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Abstract

Frailty, one appealing target for improving successful aging of the elderly population, is a common clinical
syndrome based on the accumulation of multisystemic function declines and the increase in susceptibility to
stressors during biological aging. The age-dependent senescence, the frailty-related stem cell depletion, chronic
inflammation, imbalance of immune homeostasis, and the reduction of multipotent stem cells collectively
suggest the rational hypothesis that it is possible to (partially) cure frailty with stem cells. This systematic
review has included all of the human trials of stem cell therapy for frailty from the main electronic databases
and printed materials and screened the closely related reviews themed on the mechanisms of aging, frailty, and
stem cells, to provide more insights in stem cell strategies for frailty, one promising method to recover health
from a frail status. To date, a total of four trials about this subject have been registered on clinicaltrials.gov. The
use of mesenchymal stem cells (MSCs), doses of 100 million cells, single peripheral intravenous infusion,
follow-up periods of 6–12 months, and a focus primarily on safety and secondarily on efficacy are common
characteristics of these studies. We conclude that intravenous infusion of allogenic MSCs is safe, well tolerated,
and preliminarily effective clinically. More preclinical experiments and clinical trials are warranted to precisely
elucidate the mechanism, safety, and efficacy of frailty stem cell therapy.
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Introduction

According to the 2018 Aging and Health report by the
World Health Organization,1 by 2050, there will be an

estimated population aged 60 years or more of 2 billion people,
accounting for 22% of the whole population, nearly double
that in 2015 (900 million, 9%). A longer life brings with
it opportunities for society as a whole in many ways, which
are heavily dependent on the person’s health and successful
aging. However, the cumulative decline in physical and
mental capacity currently disturbing many old people brings
negative implications to the added years.1 Hence, almost
all countries are forced to face the challenge of ensuring that
their social system and health system are ready for this
demographic change. Under these circumstances, frailty,
the most problematic manifestation of aging2 and one of
the major parts of Comprehensive Geriatric Syndrome, is

intensively associated with physical and mental function
declines and deserves public attention.

An appropriate target to promote successful
aging: frailty

Frailty is an independent clinical definition, different from
both comorbidity (one of its etiology factors) and disability
(one of its adverse outcomes).3 Frailty has recently been de-
fined by a professional global task force as a progressive sys-
tematic decline of physiological reserves and an increase of
vulnerability to minor stressors.4,5 The main clinical manifes-
tations of frailty present as unintentional weight loss, exhaus-
tion, weakness, slow walking speed, and low physical activity.
These symptoms, which are named Fried phenotypes,3 are
more comprehensively presented as the Frailty Index (FI),6

taking into account multidimensional cumulative deficits,
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which are closely related with adverse clinical events, such as
falls, fractures, disability, and mortality3,4,6

Several major tools are used to assess frailty5: (1) the
Fried Phenotype Criteria and its rapid screen form7; (2) the
FI and the Clinical Frailty Scale of Rockwood and Mitnitski,
which is concerned with poly-morbidities; and (3) mixed
models, such as the Frailty Criteria of the International Nu-
trition Society, the Study of the Osteoporotic Fractures Index,
the Tilburg Frailty Indicator, and the Edmonton Frailty Scale.
Among a world of measurements, currently, the most inter-
nationally well-accepted assessments are Fried’s criteria and
the FI. The FI and the Edmonton Frailty Scale are superior to
other methods when predicting death.2,8,9

Based on a representative review (n = 61,500) and a cohort
study (n = 16019),10,11 the general prevalence of frailty, which
increases with age and is higher in women than in men, is
11.0%–14.9% among the population over 65 years and 40%
among people over 80. According to the consensus, the prev-
alence of frailty in community dwellings was *3.5%–27% in
the Asia-Pacific region, which was comparable to that in
Europe and America.5 The steadily aging population base and
a series of interlinked clinical frailty-related events collec-
tively impose a heavy burden on the public health cost
worldwide. Frail participants had an average total health cost
of e2,476/year and prefrail participants of e2,056/year, which
is approximately twice as high as that of the nonfrail (e1,217/
year) in Spain.12 This situation received particular attention in
Asia, where the elderly who urgently need health care are often
unable to access enough publicly funded health care services.13

To decrease the cumulative vulnerability and dependence of
the older population, which cause complicated demographic,
health-related, and social problems, frailty can thus be selected
as an appropriate target that we must urgently deal with.
Therefore, our aim is to develop a good understanding of the
potential mechanisms and the efficacy of matching therapy.
Nevertheless, the optimal preventions and treatments are still
poorly explored, and there are no specific, effective, and path-
ophysiology reversing strategies for the treatment of frailty.4,14

Biological aging combined with stressors:
the driving force of frailty

Biological aging is natural and involves a gradual decline
of physiological reserves; nevertheless, in frailty, this process
is accelerated and concomitant with falling homeostasis.2,12

Among all of the aging symptoms elucidated by López-Otı́n
et al.,15,16 stem cell exhaustion and altered intercellular com-
munication are likely the ultimate characteristics contributing to
the clinical manifestations of aging-related frailty.17–19 How-
ever, there is uncertainty regarding the precise level and the kind
of these aging characteristics15,16 as they integrate with the
accelerating cumulative decline of physiological reserves ob-
served in aging-related frailty.2 Simply put, the age-related
pathophysiology mechanism, combined with inner and outer
stressors, which drive frailty, calls for a convenient regenerative
strategy that is more effective than current therapeutic meth-
ods.8,20–23 Therefore, much attention has recently been focused
on stem cell strategies, which possess promising potential.

Matched therapy strategy of frailty: stem cells

Embryonic stem cells (ESCs) and adult stem cells are two
main categories of stem cells, along with the embryonic-like

inducible pluripotent stem cells (iPSCs) derived from dif-
ferent somatic cells by activating the ‘‘Yamanaka factors’’
Oct4, Sox2, Klf4, and Myc (‘‘OSKM’’).24,25 Mesenchymal
stem cells (MSCs), one subset of adult stem cells, have
several advantages in frailty therapy: the wide autologous or
allogenic sources of acquisition (bone marrow, adipose tis-
sue, umbilical cord or cord blood, placenta, and peripheral
blood)19,26 and the therapeutic properties of migration to
inflammation and injury sites, differentiation into various
tissue-specific precursor cells, secretion of trophic bioactive
compounds, and mediation of immunomodulatory effects.24,27

There is, clearly, an opportunity to now apply stem cell
strategies for the age-related and stressor-involved clinical
condition of frailty for the aging population.

Although the subject of stem cell therapy for frailty has
been considered by some leading research teams global-
ly,19,24,28 few human trials are registered at clinicaltrials.gov
at present,29,30 which act as the potential new landmarks of
frailty therapy. To date, there is little agreement on frailty
stem cell therapy,19,24,28 thus calling for more insights into
this promising approach. The question how the aging pro-
cess and relatively minor stressor events combine to build
the foundation for frailty and why stem cell therapy is the
favorable approach for treating aging-related frailty are the
issues addressed in this systematic review.

Methods

Given the contradiction between the significance of frailty
stem cell therapy and the limited numbers of human trials
directly adopting stem cells as intervention to treat frailty,
the search strategy was not just rigorously confined to ran-
domized clinical trials of stem cell-based frailty therapy, but
also included leading reviews elaborating on the stem cell
function decline in frailty during biological aging and the
promising potentials of stem cells in frailty treatment.

Search strategy

With inclusion and exclusion criteria prespecified as be-
low, we identified recent publications reporting the advance
of frailty, mainly addressing the pathophysiological mech-
anism and potential targets for stem cells, and all of the
publications on stem cell treatments for frailty, by searching
several main electronic databases (EMBASE, All EMBASE
REVIEWS, MEDLINE, and Cochrane CENTRAL from
Ovid SP; PUBMED; OpenGrey; CBM) and clinical-
trials.gov (November 22, 2018; in English and Chinese),
using the key search strategy ‘‘stem cell AND frail,’’ with a
series of Boolean operators. Two individuals carried out the
database searches and screened abstracts or full texts inde-
pendently; a third author resolved the disagreements. The
relevant bibliographies were screened to further identify
valuable publications.

Inclusion and exclusion criteria

Mainly, we included the studies in which the frailty pa-
tients were directly treated with allogeneic or autologous
stem cells of different sources and in which the safety and
efficacy were compared with the control counterparts treated
with placebo (or not). Due to the low number of frailty stem
cell trials completed presently and the high significance of
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this promising novel strategy of stem cells to treat frailty,
some other types of important literature were also searched
and screened as independent parts (not shown). We ex-
cluded studies that did not directly use stem cells as an
intervention to treat frailty, such as the transplantation of
hematopoietic stem cells for diseases that include leukemia.

Data extraction

The following items were extracted by two individuals
independently from each included study and registered
clinical trial: reference details (title and date); condition and
interventions (stem cell type, dose, delivery route, and fre-
quency); aims and characteristics (study type, phase, and
study design); recipients (age and sex); and main outcome
measures. When safety and efficacy tests were performed
serially, we schemed to extract the data at the different time
points in the safety part but only extracted data for the final
time point in the efficacy part, for acute and chronic adverse
reactions were both indispensable for the safety assessment.
For missing or incomplete data, we requested them from the
authors or else estimated numerical values by digital ruler
software. The flowchart is shown in Figure 1.

Results

The design characteristics of the included allogenic
bone marrow derived MSC studies for frailty

Regarding the one human trial of the only two original
articles included so far, this project was launched as a phase
I/II, randomized, blinded, and placebo-controlled clinical
trial (No. NCT02065245) and was named as CRATUS (the
Greek god symbolizing power and strength)24,29–31 in 2014.
It was estimated to be completed in 2020. The project is
under the charge of the team of Joshua M. Hare of the
Interdisciplinary Stem Cell Institute at the University of
Miami Miller School of Medicine and their commercial
collaborator EMMES Corporation. The primary objective is
to determine the safety of different doses of allogenic bone
marrow mesenchymal stem cells (Allo-BMMSCs) and the
tolerability of cell infusion; the secondary objective is to
explore the potential treatment efficacy in improving frailty.

The Allo-BMMSCs, a U.S. FDA-regulated drug product,
were derived from bone marrow of eligible male or female
donors aged 20–45 years, cultured and amplified in vitro,
and then identified by measuring the gene expression of
white blood cell RNA.31 Patients of both sexes, aged 60 to
95 years, with a score of 4–7 on the Canadian Clinical
Frailty Scale (apparently vulnerable to severely frail) and a
score of less than or equal to 24 on the Mini Mental State
Examination (MMSE) were taken as eligible subjects. In
total, 65 participants were enrolled. Groups treated with 20,
100, or 200 million cells (5 patients per group) and groups
treated with 100 or 200 million cells or placebo (10 patients
per group) were formed for the pilot safety phase and for
randomized phase trials. All of the cell intervention subjects
received single peripheral intravenous infusion of Allo-
BMMSCs with a total volume of 80 mL at an average speed of
2 mL/min, so the total infusion time was 40 minutes.14,29–31

Within the 12-month follow-up period, primary outcomes
include any incidence, mainly in the first 30 days postinfusion,
expressed as treatment-emergent serious adverse events

(TE-SAEs), such as death, stroke, hospitalization for wors-
ening dyspnea, nonfatal pulmonary embolism, and clinically
significant serum chemistry and hematology test abnor-
malities. Secondary outcomes include indicators for phys-
ical function, quality of life, exercise, change in ejection
fraction, and inflammatory markers, assessed at 3 and 6 months
postinfusion.29–31 The details of the study are shown in Table 1.

The comprehensive analysis of the results of enrolled
phase I/II clinical trials

According to outcomes from the only two published studies
of stem cell trials for frailty,29,30 all 15 patients of the pilot
phase and 30 patients of the randomized phase actually had
scores of 4–6 on the Clinical Frailty Scale, so the basal degree
of frailty ranged between ‘‘moderate’’ and ‘‘vulnerable,’’ and
no severely frail patients were enrolled. The average age of
subjects was 78.4 – 4.7 in the pilot study, 75.5 – 7.3 in the
randomized phase, and 76.0 – 6.7 in the whole study. Among
the 45 subjects, nearly all were of the Caucasian race, and no
participants of Hispanic or Latino ethnicity were included.

Comparing all 45 patients who underwent cell infusion
and the control counterparts for the main safety evaluation,
2 patients died 8 months postinfusion and in 4 patients
donor-specific reactions occurred, as observed by calculated
panel reactive antibodies, which, however, were unrelated
events or had no clinical significance. Notably, no patients
demonstrated adverse signs of cardiopulmonary reactions
after the infusion, and the basic clinical hematology and
chemistry tests were stable during the entire study period.

As regards the efficacy, remarkably, 100-million cell
doses exhibited a more effective reaction than the 20- and
200 cell doses, and the level of tumor necrosis factor-a
(TNF-a), an important biomarker closely associated with
inflammation and immunity, had significantly decreased at 6
months in all cell treatment groups. However, examination
of other physical indices, cardiopulmonary function, quality
of life, and biomarker levels, such as the 6-minute walk
distance test (6MWT), exhaustion-multidimensional fatigue
inventory (MFI), and C-reactive protein (CRP) levels, did
not give consistent results and/or did not show statistical
significance between groups.

In summary, the allogenic MSC intervention for frailty is
safe and well tolerated with no TE-SAEs and no significant
immune reactions throughout the whole duration of the
study. In addition, single peripheral infusion of allogenic
MSCs preliminarily proved efficacy.

Overview of worldwide ongoing human trials
of stem cell therapy for frailty

Systematic analysis of all the ongoing and completed
clinical trials applying stem cells of multiple types to treat
frailty provides an overview of the progress in this novel
field.

A total of four human trials, Nos. NCT01501461,
NCT02065245, NCT02982915, and NCT03169231, were
registered on clinicaltrials.gov between 2011 and 2017. The
first one, No. NCT01501461, was registered in 2011 by Zu-
niga et al. of the Instituto de Medicina Regenerativa and the
Ageless Regenerative Institute in Mexico, but it was with-
drawn in 2018 because the company was dissolved. The other
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three trials, including No. NCT02065245 (analyzed above),
are ongoing (Table 2).

The trial Nos. NCT02982915 and NCT03169231 are both
multicenter, randomized, blinded, and placebo-controlled
clinical studies launched by the company Longeveron LLC
in 2016 and 2017, respectively, which are also the trials of
Joshua Hare. Both studies adopt the same cell product, de-
rived from allogenic human bone marrow and named
Longeveron MSCs (LMSCs), as co-treatment or indepen-
dent treatment strategies. The study No. NCT02982915 is a
phase I/II trial to test the safety and efficacy of LMSCs for
improving the vaccine immune response. A total of 43
subjects, of both sexes, aged 65 to 90 years, and having
scores of 4 to 7 on the Canadian Frailty Scale and a distance

of >200 and <400 m on the 6MWT, were enrolled. In the
pilot phase, three cohort groups, A, B, and C, were arranged
to receive an infusion of 20–100 million LMSCs, followed
by an intramuscular injection of Fluzone High Dose Vaccine
at 1–4 weeks postinfusion. Groups A and B corresponded to
the patients who had received LMSCs in the pilot phase. In
the randomized phase, two groups (10 patients each) re-
ceived a single infusion of 100 million LMSCs or placebo.
The trial No. NCT03169231, a phase IIb study conducted in
11 medical centers in California and Florida, includes 120
subjects and is a follow-up study on that of Hare et al. in
Miami (No. NCT02065245). The objective is to assess the
safety of LMSC intervention and its efficacy in improving
physical function (mobility and tolerance) and TNF-a levels.

FIG. 1. Flowchart of the literature retrieving and screening.
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The enrollment criteria are more narrowly defined,4 for
example, age of 70 to 85 years, a score of 5 (mildly frail) or
6 (moderately frail) on the Clinical Frailty Scale, a distance
of >200 and <400 m on the 6MWT, and a serum TNF-a
level >2.5 pg/mL. Three treatment groups (doses of 25, 100,
and 200 million LMSCs) and one placebo group were ar-
ranged in parallel and followed up for 180 days postinfu-
sion. The details and a comparison of ongoing trials are
illustrated in Figure 2.

Discussion

People are living longer. Frailty has become a public pri-
ority, as the global population is aging at an accelerating
speed,4 and it is a major contributor to disability, dependence,
and death, and it reduces health and successful aging.1

Complicated mechanism of frailty

For aging-related frailty, the complicated underlying
mechanism, involving genetic, epigenetic, and environmental
factors,32–34 has not been clearly elucidated yet.4,28,35 Never-
theless, it is generally agreed upon that the underlying mecha-
nism of frailty intertwines with an accelerated aging process2,6,16

and is influenced by stressors, such as damaged cells, pro-
inflammatory macromolecules, toxic metabolites, pathogenic
microbes, and social dysfunction (Fig. 3).

Stem cell depletion and exhaustion is one of the ultimate
culprits in aging and frailty,16,30,36 as it compromises en-
dogenous rejuvenation of the physiological reserve in
aging-related frailty.14,16,28 All adult stem cells lose function
over time, for instance, those in stem cell compartments of
hematopoietic tissue,37 forebrain, bone, and muscle fibers.38

Satellite cells, or skeletal muscle stem cells, are impaired and
lost in aging muscle, causing the main frailty phenotypes of
losing muscle mass and strength.39 Circulating osteogenic
progenitor cells, surrogates of the mesenchymal repository in
the body, decrease with age, and the stem cell properties also
decrease, both facilitating frailty.40 Besides, BMMSCs from
old animals show decreased expression levels of multiple
genes related to cellular maturation and migration. Further
proof obtained from experiments with interleukin-10 (IL-10),
IL-1 receptor antagonist (IL-1RN), inducible nitric oxide
synthase (iNOS), transforming growth factor (TGF)-b3,
matrix metalloproteinase-9 (MMP9) (after blocking TNF
receptor 2 [TNFR2]), and interferon gamma receptor 1
(IFNGR1) in BMMSCs suggests that the downregulation of
special receptors in BMMSCs compromises their protective
properties and contributes to the functional attrition of these
cells.41

Inflammation is also a core mechanism behind frail-
ty.30,42,43 Changes in several kinds of inflammasome or
pro-inflammatory pathways are highly important. The over-
activation of the NF-jB pathway and the NLRP3 inflamma-
some leads to an increased production and release of
inflammatory cytokines, such as IL-1b, TNF-a, and inter-
ferons.44,45 The activation of NF-jB in the microenviron-
ment of the hypothalamus triggered by inflammatory and
stress responses results in a reduced production of gonado-
tropin releasing hormone (GnRH), which facilitates frailty-
associated changes, such as muscle weakness, osteopenia and
bone fragility, and reduction of neurogenesis.46 Besides,
the sirtuin pathway can modulate inflammatory responses.
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SIRT1, SIRT2, and SIRT6 downregulate the inflammatory
activation by deacetylating NF-jB subunits and repressing
the transcription of inflammation-related genes.47 Many
inflammatory mediators are independently correlated with
frailty, such as CRP, IL-6, TNF-a, and CXC chemokine
ligand-10 (CXCL-10).48 The increased IL-6 and TNF-a
levels can individually or collectively decrease muscle
mass and strength, facilitating the development of sarco-
penia.49 High levels of CRP, IL-6, and TNF-a are even
independent predictors of mortality.14,50 Noteworthily,
some anti-inflammatory factors were reported to be re-
duced in frailty, such as vitamin C, E, a-tocopherol, and
total thiol levels.51,52

Except the two core observations mentioned above, the
declining physiology reserve and compromised capacity
of rejuvenation in frailty also unfolds as a consequence of
changes in other aspects. The frailty-associated functional
impairment of the immune system has been well docu-
mented.53,54 Immunosenescence manifests as a decline in the
clearing of infectious agents, senescent cells, and infected or
even malignant cells,16 which aggravates the aging and frailty
phenotypes. The activity of T cells is impaired, as indicated
by the decrease in the CD4:CD8 ratio,55 an indicator for in-
fection.56 In a microenvironment with high TNF-a levels,
the function of B cells is compromised, which leads to a
shift to subsets of dysfunctional and exhausted B cells
rather than memory B cells.57,58 Moreover, the association
of oxidative stress biomarkers, including malondialdehyde
(MDA), paraoxonase-1 (PON-1), lipoprotein phospholi-
pase A2 (LpPLA2), 4-hydroxy-2,3-nonenal (HNE), deri-
vate of reactive oxygen metabolites (d-ROM), oxidized
glutathione/glutathione (GSSG/GSH), isoprostanes, pro-
tein carbonylation, and 8-hydroxy-20-deoxyguanosine,
with frailty was assayed.51,52,59 Higher levels of hemato-
logical fibrinogen VIII and D-dimer lead to fatigue and
increase the risk of venous thromboembolism compared to
nonfrail people, even after adjusting for cardiovascular
diseases (CVDs) and diabetes.60,61 In addition, in the en-
docrine system, serum hormones, such as testosterone and
dehydroepiandrosterone (DHEA), 25(OH) vitamin D, growth
hormone, insulin-like growth factor-1 (IGF-1), and ghrelin,
are closely related with frailty.62–64 The main effect of tes-
tosterone is in activating protein synthesis. The testosterone
and its higher affinity form, dihydrotestosterone, can upre-
gulate the expression of muscle-specific genes and increase
muscle strength through the Wnt/b-catenin signaling path-
way.60,61 The situation of frailty becomes worse when more
than two synthetic hormones are lacking, especially when
coupled with vitamin B12 deficiency and/or celiac disease.65

At the organismal level, the multidimensional and multi-
factorial mechanism that causes frailty phenotypes or syn-
dromes manifests as unintentional weight loss (especially the
lean body mass), declining strength and endurance, slower
gait speeds, reduced balance, less activity, and impaired
cognition and social function.14,24,33 Among them, the loss of
muscle mass and strength, sarcopenia, and cognition im-
pairment play large roles in frailty syndrome.66,67 Interest-
ingly, body weight can sometimes increase in frailty. This is
because fat mass increases and muscle mass decreases with
aging, leading to sarcopenic obesity.68 Clinically, the lower
skeletal muscle index, lower hip bone mineral density, and
larger waist circumference can raise the risk of osteoporosis,

fall, and fracture in frail people.69 Timed walk and grip
strength can act as predictors of mild cognitive impairment,
as cognition impairment disturbs both gait speed and grip
strength.33 Frailty and delirium seem distinct geriatric syn-
dromes, with frailty being a chronic condition and delirium
an acute change of cognition. Frailty may predispose patients
to delirium, and delirium disturbs the recovery of frailty from
stressors, predicting a negative prognosis.70 Besides, an in-
dependent impact of depression on frailty has been pro-
posed.71

Promising stem cell strategy for frailty

As no standard and effective treatment for frailty patients
exists, the repletion of multipotent stem cells is an appealing
strategy to rejuvenate the multifactorial dysfunction in frailty.
As an important step in conducting any stem cell therapy is an
appropriate choice of cell sources, various types of stem cells
are exploited, such as ESCs72 (highly undifferentiated and
pluripotent), MSCs73,74 (easily available and low immunoge-
nicity), and iPSCs75,76 (possessing pluripotency to differenti-
ation). Meanwhile, it is considered that limbal stem cells are
basically matured and endothelial progenitor cells are favored
for their special properties of perivascular reparation, which
are needed in regenerative medicine.77 Among them, the
distinctive advantages of MSCs of low immunogenicity, rel-
atively abundant sources, easy isolation and expansion,72

multilineage differentiation, secretion of immunomodulatory
and anti-inflammatory factors, and stimulation of endogenous
progenitors4,14,19,28 make MSCs an attractive candidate strat-
egy for frailty treatment.28

MSCs secrete a variety of factors and this can be regu-
lated by the microenvironment.78 TGF-b and IL-10 are
relatively well studied.16 MSCs modulate TGF-b to activate
the STAT6 pathway in response to IL-4 signaling.79 TGF
can regulate immunity by facilitating the increase of T
regulatory cells (Treg) and the decrease of CD4+ and CD8+

T cells and T helper 1 (Th1) cells.80 MSCs secrete IL-10 by
directly interacting with T cells to inhibit the production of
pro-inflammatory cytokines by macrophages, which modu-
lates anti-inflammatory and immunoregulatory actions. In
addition, MSCs can release extracellular vesicles (exosomes
or microvesicles), which contain cytokines and growth
factors, including vascular endothelial growth factor, hepa-
tocyte growth factor/scatter factor,81 fibroblast growth fac-
tor, IGF-1 and IGF-2, and placental growth factor,14 and
some other signaling lipids, mRNAs, and miRNAs.82

In recent years, clinical and preclinical investigations ap-
plying stem cells have made considerable progress in the
treatment of a wide spectrum of diseases of the elderly
population, most of which are closely interrelated with frailty
and contribute to adverse outcomes. MSCs secrete paracrine
factors, exosomes, and small extracellular vesicles, reduce
inflammatory factors, and activate the resident cells after
injury.14,19,24,28 It has been shown that MSCs promote the
proliferation, differentiation, and migration of resident stem
cells to prevent cardiomyocyte apoptosis, reducing fibrosis
after myocardial infarction by modulating secreted frizzled-
related protein 2, IGF-1 hypoxia-induced Akt-regulated stem
cell factor,83,84 and the proteins, peptides, and miRNAs se-
creted in/on exosomes and extracellular vesicles. The out-
comes of many CVDs were improved by MSCs, for example,
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myocardial infarction85 and nonischemic86 and ischemic
cardiomyopathy.81 It is likely that these beneficial effects are
mainly mediated by the secreting function, especially the
paracrine system,87 and secondarily by the direct cellular
contact, such as the formation of gap junctions through tun-
neling nanotubes.28,88 These hypotheses, however, remain to
be verified. As the 6MWT, an important physical function
assessment tool that was originally developed for assessing
cardiac and pulmonary disorders,29,30 it can support the proof
for the potential benefits of MSCs in the treatment of frailty.14

Therapeutic effects of stem cells have also been shown in
Parkinson’s disease,89 amyotrophic lateral sclerosis,73 chronic
obstructive pulmonary disease,90 idiopathic pulmonary inter-
stitial fibrosis,91 diabetes,73 lupus,92 traumatic brain and spinal
cord injury,74 stroke,93 and atherosclerosis.94,95 These indi-
rectly suggest the feasibility of the application of stem cells in
frailty treatment.

Current challenges in stem cell therapy for frailty

For frailty, the paucity of relevant acknowledged animal
models and the lack of clinical standard diagnosis, outcome
measures, and reliable, validated, and sensitive biomarkers
pose barriers to the preclinical and clinical research.4 Ther-
apeutic interventions to ameliorate the signs and symptoms
of aging-related frailty mainly focus on resistance exercise
regimes, the Mediterranean diet,96 and protein, caloric,
vitamin D,5,97 and hormonal supplementation,97–99 which,
independently or in combination, have made some prog-
ress.100 However, there are no effective and special treat-
ment strategies for frailty so far.4,14

Challenges exist, although preclinical and clinical evidence
collectively predict a promising future of the stem cell ap-
proach for frailty. Current human trials show preliminary
efficacy, but many outcome items are variable.29,30 Inspir-
ingly, a phase IIb human trial, including 120 subjects, is
ongoing to compensate this (No. NCT03169231). However,
there are no solid data that provide evidence that sarcopenia
or osteoporosis could be reversed by stem cell therapy, which
are both closely related with frailty. In osteoporosis, the
number of BMMSCs declines. It is uncertain whether in-
fused stem cells differentiate into osteoblasts and induce
bone formation, for that the transplanted stem cells do not
migrate to bone surfaces, do not show long-term engraft-
ment, and disproportionally facilitate adipogenesis instead
of osteogenesis.101,102 Thus, genetically modified stem
cells, for example, iPSCs, were proposed as an alternative
approach.102 For sarcopenia, exogenous stem cells, such as
satellite cells,103 muscle-derived stem cells,104 perivascular
stem cells,105 ESCs, and iPSCs,75 were used to promote the
regeneration of skeletal myofiber. However, limited success
has been reached so far. There may be reasons like that the
satellite cells are generally quiescent in adult skeletal mus-
cle106,107 and a small contribution is made by them even in a
circumstance of a large hypertrophy of the skeletal muscle.108

Besides, cell deliverability and in vitro expansion are issues
that require attention.109 Interestingly, a cohort study,110 in
which 998 hematopoietic cell transplantation (HCT) survivors
and 297 matched siblings were examined, found that frailty
increased the risk of mortality by 2.76 times, even after ad-
justing for predictors, but the young adult HCT survivors
were 8.4-fold more likely to be frail at old age than their

siblings. These findings appear to suggest that hematopoietic
cell therapy can not only not ameliorate frailty but also ex-
acerbate the situation. Reasons may include the following.110

First, this study was not an interventional trial directly inves-
tigating the efficacy of stem cell therapy on frailty. The in-
cluded subjects should be comparable between intervention
and control groups, that is, the participants receiving HCT and
controls should have the same underlying disease. Second,
HCT injured normal tissues, which intensified the susceptibil-
ity of the ill fragile body and eased the development of frailty
when confronted with harmful factors compared with their
siblings. Third, hematopoietic cells mainly differentiate into
blood cells, including red blood cells, white cells, and
platelets, but the comparatively limited potency compared
to other types of stem cells compromises their application
when applied to cure illnesses other than diseases of the
blood system, such as frailty.

We would like to mention some limitations of our review.
There are few studies about stem cell therapy for frailty,
both in animal models and clinical trials, so in this sys-
tematic review we could not conduct a deep meta-analysis.
With the aging global population and the promising explo-
ration of stem cells, numerous studies about this interesting
subject are expected to follow. In addition, stem cells are a
biological therapeutic strategy, but the stability and onco-
genicity require consistent long-term verification. Third, our
main focus was aging-related frailty, and the prevalence of
frailty in young adults was not taken into account. Younger
people increasingly tend to suffer from frailty, and future
investigations should take this into account as well.

The major strength of the present systematic review is that
it elaborates on the relationships of aging-related frailty and
stem cell therapy from a holistic and logistic perspective.

Conclusion

Frailty urgently requires attention. Stem cell therapy for
frailty possesses great potential. Currently, although there
still are challenges, single peripheral intravenous infusion of
allogenic MSCs is proved to be safe, well tolerated, and
effective in modulating immunity and inflammation, and it
preliminarily shows a tendency to improve physical func-
tions and quality of life. Finally, many other human trials on
this subject will explore the depth and breadth of this novel
cell-based frailty treatment.
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