
directed against ED-1 (green) and MPO (red) followed by fluorescence immunodetection. Liver sections
from different time points of study are shown: control (A); 3 h (B) and 24 h (C). Results shown are
representative pictures of six animals and six slides per time point. (Original magnification 200×).

Entry T1 (◦C) t1 (h) Cat. T2 (◦C) t2 (h) 6a (%) b

1 110 0.5 — 150 1 75
2 150 0.5 — 150 1 51
3 150 1 — 150 1 76 (dr 6:1)
4 110 0.5 CuI 110 1 70

a Reaction conditions: 1:1.2:1 1a:2a:3a, K2CO3 (2.5 equiv.), propargyl bromide (5 equiv.). b Detected by LC-MS,
6:1 dr.

Under the optimized conditions for the one-pot synthesis [44], 13 analogues of
triazolobenzodiazepines 6a–m were synthesized using different sets of azidobenzaldehydes 1 (R1 = H,
CF3, Br, Cl, NO2), amino acids 2 (R2 = H, Me; R3 = Me, Ph, i-Pr), and maleimides 3 (R4 = Me,
Et, Ph, Bn, 4-Br-Ph) (Table 4). The reactions of five different maleimides with 2-aminoisobutyric
acids and 2-azidebenzaldehyde gave 6a–e in 55–65% isolated yields. The substitution groups on the
benzaldehydes had some influence on the product yield. For example, the azidobenzaldehydes bearing
electron-withdrawing groups, such as Br and CF3, gave 6f and 6g in lower yields (59% and 35%), while
the azidobenzaldehyde with the strong electron-withdrawing group NO2 gave no product of 6m. The
reactions of glycine and leucine with azidobenzaldehydes (R1 = H, Br, Cl) and maleimides (R4 = Me,
Et) gave 6h–l in 44–55% yields. The stereochemistry of product 6 was established during the step of
the decarboxylative [3 + 2] cycloaddition, which was determined according to the literature report [38].

Table 4. One-pot synthesis of triazolobenzodiazepines 6 a.
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The proposed mechanism for the synthesis of product 6a is outlined in Scheme 2. The condensation
of 2-azidebenzaldehyde 1a and 2-aminoisobutyric acid 2a give oxazolidin-5-one I. It then underwent
decarboxylation to form the nonstabilized azomethine ylide II for [3 + 2] cycloaddition with 3a to form
4a. Formation of 5a through propargylation followed by continuous heating for intramolecular click
reaction affords product 6a. There are several reports in literature which demonstrated that intramolecular
click reactions in one-pot synthesis could be achieved under Cu-free conditions [10,15,32,45,46].
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3. Summary

A one-pot synthesis of fused-triazolobenzodiazepines was developed using readily available amino
acids, maleimides, and 2-azidebenzaldehydes for decarboxylative [3 + 2] cycloaddition of nonstabilized
azomethine ylides, followed by N-propargylation and a Cu-free intramolecular click reaction. This is a
highly efficient and operational simple reaction process for fused-triazolobenzodiazepines, and only
CO2 and H2O were generated as byproducts.

Supplementary Materials: The following are available online. 1H-NMR, 13C-NMR, and 19F-NMR spectra of final
products.
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