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DNA methylation (5mC) and hydroxymethylation (5hmC) are chemical modifications of cytosine bases
which play a crucial role in epigenetic gene regulation. However, cost, data complexity and unavailability
of comprehensive analytical tools is one of the major challenges in exploring these epigenetic marks.
Hydroxymethylation-and Methylation-Sensitive Tag sequencing (HMST-seq) is one of the most cost-
effective techniques that enables simultaneous detection of 5mC and 5hmC at single base pair resolution.
We present HMST-Seq-Analyzer as a comprehensive and robust method for performing simultaneous dif-
ferential methylation analysis on 5mC and 5hmC data sets. HMST-Seq-Analyzer can detect Differentially
Methylated Regions (DMRs), annotate them, give a visual overview of methylation status and also per-
form preliminary quality check on the data. In addition to HMST-Seq, our tool can be used on whole-
genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS) data sets
as well. The tool is written in Python with capacity to process data in parallel and is available at
(https://hmst-seq.github.io/hmst/).
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Epigenetic DNA methylation provides an additional layer for
controlling cellular processes. It is the most stable epigenetic mark
that plays a significant role in gene regulation with impact on
health and disease [1]. Nevertheless, DNA methylation varies in
response to cell differentiation, disease, and environmental factors.
In vertebrates, 5-methylcytosine (5mC) is the most abundant
epigenetic mark. It is usually found in CpG context, where
5mC can be iteratively oxidized by TET proteins to
5-hydroxymethylcytocine (5hmC), the second most abundant epi-
genetic mark in vertebrates [2]. The aforementioned two methyla-
tion marks have essential roles in the development and regulation
of cellular processes [3]. Especially, abnormal methylation patterns
have been observed in many human diseases and can be used in
clinical outcome predictions [4]. Hence, correct profiling of DNA
methylation in a genome is key to understand the contribution
of epigenetics in gene regulation.

Nowadays, bisulfite treatment is considered as the most effec-
tive way of targeting DNA methylation [5]. Whole-genome bisul-
fite sequencing (WGBS) is the most comprehensive protocol for
measuring genome-wide single-base-pair resolution methylation,
hence making it the golden standard technique [6] for studying
genomic DNA methylation. Some studies in vertebrate genomes
(e.g., birds and fishes) recommend 15X of sequencing depth for
WGBS experiments [7,8]. Others such as the NIH Roadmap Epige-
nomics Projects advise coverage of 30X (combined coverage of 2
replicates). Similarly, the ENCODE project and the International
Human Epigenome Consortium (IHEC) recommend users to submit
experimental data with sequencing depth of 30X for WGBS [9,10].
To achieve 30X sequencing depth of human sized genome, ~180 GB
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of sequencing data is produced in WGBS experiments [11]. The
data size will be reduced in case of organisms with a smaller gen-
ome size [8]. Alternatively, an enhanced protocol (HiSeq X Ten)
offers improved cost effectiveness and coverage [12] for WGBS
experiments. However, to achieve the claimed low cost, all the
HiSeq X Ten machines are required to be run on full capacity. In
addition to this fact, the total price of the system makes it suitable
for larger institutes only [13] Nevertheless, WGBS remains an
expensive experiment with huge data handling and processing
requirements for downstream analysis. This highlights the need
of enrichment-based techniques, which offer a fair trade between
coverage and cost.

Reduced representation bisulfite sequencing (RRBS) is a cost-
effective enrichment-based sequencing method to target DNA
methylation. RRBS reduces sequencing requirements by targeting
CpG rich genomic regions only [14]. RRBS produces much less data
and reduces the experimental cost significantly. Unfortunately,
both WGBS and RRBS are unable to distinguish between 5mC
and 5hmC on DNA. Therefore, hydroxymethylation and
methylation-sensitive tag sequencing (HMST-seq) was proposed
to detect both 5mC and 5hmC on DNA sequences simultaneously
[11]. HMST-seq takes advantage of sequence specific DNA restric-
tion endonucleases: for example, HpaII can cleave unmodified
cytosine only while MspI cleaves at both 5mC and 5hmC. More-
over, b-glucosyltransferase (b-GT) can transfer glucose to 5hmC
which will block MspI digestion. By combining these enzymatic
reactions, HMST-seq generates three tag libraries, which can be
used to determine methylation and hydroxymethylation abun-
dance in a sample. The first library contains information of unmod-
ified, methylated and hydroxymethylated cytosines, generated by
MspI digestion only. The second library refers to unmodified and
methylated cytosines generated by glucosylation of 5hmC and sub-
sequent MspI digestion. The third library contains only unmodified
cytosines generated by HpaII digestion. HMST-seq not only targets
both 5mC and 5hmC in Msp1 sites (50-CCGG-30) at single base res-
olution but also generates only ~5 GB data to achieve a 30X
sequencing depth. Since HMST-seq relies on specific restriction
enzymes, it is limited to regions with CCGG sites, thus covering
approximately 4–7% CpG dinucleotides distributed throughout
the vertebrate genome. However, it has recently been demon-
strated that locations of CCGGs largely reflects those of all CpGs
in the genome [15] and that epigenetic profiling by using
methylation- and hydroxymethylation-sensitive restriction
enzymes can successfully address fundamental biological ques-
tions [16–19]. In contrast to WGBS sequencing, HMST-seq is distin-
guishing between 5mC and 5hmC providing additional information
about the dynamics of oxidative demethylation. The cost, coverage
and detection of both 5mC and 5hmC on DNA sequences make
HMST-seq an attractive tool for biologists to perform whole-
genome methylation studies with large sample sizes.

With the advancement of high throughput sequencing tech-
nologies, data generation rate has outpaced the Moore’s law [20]
while data analysis still remains a challenge. There are, however,
several tools available for differential methylation analysis (e.g.,
MethylKit, MethylSig, and BSmooth [21–23]). While the majority
of tools are tailored towards 5mC only a few of them focus on
5hmC. Especially, none of the publicly available tools for differen-
tial methylation analysis focuses on both 5mC and 5hmC that are
generated by the HMST-seq. Though the methylation data analysis
pipeline MINT integrates several tools to process both methylation
and hydroxymethylation data, it cannot be applied on HMST-seq
library tag data [24]. As mentioned earlier, HMST-seq outputs tag
counts for three libraries separately and requires processing to
methylation and hydroxymethylation levels after wards, this facil-
ity is not available in previous tools like MethylKit, BSmooth or
MINT pipleine. Thus, we have developed a new differential methy-
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lation analysis pipeline called HMST-Seq-Analyzer, which is a user-
friendly command line Python package. Though the differential
methylation analysis is similar between 5mC and 5hmC at the
genome-wide scale, the pre-processing of HMST-Seq data for
5mC and 5hmC is quite different. For example, the methylation
and hydroxymethylation levels are calculated by taking ratio of
tag counts from three libraries. Such difference in the low-level
methylation analysis is taken care by HMST-Seq-Analyzer auto-
matically. Especially, the methylation analysis of both 5mC and
5hmC is done in a single run in the package, which simplifies the
illustration and interpretation of results. The package is optimized
to process huge data sets from either HMST-seq or WGBS by using
parallel computation, as well as data from RRBS. HMST-Seq-
Analyzer implements a methylated region (MR) search method
similar to one that has been previously published in [11] to detect
differentially MRs (DMRs) from HMST-seq data. Two slightly mod-
ified search methods to define MRs are available to suite the nature
of different data sets. For instance, for larger data sets coming from
WGBS experiments, pipeline allows tiling window analysis to effi-
ciently deal will large number of methylated sites. Multiple statis-
tics test are also available to search DMRs to accommodate
differences in nature of data generated by different methylation
detection platforms. All detected DMRs are automatically anno-
tated to the reference genome based on the refFlat file from UCSC
Genome Browser [25]. Moreover, the package provides a simple
statistical summary of the distribution of methylation in various
genomic regions (e.g., transcription start site (TSS), transcription
end site (TES), gene body, intergenic, 50 distance region, and other
regions like enhancers). Finally, it also provides lists of hyper- and
hypo-DMRs annotated to different genomic regions.

2. Material and methods

HMST-Seq-Analyzer is a new Python package, that employs
robust statistical methods for differential methylation analysis in
whole-genome DNA sequencing data such as HMST-Seq, WGBS,
or RRBS. Although the pipeline is optimized for HMST-seq data, it
can be easily applied on either WGBS or RRBS data by simply
adjusting the default MR search parameters and the DMR search
method. HMST-Seq-Analyzer conducts differential methylation
analysis using three steps. Generally, differential methylation
detection can be done at multiple genomic resolutions like non-
CpG (CHG/CHH), CpG, genome wide tiles or at annotated regions.
However, in case of single base pair resolution data coming from
techniques like HMST, WGBS and RRBS, differential methylation
detection at base pair level becomes a computationally exhaustive
task. For two reasons, the best approach is to perform annotated
genome analysis; first, use of external genome annotation data
focuses the analysis on those methylated regions which can possi-
bly act as epigenetic regulatory switches and second, it reduces the
search space, which is otherwise extremely dense. Hence, HMST-
Seq-Analyzer tries to minimize the computational burden, by first
extracting methylation regions (MR) from predefined genomic
areas (e.g., TSS, TES, enhancer, gene body, 50 distance region and
intergenic regions) that may act as epigenetic regulatory switches.
In the second step, it filters MRs in parallel, which further narrows
down the total search space and computational cost. Finally, differ-
entially methylated regions (DMRs) in predefined genomic areas
are predicted by robust statistical tests (e.g., Wilcoxon rank-sum
test) between the control and the reference samples. Fig. 1 summa-
rizes the workflow of HMST-Seq-Analyzer. It is divided into eight
discrete modules, where the default settings for the parameters
are aimed for HMST-seq data but parameters are flexible to accom-
modate RRBS and WGBS data in the package. A more detailed
description of HMST-Seq-Analyzer can be found in the following
subsections.



Fig. 1. Detailed scheme of flow of HMST-Seq-Analyzer pipeline. HMST-Seq-Analyzer detects differential methylation in three major phases: 1) preprocessing of data where it
performs annotation and extracts methylated regions from predefined regions (e.g., TSS, TES, enhancer, gene body, 50 distance region and intergenic regions); 2) searches for
MRs with same locus in the case and control samples, finds DMRs (e.g. usingWilcoxon Ranksum, Kolmogorov–Smirnov test or T-test), and categorizes them into Hyper/Hypo-
methylated DMRs; 3) visualizes graphical summary of analysis results, exports the results in form of list of Hyper/Hypo DMRs and gene annotation.
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2.1. Quality control

Before running the pipeline, users can check input data quality
by calculating the average of read count distribution among the
samples. It is preferable to have majority of the reads distribution
above 15X coverage in a sample to ensure reliable prediction of
DMR [7] as recommended by the ENCODE project [9]. This facility
is provided as an additional script in the toolbox in the demo data
set. Apart from the average read count, the toolbox also offers pre-
liminary cleaning and processing of input files.

2.2. Pre-processing

By default setting HMST-Seq-Analyzer extracts five types of
regions from a given reference genome refFlat file: TSS, gene body,
TES, intergenic, and 50 distance region of each gene. A detailed
illustration of these five regions is shown in SFig. 1, where Gene
body is defined between TSS and TES. TSS and TES are ± 1 kb (de-
fault) from the original TSS and TES, respectively. The 50distance is
from 10 kb to 100 kb upstream (default) of the TSS. The intergenic
regions consider the whole genome except for TSS, TES and gene
body. In this way, the pipeline includes whole genome in differen-
tial methylation analysis. The lengths of TSS, TES, 50distance and
intergenic regions can be adjusted by the user in the pipeline. An
additional enhancer option can also be used by any other regions
of choice, provided that chromosomal coordinates are given in sim-
ple bed format. The gene annotation task is required only once if
the same genomic regions will be used across multiple experi-
ments. Predicting DMRs from aforementioned five types of geno-
mic regions may help us to identify putative functional DMRs in
downstream analysis. For HMST-Seq data, if input tag counts are
not normalized across sample, then a quantile normalization
method can be applied. Subsequently, an abundance of 5mC/5hmC
level from HMST-seq can be determined by the ratio between the
normalized tag counts of two libraries (e.g, between BGT (b–gluco
syltransferase – to detect 5hmC) and HpaII for 5mC; between MspI
and BGT for 5hmC). For RRBS and WGBS, a direct input of methy-
lation levels and the corresponding chromosome positions from a
bed formatted file is requested. The pipeline offers to switch
between the two major types of data sets: methylation level based,
i.e. WGBS/RRBS, and library tag count based, i.e. HMST-Seq.

2.3. Differential methylation analysis

In HMST-Seq-Analyzer, there are two major steps to identify
DMRs from genome-wide DNA methylation sequencing data: 1)
Searching for candidate methylation regions (MR); 2) Identifying
significantly differentially methylated regions (DMRs) with robust
statistical tests.

2.3.1. Searching for methylated regions
Methylated and hydroxymethylated regions can vary in size

from a single methylated base pair to an entire gene locus, depend-
ing on the biological question of interest. Although single methy-
lated CpG is reported to affect gene expression regulation [26]
and disease risk [27], the majority of DMRs are reported to range
from a few hundred bases to a few kilobases which may be biolog-
ically more interesting [28]. Especially, DMRs are known to regu-
late cell-type specific transcriptional repression of genes [29],
and this size range complements with the size of other gene regu-
latory regions such as enhancers. Though HMST-seq data are lim-
ited to HpaII restriction sites, it has recently been shown that
locations of CCGGs are evenly distributed comparable to those of
all CpGs in the genome, and methylation level determined in speci-
fic genomic regions (e.g. promoter) highly correlate with gene
expression [15]. Thus, searching for methylated regions (MR)
2880
makes sense for HMST-seq data. Moreover, epigenetic profiling
by using methylation- and hydroxymethylation-sensitive restric-
tion enzymes successfully addresses fundamental biological ques-
tions [17–19].

In HMST-Seq-Analyzer, an MR is defined as a cluster of 5mC or
5hmC sites at a locus. The search for MRs is only carried out in cer-
tain defined genomic regions (e.g., gene body, TSS, or enhancer
etc). There are two major stringency parameters in the MR search
method: the number of consecutive sites and the distance of adja-
cent methylated sites. For HMST-Seq data, this is similar to the pre-
vious publication [11], where any clusters of methylated sites
would be classified as MR: (1) if there are at least N (the default
is 5 for gene body/intergenic/50Distance and 3 for TSS/TES)
5mC/5hmC sites in the region, and (2) the distance between two
consecutive methylated sites is not greater than a bp (the default
is 2000 bp). CpGs in an MR can have increasing or decreasing trend
of methylation and this trend can be similar or mixed in the case
and control samples. HMST-Seq-Analyzer allows restricting the
DMR search to same methylation trend by using an additional
parameter in the DMR search function (�isST = 1 or 0 will force
all CpG sites in the same MR shall have the same or mixed chang-
ing trend, respectively) [11]. These parameters can be easily chan-
ged by command line options. For WGBS and RRBS data, slightly
modified parameters can be used to search MRs (e.g., N = 3 and
a = 2000 bp for WGBS; N = 2 and a = 200 bp for RRBS). Alterna-
tively, the package also provides an equal sized sliding window
bin approach which can be applied on the data to search for
MRs. This option is suggested for large and dense data set such
as WGBS.

2.3.2. Identification of differentially methylated regions
The current package performs pair-wise or multiple samples

comparison for differential methylation analysis (e.g., one control
versus one case, or one/multiple controls versus one/multiple
cases). Therefore, MRs or methylation sites need to be available
in both conditions before performing a significant differential
methylation analysis. Unfortunately, due to DNA sequencing vari-
ation and many other uncontrollable reasons in methylation
experiments, some methylation signals may be missing in one of
the conditions, even if from technical replicates. This is a missing
value problem in sequencing data analysis, which is the first chal-
lenge in differential methylation analysis. A missing value indi-
cates that methylation level at a position is not recorded as an
experimental error or it was an unmethylated state and a methyla-
tion level was recorded as zero. There are three possible ways to
deal with the missing value: ignoring, deletion, or imputation.
The first two options cannot be good options because they can
result in loss of an important DMR. Therefore, all missing values
are imputed in the current pipeline before identifying DMRs. For
less computational cost, the missing values can simply be replaced
by the median of methylations in an MR or by zeros (default,
because it resembles a possible real unmethylated state). Alterna-
tively, a nearest neighbour data imputation method can be applied
on an MR with missing values, but this method will have heavy
computational burden. After finding MRs sharing the same locus
in both conditions and imputing the missing values, the pipeline
applies the Wilcoxon Rank-sum test to evaluate the significance
of differentially methylated MRs as used by many similar studies
[11,18,30]. There are three versions of the Wilcoxon Rank-sum test
available in the pipeline: Pranksum, Mranksum, and Rranksum.
Pranksum is a Python implementation of the P-value computation
for the Wilcoxon rank-sum test:

p ¼ exact if nx < 10
mannwhitneyu otherwise

�
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where nx is the number of 5mC/5hmC sites in an MR, exact is a
Python implementation of the exact enumeration of P-value [31]
when the sample size is small (this is a contribution of this research
work in the pipeline), and mannwhitneyu is a function from Python
library scipy.stats that performs a two-sided Mann-Whitney U test
or Wilcoxon rank-sum test. The exact calculation of P-value is rec-
ommended when there are less than 10 methylation sites in a MR.
For a large sample size, an approximation of P-value can be
obtained from Python’s Mann-Whitney U test function. Mranksum
is a Matlab version of rank-sum test, which is computed as
following:

p ¼ exact if min nx; ny
� �

< 10 and nx þ ny < 20
approximate otherwise

(

where exact is the exact computation of the P-value when sample
size is small, and approximate is the Matlab function of the two-
sided Wilcoxon rank-sum test. Hence, the pipeline also offers
Rranksum, which is the wilcox.test function of R. It computes P-
values as follows:

p ¼ exact if nx < 50 and ny < 20 and no ties

approximate otherwise

�

However, the R version of the rank-sum test does not have tie
correction and is much slower than both Matlab and Python imple-
mentation. MATLAB is a commercial license software that users
might not have access to. A performance comparison of the three
methods for DMR detection is provided in SFigs. 2 and 3. One of
these three methods should be chosen based on the resources
available. Alternative statistic test methods are also implemented
in the HMST-Seq-Analyzer for identifying DMRs such as two sam-
pled T-test [22] and Kolmogorov-Smirnov test [32]. In the future,
more advanced methods (e.g. the Beta-binomial method [23]) will
be considered in the pipeline. Pranksum is the default setting in
HMST-Seq-Analyzer.

For each MR, the significance of differential methylation
between the two conditions is evaluated by a P-value. Correction
of the P-value by either without (default) or with Benjamini-
Hochberg false discovery rate [33] is implemented in the package.
MRs with P-values crossing the predefined threshold (e.g., p < 0.05
by default) are considered as DMRs. Here, an identified DMR can
either exhibit an increase or a decrease in methylation levels
between the two conditions, termed as hyper or hypomethylation,
respectively. For that reason, a relative ratio (rratio) approach [34]
is used to distinguish between the Hyper-DMRs and the Hypo-
DMRs. It is given by the following formula:

rratio ¼ lKO � lWT

ðlKOþlWT
2 Þ

where mKO is the median of the original methylated levels in the
case (KO) data, and mWT is the median of the original methylated
levels in the control (WT) data. A DMR is considered as hyperme-
thylated or hypomethylated when the rratio is greater than or smal-
ler than zero, respectively. As an option, users can also plot all DMRs
to investigate their quality or may run the DMR search function
again by using new parameters (e.g., a new P-value threshold or a
new P-value correction method).

2.4. Annotation of DMRs

The pipeline also annotates all the hypo/hyper-DMRs to the
genomic regions (TSS, TES, gene body, intergenic, 50 distance and
any given region like enhancers). As a result, lists of DMRs are cat-
egorically exported for each region with a corresponding P-value
for each DMR. Moreover, a list of gene names having DMRs associ-
ated to their TSS, TES or gene body is also exported.
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2.5. Visualization and statistical summary of results

Three main figures in the results provide a statistical summary
of the genome-wide methylation status: 1) relative density of
5mC/5hmC (e.g., methylation levels >1 and >0.5 for HMST-Seq
[11] and WGBS/RRBS data, respectively) in defined genomic
regions (e.g, TSS, TES, gene body, enhancer, 50 distance, and inter-
genic regions) or genome-wide; 2) percentage of hyper-/
hypomethylated DMRs in TSS, TES, gene body, 50 distance, and
intergenic regions; 3) a genomic average of 5mC/5hmC levels in
TSS-Gene-TES regions or enhancer regions. To plot the genomic
average of 5mC and 5hmC levels in TSS, TES, gene body or enhancer
regions, the package maps MRs of these regions to a new uniform
range that equalizes all genes’ length [31]. Here, one-dimensional
nearest-neighbour algorithm was used to interpolate methylation
data when mapping the original data to a new range. Subsequently,
the mean of methylation levels of all genes was calculated in the
new equalized range, where a centred moving average method is
used to smooth the data as follows:

MAt ¼ 1
n

Xn=2

i¼�n=2
Ai

Here, n is the window size, and Ai is the data point at the ith
position. The window size is the number of observations used for
calculating the statistic. In order to reduce noise when plotting
the genome-wide average of methylation profiles, a one-
dimensional Gaussian filter [35] is applied to further smooth the
mean data before plotting them in TSS, gene body and TES regions
in a single plot. The effect of the data smoothing is illustrated in
SFig. 4. The genome-wide average methylation level of enhancers
can be plotted in a similar way. The pipeline also exports the plot
data for external visualization and analysis by users. For more
information of implementation, package comparison and perfor-
mance (e.g., CPU hours and memory consumption) please refer to
(http://urn.nb.no/URN:NBN:no-76419).
2.6. Methylation data

HMST-Seq-Analyzer can handle two types of data: methylation
and hydroxymethylation, from three different DNA sequencing
approaches (e.g., HMST-Seq, WGBS, and RRBS). There are two types
of methylation input data: 1) a bed formatted file containing
methylation percentage per base, used for WGBS or RRBS data. 2)
a TSV file containing normalized tag count per base from 3 libraries
of HMST-seq data. The pipeline has been tested successfully in
CpG, CHG, and CHH methylation from WGBS, RRBS, and HMST-
seq. For WGBS, Human lymphoblastoid cell line (GM12878) and
human embryonic stem cell line (H1) from ENCODE data sets are
used as test and control set, respectively [9]. For RRBS, TET knock-
out mice data was used [36]. HMST-seq data was acquired from a
study conducted on two hepato cellular carcinoma (HCC) cell lines
(97L and LM6 cells), and a non-HCC sample [18].
2.7. Gene annotation

As DMR detection will be spanned around annotated genomic
regions, gene annotation information is needed. The reference gen-
ome file is a simple tab separated text file containing the chromo-
some number and the size of respective chromosome, which were
prepared according to assembly and species of the input samples
(e.g., hg19 and mm10 chromosome size information [25]). If a
bed formatted enhancer position file is available, then the pipeline
can map DMRs to enhancer regions. This enhancer option can be
used to map DMRs across any other regions as well e.g. CpG
islands.

http://urn.nb.no/URN%3aNBN%3ano-76419


Fig. 2. Distribution of differentially methylated (or hydromethylated) regions (DMRs/DhMRs) between the two HCC cell lines (97L and LM6) and a non-HCC sample
(NO45268) in five types of genomic regions. HMST-Seq-Analyzer was applied on publicly available HMST-Seq data of three samples (two liver cancer cell lines and one
normal liver sample) simultaneously. Hyper/Hypo DMRs/DhMRs between the two liver cancer samples and one normal sample were identified by the pipeline automatically.
The distribution of these DMRs/DhMRs were mapped to five types of genomic regions (gene body, 50 distance region, intergenic region, TSS, and TES) by the HMST-Seq-
Analyzer. Here, the 50 distance region is defined as the upstream of TSS from 10 Kb to 100 Kb, and the intergenic regions are genomic regions excluding gene body, TSS and TES
which with the minimum and maximum length 2 Kb and 100 Kb, respectively. There is the same changing trend in each MR before using Kolmogorov-Smirnov test to predict
the DMRs/DhMRs.
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2.8. Computational efficiency of HMST-Seq-Analyzer

In order to make the pipeline suitable for large data sets, HMST-
Seq-Analyzer modules Find MRs, Preparation for DMR Search, and
DMR Search are optimized for parallel computation specifically.
The input argument -p is used to define the number of CPUs a user
wants to use. As a result, the corresponding task is automatically
parallelized either on a single multi-core machine, or on a high-
performance computer. HMST-Seq-Analyzer was tested on both a
small and a large dataset to evaluate the efficiency. For small data
set (~4.5 MB), chromosome 1 from a HMST-Seq mouse data was
used with 70,201 and 71,646 tag counts for the KO and WT sam-
ples, respectively. For a large data set (~66 MB), the whole
HMST-Seq mouse (20 chromosome) data set was used with KO
(1037346 tag counts) andWT (1054613 tag counts) condition sam-
ple, respectively. The test was run on 5 CPUs with 4G memory on
SAGA computer cluster at Norwegian University of Science and
Technology.

3. Results and discussion

3.1. Differential methylation analysis of HMST-Seq data

Numerous studies have reported a role of altered methylation
of tumor suppressor genes in the pathogenesis of human hepato-
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cellular carcinoma (HCC) [37]. In addition, 5-hmC levels are
reported to be lower in HCC tissues in comparison to non-tumor
tissues [38]. Simultaneous inspection of 5mC and 5hmC levels in
HCC can reveal important characteristics of epigenetic alterations
in HCC. In a study by F. Gao et al., HMST-seq was performed on
two HCC cell lines (97L and LM6 cells), and a non-HCC sample
[18]. In this work, HMST-Seq-Analyzer with default parameters
on chromosome 1 of this dataset was run and tag counts were
aligned to the same human reference genome (hg19). All results
and figures were generated by a single run of HMST-Seq-
Analyzer on both 5mC and 5hmC data simultaneously. Fig. 2 shows
that there is not a strong difference between hyper-DMRs and
hypo-DMRs distributions in different genomic regions. However,
a lower number of hyper-DhMRs but higher number of hypo-
DhMRs in HCC cell lines as compared to the non-HCC cell line
(lower panel of Fig. 2), especially in TSS regions are clearly seen.
Fig. 3 suggests that the number of significantly modified 5mC
and 5hmC sites are lower and higher for the non-HCC sample in
all genomic regions (especially in TSS) than that of HCC samples,
respectively. In Fig. 4, the 5mC levels around TSS seem to be
slightly higher in the HCC samples than in the non-HCC sample.
In contrast, 5hmC levels are increased more than twofold around
TSS in non-HCC compared to HCC samples. Another study also
found uneven distribution of 5mC and 5hmC in TSS regions of
tumor samples as compared to non-tumor samples [39]. They



Fig. 3. The relative density of significantly modified 5mC (or 5hmC) sites in the two HCC cell lines (97L and LM6) and one non-HCC sample, within the five types of genomic
regions. HMST-Seq-Analyzer was applied on public available HMST-Seq data of three samples (two liver cancer cell lines and one normal liver sample) simultaneously.
Significantly modified (methylation/hydromethylation levels > 1) 5mC/5hmC sites in the three samples were identified and their relative density in five types of genomic
regions (gene body, 50 distance region, intergenic region, TSS, and TES) was calculated by the pipeline automatically. The 50 distance region is defined as the upstream of TSS
from 10 Kb to 100 Kb. The intergenic regions are regions excluding gene body, TSS and TES, which with the minimum and maximum length 2 Kb and 100 Kb, respectively.
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observed overall high 5mC levels and lower 5hmC levels in tumor
tissues. These results are also in agreement with the results pre-
dicted by HMST-Seq-Analyzer as shown in Fig. 2, where ~70% of
MRs in the TSS region are DhMRs while only ~10% are DMRs. Thus,
our new pipeline reproduces the results of the original publication
in a single run, which simplifies the data interpretation. More
interesting results can be found if the pipeline is run on the com-
plete data set. For example, significantly differentially methylated
genes for hepatocellular carcinoma can be drawn out from the
gene list exported by the proposed tool.
3.2. A comparison of HMST-Seq-Analyzer and MethylKit in analysing
differentially methylated CpG sites

Currently, there is lack of publicly available tools for analysing
HMST-Seq data. To evaluate the robustness of differential methyla-
tion analysis in HMST-Seq-Analyzer, results are compared to a
popular tool - MethylKit, which uses Fisher’s Exact Test (FET) to
identify differentially methylated CpG sites (DMCs) [21] in WGBS
or RRBS data.
3.2.1. HMST-Seq Analyzer recovers MethylKit DMCs in WGBS
Here, a WGBS data set for human genome was gathered from

the ENCODE project. Human lymphoblastoid cell line (GM12878)
and human embryonic stem cell line (H1) are used as test and con-
trol set, respectively [9]. Raw sequencing data set was mapped to
hg38. Due to enormity of WGBS data, it was split chromosome
wise for analysis on both tools. Results were later combined for
whole-genome level analysis. The default parameters of HMST-
Seq-Analyzer were used, except for shortening the 50-Distance
regions between 10 kbp to 50 kbp from TSS, in order to reduce
the computation time. For MethylKit, a q-value < 0.05 with mini-
mum percent methylation difference cut-off of 25% are used to
identify differentially methylated cytosines (DMCs). For HMST-
Seq-Analyzer, we extracted DMCs from our predicted DMRs before
comparing them to those provided by MethylKit. In total, HMST-
Seq-Analyzer and MethylKit reported 47 million and 11 million
DMCs sites, respectively. HMST-Seq-Analyzer recovered 97.6% of
the mCs reported by MethylKit (Fig. 5). While MethylKit reports
only individual DMCs, HMST-Seq-Analyzer gives much more infor-
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mation along recovering almost all the DMCs reported by
MethylKit.
3.2.2. A comparison of HMST-Seq-Analyzer and MethylKit in RRBS
In this comparison, RRBS data was obtained from experiments

with TET knockout mice [36]. Both HMST-Seq-Analyzer and
MethylKit were applied on the same data, to detect differential
methylation events between TET1 and TET2 double knockout and
wild type mice. In terms of the number of CpGs per kb, RRBS has
much sparse methylation sites than that in WGBS, hence we per-
formed whole-genome differential methylation detection in a sin-
gle batch. For MethylKit, the default parameters were used for
detecting genome-wide DMCs. For example, a q-value < 0.05 with
minimum percent methylation difference cut-off of 25% was used
to identify DMCs as used in the source publication [36]. For
HMST-Seq-Analyzer, genome-wide DMCs were extracted from
DMRs reported by the package before comparing with the
MethylKit results, where the number of minimum consecutive
sites is 2, adjacency is 200 bp, the same methylation changing
trend, and T-test were used in DMR analysis. HMST-Seq-Analyzer
reported 4242 DMCs in its DMRs, while MethylKit reported
15,756 DMCs in total, in which ~48% of the DMCs obtained from
HMST-Seq-Analyzer overlap with MethylKit DMCs (SFig. 5). If the
same methylation changing trend is disabled in HMST-Seq-
Analyzer, then the percentage of overlapping DMCs drops slightly
to 46% (SFig. 6). Though half of the predicted DMCs by HMST-
Seq-Analyzer are recovered by MethylKit, HMST-Seq-Analyzer
gives much fewer DMCs than MethylKit. This is mainly caused by
the two packages using entirely different methods to predict
DMCs. HMST-Seq-Analyzer has a restriction of adjacency in nearby
CpGs and of minimum number of CpGs in MR. Moreover, DMCs are
extracted from the predicted DMRs by using T-test. On the con-
trary, MethylKit is designed to report DMCs only but does not con-
sider the spatial distribution of CpGs in a MR, and the significance
of DMCs is tested on individual CpG directly based on Fishers’ exact
test.

In further analysis, a correlation between the percentage of
overlapping DMCs and the change of adjacency in HMST-Seq-
Analyzer is studied. DMCs predicted by HMST-Seq-Analyzer with
different adjacencies are compared against to the prediction of
MethylKit with default parameters. The result in SFig. 7 suggests



Fig. 4. The distribution of genome-wide average of 5mC (or 5hmC) levels in TSS-Gene-TES regions for both HCC cell lines (97L and LM6) and non-HCC sample. HMST-Seq-
Analyzer was applied on publicly available HMST-Seq data of three samples (two liver cancer cell lines and one normal liver sample) simultaneously. Methylated regions
(MRs) of 5mC and 5hmC in three different samples are identified by the pipeline in TSS, TES, and gene body regions, respectively. A genomic average of 5mC/5hmC levels in all
TSS-Gene-TES regions are calculated, where a centred moving average method is applied to smooth the data. Subsequently, one-dimensional Gaussian filter is used to reduce
noise in smoothed mean data before plotting the genome-wide average of methylation levels in TSS-Gene-TES region.
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that a smaller adjacency in HMST-Seq-Analyzer gives a higher per-
centage of overlap between the two methods. For example, the
percentage of overlapping DMCs is increased from about 41% to
51%, when the CpG adjacency is reduced from 3000 bp to
100 bp. Therefore, the discrepancy of predictions between the
two packages is expected, which is mainly due to the difference
in prediction method such as the restriction of spatial distribution
for nearby CpGs in HMST-Seq-Analyzer. A list of optimal parame-
ters for HMST-Seq-Analyzer is provided in the package. For RRBS
data analysis, it is recommended to use adjacency of 200 bp
(�a = 200), the same methylation changing trend (�isST = 1), a
minimum number of 2 consecutive sites (�mc1 = 2, �mc2 = 2,
�mc3 = 2) and T-test for DMR prediction. For WGBS data, we
suggest to use window bin size 200 bp (�W = yes, �a = 200), a
minimum of 3 consecutive sites (�mc1 = 3, �mc2 = 5, �mc3 = 3)
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and T-test for detecting DMRs. In case of HMST-seq, the default
parameters are adjacency 2 kb, a minimum of 3 consecutive sites
(�mc1 = 3, mc3 = 3) and 5 (�mc2 = 5) for TSS/TES/enhancer and
gene body/50 distance/intergenic regions, respectively. More infor-
mation of optimal parameter selection for HMST-Seq-Analyzer is
included in the package.

3.2.3. HMST-Seq Analyzer captures important information that is
missed by MethylKit

To further evaluate the results between the two tools, we focus
on the promoter regions (±1 Kb to TSS) from the first round of RRBS
analysis with default parameters. HMST-Seq-Analyzer reported
291 genes having more than two DMCs in the promoter regions
(STable 1). For MethylKit, it reported a total of 3938 genes with
DMCs in the promoters but the majority (61%) of them had only



Fig. 5. Whole-genome DMC comparison for WGBS (HMST-Seq-Analyzer VS
MethylKit). Number of genome-wide DMCs predicted by HMST-Seq and MethylKit
are shown in figure. Unique DMCs predicted by HMST-Seq-Analyzer are repre-
sented in Pink, by MethylKit in green and overlapping in brown, respectively. Both
HMST-Seq-Analyzer and MethylKit were run in default parameters. Here, ~98% of
the DMCs identified by MethylKit are overlapping with DMCs predicted by HMST-
Seq-Analyzer. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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one DMC (SFig. 8). There are 91 genes overlapping between the
MethylKit and HMST-Seq-Analyzer results (STable 2). For instance,
Atf4 which is a transcription factor, was reported as having DMCs
occurring at the promoter region by both tools (Fig. 6a). Because of
the wide difference in results from the two tools, it is interesting to
perform functional gene annotation on the two gene lists. DAVID
tools was used for this analysis [40]. GO results (P-value < 0.05)
of the genes predicted exclusively by HMST-Seq-Analyzer (~200)
and MethylKit (e.g., the top 200) are presented in STables 3 and
4, respectively. The highest number of genes (20) predicted by
HMST-Seq-Analyzer are involved in organismal development
(STable 3). This was also reported in the original study that dele-
tion of TET proteins impairs differentiation in embryonic stem
cells, which is clearly linked to organismal development [36]. Since
there were too many MethylKit predicted genes (>3800) with
DMCs in promoters to give a meaningful gene enrichment test,
the top 200 differentially methylated genes (on the basis of the
P-value from MethylKit) were selected for functional gene annota-
tion (STable 4). Here, genes were reported to be involved in 15 dif-
ferent processes, with the highest number of them being linked to
transcription (GO:0006351, 23 genes) and negative regulation of
transcription (GO:0000122, 14 genes). However, the original study
reports [36] that while the TET protein deletion did alter the DNA
methylation at some promoters, it did not correlate with the corre-
sponding gene expression changes. Moreover, percentage of genes
with only 1 DMC in the promoter further increases to ~70% in the
top 200 results of MethylKit (SFig. 9). A similar result (STable 5)
was obtained when the same analysis was repeated with the top
500 genes from the MethylKit prediction.

Literature evidences of a few genes predicted by HMST-Seq-
Analyzer but missed by MethylKit are provided in Table 1, where
the gene Hoxd12 is particularly interesting because it is directly
targeted by TET1 [41]. TET1 is involved in active demethylation
and decreased recruitment of TET1 to the HOXD12 gene results
in increased methylation of HOXD12. HOXD12 is also reported to
have hypermethylated CpG as a potential marker for stage 1 lung
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squamous cell carcinoma [42]. Hence, HOXD12 must specifically
be reported as differentially methylated in the TET knockout data.
While MethylKit failed to identify HOXD12 as differentially methy-
lated, HMST-Seq-Analyzer not only reported it as differentially
methylated but also correctly categorized it as hypermethylated
as expected in absence of TET proteins (Fig. 6b). In Fig. 7, the dis-
tribution of mCs in this DMR was plotted by HMST-Seq-Analyzer,
where the methylation levels from TET knock out and wild type
are different. For the sites 2–4 in Fig. 7, the WT sample provided
no methylation information for the highly methylated sites in
KO. MethylKit relies on single base pair differential methylation
analysis that discards such sites with missing values, which failed
to capture the DMCs in promoter of HOXD12. It is reasonable to
assume that WT mCs at sites 2–4 experienced demethylation in
presence of TET proteins and consider them in analysis, instead
of assuming that the three consecutive sites experienced experi-
mental error and ignoring them. This argument is more plausible
especially when mCs sites 2–4 are not partially but fully methy-
lated in the KO sample.

Because relatively low coverage per site increases the sampling
variation [43], variation at single sites is usually greater than that
of a region. Translating variation on a single CpG site to a differen-
tial methylation event can thus be misleading. By imputing the
missing values and considering the overall methylation pattern
of adjacent CpG sites, HMST-Seq-Analyzer discovers important dif-
ferentially methylated genes that are completely missed by
MethylKit. Therefore, there are two main reasons to the large dif-
ference in the number of genes with DMCs in promoters reported
by the two tools. MethylKit predicts individual DMCs and then
reports the nearest feature (a gene’s promoter), hence it reports a
huge number of promoters where majority of them (~61%; SFig. 8)
have only one DMC. Labelling whole promoter to be differentially
methylated on basis of one DMC can be misleading. On the other
hand, HMST-Seq-Analyzer has stringency parameters (e.g., �2
DMC at a promoter), which filter out multiple standalone methy-
lated sites. This reduces the total number of promoters reported
at the end of analysis, but provides significant results as every
DMR would have at least two DMCs. In summary, DMCs predicted
by HMST-Seq-Analyzer capture more significant biological events
than MethylKit.

3.3. A comparison of HMST-Seq-Analyzer with more packages for
analysing differentially methylated regions

Though no public standalone tool is available for HMST-Seq
data analysis, there are several R packages (e.g., BSmooth [22],
MethylSig [23], and MethylKit [21]) that can be used to detect
DMR in WGBS experiments. We used WGBS data for two human
cell lines (H1 and IMR90; each cell line with replicate) that
included in BSmooth package, to evaluate the performance of
DMR prediction in HMST-Seq-Analyzer and three R packages
(BSmooth, MethylSig, MethylKit). First, WGBS datasets of the two
human cells of the original publication [44] were downloaded
using R scripts in BSmooth. CpG sites with coverage less than 4
are removed. Then, default settings of each program were used
in computation. For example, smoothed methylation levels by
the BSmooth function were used in both BSmooth and MethylSig,
but raw methylation levels were inputted into MethylKit and
HMST-Seq-Analyzer. In each program, missing value imputation
and data interpretation were based on the default settings. All cal-
culations were performed on a computer node of the Sigma2 Saga
computer cluster at the Norwegian University of Science and
Technology.

In selected four packages, the definition of MR is different. Both
MethylKit and MethylSig consider MR as either tiling windows
(25 bp or default 200 bp) or a set of predefined regions (e.g., pro-



Fig. 6. HMST-Seq-Analyzer predicted DMR at TSS of multiple genes. Panels a and b are for genes Atf4 and Hoxd12 respectively. The first track represents the methylation level
at mCs from wild type (WT) by orange bars, with the height of each vertical bar representing percentage of methylation. The second track represents the methylation level at
mCs from TET1, TET2 double knock out (DKO) in green. The third track represents DMRs detected by HMST-Seq-Analyzer in red. The fourth track presents DMCs predicted by
MethylKit in blue. The fifth track depicts the gene in dark blue. No DMCs were predicted by MethylKit for Hoxd12, hence, the track for methylkit is not included in pancel b.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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moters). BSmooth defines MR by a maximum gap (default is
300 bp) between adjacent CpG sites and a minimum number (de-
fault is 3) of CpG sites in a MR. This is similar to the MR search
strategy in HMST-Seq-Analyzer (e.g., default maximum distance
between adjacent CpG sites is 2000 bp and minimum 3 CpG sites
in a MR). To identify DMRs between the two human cell lines
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(e.g., H1 versus IMR90), MethylKit, MethylSig, BSmooth and
HMST-Seq-Analyzer apply logistic regression test, Beta-binomial
test, T-statistics and T-test on MRs with the same changing trend,
respectively. Since only HMST-Seq-Analyzer considers both DMR
finding and gene annotation simultaneously when searching for
DMRs, the time usage for DMR finding and gene annotation was



Table 1
Literature evidence for genes predicted by HMST-Seq-Analyzer but missed by MethylKit in differentially methylated CpG sites analysis.

Gene Name Comments References

Mael 1) hypomethylated in colorectal cancer.
2) Hypermethylation of MAEL promoter in infertile men.
3) Mael promoter methylation levels are all increased in tet1 tet2 mutants.

[48,49]

Hoxd12 1) recovered as differentially methylated by swDMR (another tool).
2) Hoxd12 is targeted by TET1 and decreased recruitment of Tet1 on HOXD12 gene results in increased methylation.
3) hypermethylated CpGs in HOXD12 gene reported as potential marker for stage 1 lung squamous cell carcinoma.

[30,41,4230,42,50]

Dazl 1) promoter is usually methylated (it’s usually expressed in germ cells, so unmethylated in germ cells only) [51]
Shank2 1) hyper methylated in prostate cancer [52]
Rn45s 1) hypo methylated in mice with high maternal folic acid. [53]

To identify differentially methylated CpG sites (DMCs), HMST-Seq-Analyzer and MethhylKit were applied on the same RRBS data of TET knockout mice experiments. There are
291 and 3938 genes that contain DMCs in the promoters (+/�1Kb) based on the prediction of HMST-Seq-Analyzer and MethylKit, respectively. Selected genes with literature
support are listed here.

Fig. 7. Distribution of Methylated Cytosines in HOXD12 DMR predicted by HMST-
Seq-Analyzer. The heading of the figure provides information about the DMR in
format ‘‘chromosome number:start position:end position:strand:gene identifier”
followed by the p-values. Circles represent imputed methylation values at each
methylated site (blue for wild type/control and green for knockout/case). Diamonds
represent original methylation value (orange for wildtype/control and red for
knockout/case). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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separated in the evaluation. Results of the performance compar-
ison on human chromosome 22 are shown in Table 2, where the
detected DMRs from each method were sorted and merged by
BEDTools [45] before counting their overlap to the predictions
from HMST-Seq-Analyzer. In summary, ~80% of DMRs detected in
each R package are recovered by HMST-Seq-Analyzer, regardless
of the tiling window size (e.g., either 25 bp or 200 bp) that was
used in MethylKit and MethylSig. BSmooth has the highest per-
centage (~86%) of overlapping DMRs with HMST-Seq-Analyzer. A
median size of the predicted DMRs from HMST-Seq-Analyzer
(~10 Kb) is much longer than that of the other packages (e.g.,
~200 to 400 bp). Though HMST-Seq-Analyzer used more running
time (~400 s) than most of R packages (e.g., ~60 to 533 s), around
75% of its wall time were used in the gene annotation. Similar
results were also obtained from both a median size human chro-
mosome (chr17; STable 6) and a large human chromosome
(chr1; STable 7), when the same evaluation was performed. Over-
all, the predicted DMRs from HMST-Seq-Analyzer is robust against
those from the three R packages in WGBS data analysis (e.g overlap
to ~80% of BSmooth and ~70% of MethylSig/MethylKit predictions).
However, the computational efficiency of HMST-Seq-Analyzer
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needs further improvement by optimizing the gene annotation
step during the DMR finding. One advantage of HMST-Seq-
Analyzer over the other tools is that it saves time for post process-
ing. A user already knows that every DMR will contain a minimum
number of methylated sites and will be annotated to a genomic
feature.
4. Conclusion

We present a new Python package called HMST-Seq-Analyzer
for differential methylation and hydroxymethylation analysis, that
identifies and annotates genome-wide differentially methylated
regions (DMRs) by using DNA sequencing data. Though it is opti-
mized for HMST-Seq data, the tool is highly flexible and is able
to analyse other popular types of DNA methylation sequencing
data such as WGBS and RRBS. HMST-Seq-Analyzer takes as an
input either library tag counts of HMST-Seq or methylation per-
centage per base in the case of WGBS/RRBS for DMR detection.
Regardless of pre- and postprocessing steps, this pipeline can be
used independently to detect DMRs. Gene annotation of discovered
DMRs is performed automatically at the end of the pipeline, sum-
mary statistics of methylation distributions in various genomic
regions (e.g., TSS, TES, gene body, and 50 distance region) are illus-
trated in graphs, and the average of methylation levels spanning
gene regions such as TSS-gene-TES or enhancer regions are also
provided. The package is able to deal with very huge data sets such
as genome-wide methylation profiles of CpG, CHG, or CHH methy-
lation from WGBS data, because of the parallel implementation of
the MR/DMR search algorithms. The final results exported by the
pipeline (e.g. gene annotated hyper/hypo DMRs) are ready for biol-
ogists to be used for further detailed investigation.

HMST-Seq-Analyzer is written in Python and is publicly avail-
able. It is a command line tool and tested on both macOS and Linux
operating systems. For small or medium sized data sets (e.g., RRBS/
HMST-Seq), it can be run on desktop PCs. However, for big data
(e.g., genome-wide CpG/CHG/CHH from WGBS), it is preferable to
run the pipeline on high performance computers with parallel
computation. The package is able to process both human and
mouse data, as well as to the other species if the corresponding ref-
erence genomes are available and with the same format as our pro-
vided human/mouse genome. For convenience, human (hg 19,
hg38) and mouse (mm10) genome annotation and chromosome
size files are also included in the package. Though the current pipe-
line is robust in differential methylation analysis when compared
to three popular R packages (overlapping with ~80% BSmooth
and ~70% MethylKit/MethylSig predicted DMRs), it is slow in pro-
cessing of gene annotation during the DMR finding. Especially,
when multiple groups, conditions or replicates are considered in
DMR prediction. In future, we aim to overcome this limitation by



Table 2
A comparison of HMST-Seq-Analyzer and three other packages in differentially methylated region analysis (chr22).

DMRs Overlapping Percentage (%) Length (bp) Gene annotation (second) DMR finding (second) Total (second)

HMST-Seq-Analyzer 1107 1107 100 9768 308 86 394
BSmooth 1105 953 86 379 NA 60 60
MethylSig 34,347 27,816 81 200 NA 168 168
MethylKit 12,460 9865 79 200 NA 87 87
MethylSig 50,597 41,182 81 25 NA 533 533
MethylKit 16,683 13,371 80 25 NA 115 115

HMST-Seq-Analyzer, BSmooth, MethylSig, and MethylKit were applied on the same WGBS data to identify differentially methylated regions (DMRs) between human H1 and
IMR90 cells, respectively. Here, each cell line has replicated experiments and only chromosome 22 is used in the evaluation for all programs. MethylKit and MethylSig are
tested in two different lengths of window size (25 bp and 200 bp). In the table, DMRs represents the number of DMRs detected by the package. Overlapping and Percentage
are the number of and the percentage of DMRs that are overlapping with the DMRs from HMST-Seq-Analyzer, respectively. Length is the median length of DMRs. DMR finding,
Gene annotation and Total are wall time (seconds) used in each step, respectively.
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developing new methods suitable for fast gene annotation and fur-
ther optimize its speed for very large data such as genome-wide
non-CpG methylation. We will also consider adapting the software
for integration into Galaxy [46], CyVerse Discovery Environment
[47], or similar platforms, as well as enabling export of results
for visualization with the UCSC Genome browser [25] or other
tools.
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