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ABSTRACT Plasmodium falciparum, the Apicomplexan parasite that causes the most
severe form of human malaria, divides via schizogony during the asexual blood stage
of its life cycle. In this method of cell division, multiple daughter cells are generated
from a single schizont by segmentation. During segmentation, the basal complex forms
at the basal end of the nascent daughter parasites and likely facilitates cell shape and
cytokinesis. The requirement and function for each of the individual protein compo-
nents within the basal complex remain largely unknown in P. falciparum. In this work,
we demonstrate that the P. falciparum membrane occupation and recognition nexus
repeat-containing protein 1 (PfMORN1) is not required for asexual replication. Following
inducible knockout of PfMORN1, we find no detectable defect in asexual parasite mor-
phology or replicative fitness.

IMPORTANCE Plasmodium falciparum parasites cause the most severe form of human
malaria. During the clinically relevant blood stage of its life cycle, the parasites divide
via schizogony. In this divergent method of cell division, the components for multiple
daughter cells are generated within a common cytoplasm. At the end of schizogony,
segmentation partitions the organelles into invasive daughter parasites. The basal com-
plex is a ring-shaped molecular machine that is critical for segmentation. The require-
ment for individual proteins within the basal complex is incompletely understood. We
demonstrate that the PfMORN1 protein is dispensable for blood stage replication of P.
falciparum. This result highlights important differences between Plasmodium parasites
and Toxoplasma gondii, where the ortholog T. gondii MORN1 (TgMORN1) is required for
asexual replication.
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Human malaria is an important and ongoing cause of global morbidity and mortal-
ity. The majority of the 200 million cases and 400,000 deaths attributable to

malaria annually are due to infection by Plasmodium falciparum parasites (1). Following
the infectious bite of a female Anopheles mosquito, P. falciparum parasites travel to the
liver, differentiate, replicate, and are released as merozoites capable of invading red
blood cells. During the clinically important blood stage of human malaria, P. falciparum
parasites replicate asexually within red blood cells through a process known as schiz-
ogony. In this method of replication, the parasite nuclei and associated organelles
undergo several rounds of division without cytokinesis (2). In the final stage of schizog-
ony, known as segmentation, the nuclei and required organelles are partitioned with
high fidelity into daughter merozoites followed immediately by cytokinesis (3). The inner
membrane complex (IMC), a flattened vesicle with associated proteins that lies interior to
the nascent merozoite plasma membrane (4), and the basal complex, a group of proteins
that forms a ring at the leading edge of the IMC (5), are two essential structures for seg-
mentation. The IMC, together with the subpellicular alveolin filaments, is hypothesized to
provide shape and structural stability to the merozoite, aid in parasite cell division, and
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facilitate gliding motility during invasion (6–16). The basal complex is hypothesized to
serve as the contractile ring that mediates cytokinesis (17–19).

The membrane occupation and recognition nexus protein 1 (MORN1), identified in
Toxoplasma gondii, was the first component of the basal complex to be identified in
Apicomplexan parasites (20). T. gondii MORN1 (TgMORN1) localizes to the basal/lead-
ing edge of the IMC and, additionally, to the centrosome and the apical end of T. gondii
parasites. Conditional disruption of TgMORN1 has profound effects on parasite cytoki-
nesis with formation of multiheaded parasites that are connected at their basal ends
(18, 21). Additional basal complex proteins have been identified in both T. gondii (T.
gondii DLC [TgDLC] [22], TgCentrin2 [19], TgIMC5, TgIMC8, TgIMC9, TgIMC13, TgIMC15
[23], Tg14-3-3, TgMSC1a [24], TgDIP13 [25], and TgMyoJ [26]) and P. falciparum (P. fal-
ciparum BTP1 [PfBTP1] [27], PfCINCH, PfBTP2, PfBCP1 [5], and PfHAD2 [28]). Some basal
complex proteins are present in both P. falciparum and T. gondii (e.g., Tg/PfMORN1 [17]
and TgHAD2a/PfHAD2 [28]). However, multiple basal complex proteins identified P. fal-
ciparum are absent in T. gondii, including PfBTP1, PfBTP2, PfBCP1, and PfCINCH, indicat-
ing divergence between the two Apicomplexan parasites. While P. falciparum MORN1
(PfMORN1) is known to be part of the basal complex in P. falciparum (5, 17, 27, 29), its
functional requirement for asexual replication remains unknown. In the current study,
we investigate the functional requirement of PfMORN1 (PF3D7_1031200) for asexual
replication of P. falciparum.

RESULTS
PfMORN1 is a member of the Plasmodium basal complex. To study the localiza-

tion of PfMORN1, we fused a spaghetti monster V5 (SmV5) (30) epitope tag to the
carboxy terminus of PfMORN1 (Fig. 1A) at the endogenous locus. As expected,
PfMORN1-SmV5 forms rings around nascent daughter cells in segmenting schizonts
by immunofluorescence (Fig. 1B). The PfMORN1 ring is first visualized in early seg-
mentation, enlarges during mid-segmentation, and constricts to a punctate spot at
the end of segmentation—a localization pattern consistent with previously identified
members of the basal complex (5, 27). Together with previous coimmunoprecipita-
tion data using PfCINCH (5), these results confirm that PfMORN1 is a bona fide mem-
ber of the P. falciparum basal complex.

PfMORN1 is efficiently knocked out within a single asexual cycle. To interrogate
the function of PfMORN1, we utilized the loxPint inducible knockout system (31). As
noted above, we introduced a recodonized PfMORN1 coding sequence fused to the

FIG 1 PfMORN1 is a member of the Plasmodium basal complex. (A) Schematic of the loxPint system for
excision of the PfMORN1 genomic locus. The location of the homology regions, Cas9-mediated double-strand
(ds) break, and human dihydrofolate reductase (hDHFR) selectable marker are shown. To clearly show the
location of each feature, the schematic is not drawn to scale. WT, wild type. (B) Airyscan superresolution
microscopy of PfMORN1 throughout segmentation. The basal complex forms as a ring in the apical pole of the
segmenting daughter cell. The complex progresses as a ring down the length of the daughter cell before
converging to form punctate dots at the basal pole of the fully segmented daughter cell. Bars, 1 mm.
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SmV5 epitope tag. This cassette was flanked by loxP sequences nestled in synthetic
introns (loxPint), with the first loxPint site introduced 99 bp into the PfMORN1 coding
sequence. This strain was generated in the 3D7-pfs47DiCre parasite line that expresses
both halves of a dimerizable Cre recombinase (32). The resulting transgenic parasite
strain was named PfMORN1SmV5-loxPint (Fig. 1A). The addition of the small molecule rapa-
mycin (rapa) causes dimerization of the two halves of the Cre recombinase enzyme,
allowing efficient excision of the loxP-flanked DNA sequences. Thus, following the
addition of rapamycin to PfMORN1SmV5-loxPint parasites, the activated DiCre recombinase
excises .90% of the PfMORN1 coding sequence and the SmV5 epitope tag (see below
for efficiency of excision), leading to a functional PfMORN1 protein knockout.

Sorbitol-synchronized ring stage parasites were treated with 100 nM rapamycin to
induce excision. At the schizont stage, genomic DNA (gDNA) was evaluated by PCR to
confirm excision of the loxP-flanked sequence from the parasite genome. The locations of
the primers used for PCR are shown in Fig. 1A. We paired primer 1, which binds in the 59
untranslated region (UTR) of PfMORN1 and upstream of the 59 loxPint site, with primer 2,
which binds downstream of the 39 loxPint site (Fig. 1A). With this primer set, a lack of
recombination results in an amplification product of approximately 3.5 kb, and successful
excision results in a product of a reduced size, approximately 1 kb. We also paired primer
1 with primer 3, which binds within the flanked loxPint sites (Fig. 1A). With this primer
set, a lack of recombination results in an amplification product of approximately 2 kb,
and successful excision results in no PCR product. We collected gDNA from late schizonts
maintained in the absence and presence of rapamicin ([2]/[1] rapa) from the ring stage
of the same cycle. As a control, the wild-type 3D7 gDNA resulted in no PCR products, as
expected since both reverse primers 2 and 3 sit within the genetically altered construct.
In [2] rapa conditions of PfMORN1SmV5-LoxPint parasites, we observe that primers 1 and 2
(primers 1&2) produce a 3.5-kb PCR product and primers 1&3 produce a 2-kb product,
suggesting no excision occurred. In [1] rapa conditions, we observe primers 1&2 produce
a 1-kb PCR product and primers 1&3 result in no PCR products, demonstrating that effi-
cient excision occurs upon addition of rapamycin (Fig. 2A).

To examine efficiency of PfMORN1 protein knockout, we collected late schizonts
maintained on [2]/[1] rapa from ring stage of the same cycle and performed an im-
munoblot probing with an antibody against the V5 epitope. Endogenous PfMORN1 is
predicted to be ;41 kDa, and SmV5 adds an additional ;44 kDa. The expected ;85-
kDa band is present in the [2] rapa lysate and is undetectable in the [1] rapa lysate
(Fig. 2B). In addition, we collected schizonts maintained [2]/[1] rapa from the ring
stage of the same cycle stage for immunofluorescence assay with antibodies against
V5 and the IMC-associated protein PfGAP45 (33). We identified schizonts with PfGAP45
signal, indicating they are actively segmenting, and calculated the percentage of
actively segmenting schizonts with observed PfMORN1 (V5) staining. In [2] rapa condi-
tions, we observe 99.2% 6 0.8% of actively segmenting schizonts with PfMORN1 stain-
ing. In [1] rapa conditions, we observe an average of 1.20% 6 0.49% of actively seg-
menting schizonts with PfMORN1 staining, a .98% reduction in PfMORN1 detection
by immunofluorescence after addition of rapamycin (Fig. 2C). These results demon-
strate efficient excision following rapamycin treatment.

PfMORN1 is not required for asexual proliferation of P. falciparum. To examine
the consequence of PfMORN1 deficiency on asexual proliferation, we performed a flow
cytometry-based growth assay over two complete intraerythrocytic development
cycles. Rapamycin ([1] rapa) or dimethyl sulfoxide (DMSO) ([2] rapa) was added to
rings during cycle 0. Parasitemia was assessed by flow cytometry, after staining with
SYBR green I, upon initial seeding (cycle 0) and for the following two replicative cycles.
Over two asexual cycles, the parasitemia of parasites under [1] rapa conditions were
not significantly different from those under [2] rapa conditions (Fig. 2D), and both
were similar to the control 3D7 wild-type strain.

To examine the impact of PfMORN1 deficiency on major subcellular structures, we
collected schizonts maintained [2]/[1] rapa from the ring stage of the same cycle for

PfMORN1 Is Not Required for Asexual Replication

November/December 2021 Volume 6 Issue 6 e00895-21 msphere.asm.org 3

https://msphere.asm.org


immunofluorescence assay. We probed with antibodies specific for V5 and four other
proteins that are markers of major subcellular structures within the parasite: PfAMA1
(micronemes) (34), PfBCP1 (basal complex) (5), PfGAP45 (IMC) (33), and PfRON4 (rhop-
tries) (35). In the absence of PfMORN1, PfAMA1 still exhibits apical localization that is
typically observed prior to egress (Fig. 3A). Confirming that micronemal PfAMA1 stain-
ing appears very late into the segmentation process, in [2] rapa parasites, PfMORN1
(V5) staining is observed only near the basal end of segmenting parasites when
PfAMA1 staining is present. Despite being a member of the basal complex, PfMORN1
deficiency has no impact on the localization of the basal complex member PfBCP1,
which forms rings around segmenting parasites in the absence of PfMORN1 (Fig. 3B).
Similarly, in the absence of PfMORN1, PfGAP45 still surrounds segmenting daughter
parasites from the apical end down to the basal complex, observed as a ring in a single
z-slice (Fig. 3C). Finally, in the absence of PfMORN1, PfRON4 still localized as punctate
dots at the apical end of the forming merozoites (Fig. 3D), suggesting normal morphol-
ogy of rhoptries. These results demonstrate that PfMORN1 is not required for asexual
parasite proliferation and that PfMORN1-deficient schizonts (and fully formed mero-
zoites) are morphologically normal.

DISCUSSION

The basal complex is essential for the asexual proliferation of P. falciparum (5) and
T. gondii (18, 19, 21, 26). Moreover, the basal complex is hypothesized to form a con-
tractile ring that facilitates, or even mediates, cytokinesis of nascent daughter parasites
(18, 19, 21, 26). The methods of cytokinesis during the asexual stages of P. falciparum
(schizogony) and T. gondii (endodyogeny) differ, and the requirements for individual
components of the basal complex likely also differ (2). However, it remains unknown
which members of this multiprotein complex are redundant and/or dispensable for
the P. falciparum intraerythrocytic development cycle. Dissecting which members of
the basal complex are essential is an important step toward understanding the

FIG 2 PfMORN1 is efficiently knocked out in one asexual cycle and is not required for asexual
replication. (A) Agarose gel showing PCR products amplified from genomic DNA of parasites grown in
the absence of rapamycin ([2] rapa) and in the presence of rapamycin ([1] rapa). (B) Immunoblot of
PfMORN1 protein levels [2] and [1] rapa. The uncropped blot and total protein staining are shown
in Fig. S1 in the supplemental material. (C) Quantification of the presence of V5 staining in actively
segmenting (PfGAP45-positive) schizonts [2] and [1] rapa. Values are means plus standard deviations
(SD) (50 schizonts counted, n = 3). (D) Replication curve of PfMORN1SmV5-loxPint parasites [2] and [1]
rapa over two replicative cycles. Means 6 SD are shown (n = 3).
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molecular functions and mechanisms of the basal complex. In T. gondii, TgMORN1 has
an important role in endodyogeny, specifically for proper cytokinesis of daughter para-
sites (18, 21). In contrast, the current study demonstrates that PfMORN1 is dispensable
for daughter cell cytokinesis during schizogony. In the P. falciparum genome-wide
transposon mutagenesis screen, there were no piggyBac insertions in the PfMORN1
coding sequence (36). However, the P. berghei PlasmoGEM knockout screen predicted
that PbMORN1 (PBANKA_0515200) was dispensable in the mouse model (37). The use
of a rapid (i.e., single cycle) inducible knockout system likely provides strong protection
against the development of compensatory mutations. Given the lack of phenotype fol-
lowing knockout, it is difficult to further determine the molecular function of this pro-
tein during schizogony. It is important to note that PfMORN1 may be essential for a dif-
ferent stage of the P. falciparum life cycle or more important for asexual replication in
vivo. Further studies are needed to investigate these potentials roles of PfMORN1 in
other environments.

MATERIALS ANDMETHODS
Reagents and antibodies. Primers were obtained from Life Technologies, restriction enzymes from

New England Biolabs, and DNA polymerases from Clontech. Commercially available antibodies were
obtained from Bio-Rad (mouse anti-V5, clone SV5-Pk2) and Immunology Consultant Laboratories (rabbit
anti-V5, clone RV5-45A-Z). Other primary antibodies were generously provided by Julian Rayner at the
Cambridge Institute for Medical Research (rabbit anti-PfGAP45) (33), Alan Cowman, Jenny Thompson,
and Kaye Wycherley at The Walter & Eliza Hall Institute of Medical Research (mouse anti-PfRON4) (35),
and Robin Anders at The Walter & Eliza Hall Institute of Medical Research (mouse anti-PfAMA1 clone
1F9) (38). The primary rabbit anti-PfBCP1 antisera has been described previously (5).

Plasmodium falciparum culturing and transfection. The 3D7-pfs47DiCre parasite strain, obtained
from Ellen Knuepfer at The Francis Crick Institute, was maintained in vitro in human O1 erythrocytes at
4% hematocrit in RPMI 1640 (Sigma) supplemented with 23 mM HEPES [4-(2-hydrocyethyl)-1-piperazi-
neethanesulfonic acid] (EMD Biosciences), 0.21% sodium bicarbonate (Sigma), 50 mg/liter hypoxanthine
(Sigma), and 0.5% Albumax II (Life Technologies).

FIG 3 PfMORN1 excision is not required for proper morphological localization of proteins markers for several major subcellular
structures. Airyscan superresolution microscopy of PfMORN1 (V5) and PfAMA1 (A), PfBCP1 (B), PfGAP45 (C), and PfRON4 (D) in [2]
and [1] rapa schizonts. A schematic of the localization for each marker is shown below each column. A late segmentation schizont is
shown for panel A because PfAMA1 can be confidently visualized only at this stage. For the other markers, mid-segmentation
schizonts are shown. Bars, 1 mm.
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For CRISPR transfection, 50 mg of the homology-directed repair (HDR) plasmid was linearized by
digestion, purified, and cotransfected with 50 mg each of two Cas9 and guide RNA-expressing plasmids,
each expressing a different guide, into sorbitol-synchronized parasites. One day posttransfection, para-
sites were selected with 2.5 nM WR99210 (Jacobus Pharmaceuticals). Transgenic parasites were cloned
by limiting dilution, and integration of the targeting construct was confirmed by PCR with oligonucleo-
tides oJDD5078/oJDD5079 (control), oJDD1092/oJDD4709 (DiCre integration), oJDD2933/oJDD5401 (39
integration), and oJDD56/oJDD5402 (59 integration). All sequences for oligonucleotides are provided in
Table S1 in the supplemental material.

Plasmid construction. To create the loxPint PfMORN1 HDR plasmid, we synthesized a gene block
with a codon-altered PfMORN1 sequence (gBlock from Integrated DNA technology). Oligonucleotides
oJDD5204/oJDD5205 and oJDD5206/oJDD5207 were used to amplify this gene block and introduce a
point mutation that removed a BsaI-cut site. These fragments were fused by overlapping PCR. The
PF3D7_1031200 39 and 59 homology regions, respectively, were PCR amplified from genomic DNA with
oligonucleotides oJDD5200/oJDD5201 and oJDD5202/oJDD5203. The SmV5 epitope tag was amplified
with oligonucleotides oJDD5208/oJDD5224 from pRR92 (5). The drug selection cassette (loxPint-3’UTR-
Cam 5’UTR-hDHFR-hrp2UTR) was amplified with oligonucleotides oJDD5225/oJDD3907. The pGEM plas-
mid backbone (after site-directed mutagenesis to remove existing BsaI sites) was amplified with
oJDD5227/oJDD5228. The six pieces were ligated via golden gate cloning by 150 cycles with 1 cycle con-
sisting of 5 min of digestion with BsaI-HFv2 and 5 min of ligation with T4 ligase to generate pCJM17. All
oligonucleotide and synthesized gene block sequences are shown in Table S1.

PfMORN1 depletion. In all PfMORN1 knockout assays, PfMORN1SmV5-loxPint and parental line parasites
were synchronized as rings with 5% (wt/vol) sorbitol. After one cycle, synchronized parasites were split,
with half placed in 100 nM rapamycin and half with 0.02% dimethyl sulfoxide (DMSO) (32, 39).

Western blot analysis. Parasite protein pellets were collected from parental parasites and
PfMORN1SmV5-loxPint parasites in both [1] rapa and [2] rapa conditions. Proteins were extracted using
0.2% saponin in phosphate-buffered saline (PBS) with protease inhibitor, washed with PBS, and resus-
pended in Laemmli buffer. Samples were run on a 4 to 20% mini-Protean TGX stain-free gels (Bio-Rad).
The gel was imaged to analyze total protein loading and then transferred to a nitrocellulose membrane.
The membrane was blocked in Li-Cor Odyssey blocking buffer, incubated with primary antibody (1:3,000
anti-V5) in PBS with 3% bovine serum albumin (3% BSA/PBS), and then incubated in secondary antibod-
ies diluted in Tris-buffered saline with Tween 20 (TBST). The membrane was visualized on a Li-Cor
Odyssey CLx imager. Uncropped Western blot and total protein staining images are provided in Fig. S1
in the supplemental material.

Flow cytometry analysis of parasite replication. 3D7 parental parasites and PfMORN1SmV5-LoxPint

parasites were synchronized as early rings using 5% (wt/vol) sorbitol and plated in triplicate at 0.25%
parasitemia in 1% hematocrit in both [1] and [2] rapa conditions. One hundred microliters of each sam-
ple was collected in triplicate on days 0, 2, and 4 after plating. The cells were washed once with 0.5%
BSA/PBS and then incubated for 20 min with 1:1,000 SYBR green. Cells were washed with 0.5% BSA/PBS
and then resuspended in PBS. The proportion of infected cells was measured by flow cytometry using a
BD FACSCalibur.

Immunofluorescence assay. Dried blood smears were fixed to slides in 4% paraformaldehyde for
10 min, washed three times with 1� PBS, permeabilized with 0.1% Triton X-100 in PBS, and washed
again three times with 1� PBS. Slides were blocked in 3% BSA/PBS for 1 h at room temperature. Primary
antibody was diluted into 3% BSA/PBS, and slides were incubated with primary at 4°C overnight. The pri-
mary antibodies and dilutions for primary antibodies were as follows: anti-V5 (1:500), anti-PfAMA1
(1:200), anti-PfBCP1 (1:250), anti-PfGAP45 (1:5000), and anti-PfRON4 (1:200). The slides were washed
three times with 1� PBS and were incubated for 45 min at room temperature with secondary antibodies
diluted in 3% BSA/PBS. The slides were washed three times in 1� PBS then incubated with Hoechst
33342 diluted in PBS for 10 min at room temperature. Slides were washed three times with 1� PBS and
mounted using Vectashield Vibrance. Cells were visualized on Zeiss LSM880 with Airyscan with 63� oil
immersion objective.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.3 MB.
TABLE S1, DOCX file, 0.02 MB.
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