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A comprehensive data set of aligned ligands with highly similar binding pockets from the Protein Data
Bank has been built. Based on this data set, a scoring function for recognizing good alignment poses for
small molecules has been developed. This function is based on atoms and hydrogen-bond projected features.
The concept is simply that atoms and features of a similar type (hydrogen-bond acceptors/donors and
hydrophobic) tend to occupy the same space in a binding pocket and atoms of incompatible types often
tend to avoid the same space. Comparison with some recently published results of small molecule alignments
shows that the current scoring function can lead to performance better than those of several existing methods.

INTRODUCTION

In drug discovery projects, the three-dimensional (3D)
structure of the receptor is not always available. In such
cases, ligand optimization often depends on a meaningful
alignment of the active compounds. Pharmacophore model
building, 3D quantitative structure-activity relationship
(QSAR), comparative molecular field analysis (CoMFA),1

and ligand-based virtual screening all depend on a good
algorithm to flexibly align small molecules. In light of the
importance of the subject, many methods have been devel-
oped to perform the task. On top of the methods mentioned
in the comprehensive review of Lemmen and Lengauer,2 new
efforts have continued to appear.3-16

Similar to docking, the small molecule alignment problem
can be divided into two parts. First, the conformational/pose
space has to be thoroughly searched. Second, a scoring
function needs to be able to distinguish good alignment poses
from other possibilities. The current work is about obtaining
a good scoring function for this purpose.

In principle, a scoring function that can distinguish the
correct alignment pose from incorrect ones is not necessarily
the same as a scoring function that upon minimization gives
poses that resemble the correct one as much as possible. In
practice, a good scoring function probably performs well for
both purposes. In this work, we are primarily interested in a
scoring function for distinguishing good poses. In any case,
we believe that the exact answer to the molecular alignment
problem may not be simple. It depends on how the crystal
structures are superposed. For example, using only R carbons
in the binding pocket for superposition may give a slightly
different answer from that using all the pocket atoms or using
the pharmacophore elements involving the ligand and the
pocket. And then there is the resolution of the crystal
structure itself. Moreover, the ligand may have some freedom
of movement inside a pocket. Hence trying to nudge down
the geometric difference between a proposed alignment
hypothesis and the “correct” alignment all the way to zero
may not be necessary, or even meaningful, as long as the
correct alignment mode is obtained.

For scoring functions used in docking, one can use
molecular mechanics force fields derived from first principles.
The same approach is not feasible for scoring functions for
small molecule alignment. Such functions need to be derived
from some statistical analysis of a training set of known
molecular alignments. The Protein Data Bank17 (PDB) is
an obvious source to obtain such a training set. As technology
progresses, the number of entries in the PDB has grown
exponentially. Just in the five years since 2003, the number
of entries has more than doubled (see http://www.pdb.org).
Moreover, many old entries have been revisited and cleaned
up, and many low-resolution structures have been superseded
by better ones. By now, there are hundreds of systems of
entries with identical proteins but different ligands. We
believe that now is a good time to make use of the growth
in the PDB to revisit the derivation of a scoring function for
molecular alignment.

METHODS

Scoring Function. For the problem of small molecule
alignment, there are two main types of scoring functions.
The first type is atom based: When two molecules are being
aligned, the score consists of a sum of terms that are based
on intermolecular atom pairs (i.e., each pair has one atom
coming from each molecule). The second type of score is
field based: The electrostatic or steric fields of the molecules
or their surfaces are compared to arrive at a score. This would
be somewhat slower to compute since the fields or the
molecular surfaces need to be calculated from the atomic
coordinates. Hence it would be difficult to flexibly refine an
ensemble of aligned molecules or to deal with a huge number
of conformers. Indeed several of the field-based alignment
methods rely on an independent conformational search engine
to generate good conformers (e.g., Shapelets,6 BRUTUS,13

the “Molecular Field Extrema” method,11 and MIMIC18).
Since our scoring function will be used to distinguish good
binding poses among a huge number of possibilities, it needs
to be calculated quickly. An atom-based function would
hence be more appealing than a molecular field-based
function.* Corresponding author. E-mail: slchan3@yahoo.com.
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When creating a hypothesis for an alignment of molecules,
it is desirable for atoms (from different molecules that are
being aligned) with similar properties to be near to each
other. Intermolecular atom pairs that are far away should
have little influence on the goodness of an alignment. This
can be achieved by associating each intermolecular atom pair
with similar properties with a Gaussian scoring term:
w exp(-Rr2), where r is the distance between the two atoms,
R is a parameter controlling the range of the interaction, and
w is the weight of this term. It is also desirable for the
alignment hypothesis for atoms with incompatible properties
(e.g., hydrophobic vs hydrophilic) to not superpose. This can
be achieved using the same functional form but with a
negative value for w. Besides atoms, hydrogen-bond pro-
jected features can also be considered. These features
represent the expected positions of the hydrogen-bonding
partner on the binding pocket based on the ligand geometry.
The overlap of hydrogen-bond projected features of the same
type should be favorable for an alignment hypothesis. Again,
the same Gaussian score can work, with r being the distance
between the intermolecular features.

While the Gaussian function is widely used in molecular
alignment methods (e.g., FAP,4 Pharao,5 MOE,16 SQ,19 and
SEAL20), there are other functional forms that can provide
a similar effect. These include piecewise linear functions
(e.g., FLAME),12 and piecewise linear and quadratic func-
tions (e.g., TFIT).21 It can be construed that indeed any bell-
shaped function can work in a similar fashion. In their
pioneering work 20 years ago, Kearsley and Smith20 noticed
that the Lorentzian function (1/(1 + Rr2)) yielded similar
results to the Gaussian but was significantly faster to
compute. However, the advance in computational technology
to calculate exponents has eliminated this advantage of the
Lorentzian function. Simple tests showed that the calculation
speeds are now similar. For this work we chose the Gaussian
because it involves a minimal number of tunable parameters
and has a simple, continuous shape. Another consideration
is that function optimization procedures often require the first
and second derivatives of the function. In the case of the
Gaussian, once the function has been calculated, its first and
second derivatives can be obtained without much extra work.

A scoring function S could thus be constructed based on
a sum of Gaussian terms:

In the formula, Tk is a term encouraging/discouraging the
overlap of a particular pair of types (Ak, Bk) of atoms/
features; wk is the weight of the term; i and j are atoms/
features from the two molecules; rij is the distance between
the intermolecular atom/feature pair; and R is a parameter
controlling the range of this type of interaction. Details of
the various terms, Tk’s, are given in Table 1. Ligands binding
in the same mode are expected to have substantial volume
overlap. The first term in the scoring function, T0, rewards
overlap between the heavy atoms of the different ligands.
Next, hydrogen bonding is an important interaction deter-
mining ligand binding. The terms T1 and T2 encourage the
overlap of pairs of intermolecular donors and acceptors.
Following this is the hydrophobic term T3 rewarding the
overlap of hydrophobic atoms. After these “attractive” terms

come the “repulsive” terms that discourage the overlap of
intermolecular atom pairs of incompatible types. First,
hydrophobic and hydrophilic atoms (atoms capable of
hydrogen bonding) are not expected to occupy the same part
of the binding pocket, as reflected by T4 and T5. Second,
hydrogen-bond acceptors that are not also donors are
expected to avoid positions of donors that are not also
acceptors. This is reflected by terms T6 and T7. The last two
terms, T8 and T9, are based on hydrogen-bond projected
features. They encourage the overlap of hydrogen-bond
projected features of the same type.

To keep the number of parameters low, the same value of
R, Ra, was used for all atom-based terms. The projected
feature terms used a different value of R, Rp, allowing these
terms to be more diffuse than the atom-based terms if
necessary.

Note that we have ordered the terms in the scoring
function. Atom-based terms were followed by projected
feature terms. For the atom-based terms, attractive terms were
followed by repulsive terms. And within the attractive terms,
the ordering was by the expected importance and intensity
of that type of interaction. Based on this order, the scoring
function was built up term by term. At each stage, the one
or two parameter(s) of the newly added term was/were
optimized. A series of scoring functions were created using
different values for the newly added parameter(s). The
goodness of a scoring function was measured, as described
below. The parameter value(s) corresponding to the best
scoring function in the series would be picked. Then we
proceeded to the next stage to optimize the next parameter(s).

Test Sets. After the scoring function was optimized, it
was incorporated into the flexible alignment functionality in
molecular operating environment (MOE).22 Molecular align-
ment results were compared with two recent publications.6,23

Proschak et al.6 performed rigid-body alignments for eight
thermolysin ligands using their Shapelets method and
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Table 1. Details of the Scoring Function Terms, Tk’sa

atom/feature type

Tk Ak (molecule 1) Bk (molecule 2) wk R

T0 heavy heavy 1 Ra

T1 donor donor wDA Ra

T2 acceptor acceptor wDA Ra

T3 hydrophobic hydrophobic wHH Ra

T4 hydrophobic acceptor/donor wR1 Ra

T5 acceptor/donor hydrophobic wR1 Ra

T6 acceptor-not-donor donor-not-acceptor wR2 Ra

T7 donor-not-acceptor acceptor-not-donor wR2 Ra

T8 donor projected feature donor projected feature wPF Rp

T9 acceptor projected feature acceptor projected feature wPF Rp

a The scoring function consists of a summation of terms, Tk’s,
each of which has the form:

Tk ) wk ∑
i∈Ak

∑
j∈Bk

exp(-Rrij
2)

Each row of the table corresponds to one term, Tk, and i and j denote
atoms (for T0-T7) or features (for T8 and T9) coming from the first
and second molecule, respectively. These atoms/features have to be of
certain types, Ak and Bk, as given in the second and third columns of
the table, and rij is the distance between the atoms/features. The names
of the various constants for the different terms, wk and R, are given in
the fourth and fifth columns of the table. All the atom-based terms
have the same value for R, namely Ra, while all hydrogen-bond
projected feature-based terms have another value for R, namely Rp.
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compared their result with two previous alignment meth-
ods.24,25 We performed validation runs on these thermolysin
ligands to see how our scoring function fared.

Chen et al.23 studied the geometric accuracy of aligning
small molecules using ROCS26 and FLEXS.27 They used
eight protein targets as test sets: HIV protease, cyclin-
dependent kinase 2 (CDK2), estrogen receptor 1 (ESR1),
mitogen-activated protein kinase 14 (p38), thermolysin,
human rhinovirus capsid, elastase, and trypsin. Six of these
(all but thermolysin and elastase) consist exclusively of
structures from the publicly accessible PDB.17 We used these
six systems for validation runs. Both rigid-body alignments
and flexible alignments were compared.

For training a scoring function for the validation runs, all
systems that contain any PDB entries involved in the test
sets were naturally excluded.

Compiling the Training Set. Ligands from identical or
almost identical pockets (see below for details) from the PDB
were used for training the scoring function. Only PDB entries
with a resolution of better than 2.5 Å were used. Ligands
were defined as freestanding molecules with no more than
300 heavy atoms and 10 residues. In order to exclude waters
and very small molecules, each ligand must have at least
one pair of heavy atoms separated by three bonds. Ligands
were also required to be reasonably drug-like. Ligands
without carbon atoms or with exotic elements (elements other
than C, H, N, O, S, P, F, Cl, Br, and I) were discarded.
Hemes and sugars were excluded. ATP analogs were
excluded because their large population in the PDB would
likely skew the data. Ligands without any rings were also
excluded so as to remove the lipids without excluding any
drug-like compounds.

We first obtained a list of protein domains from Structural
Classification of Proteins (SCOP).28 For each domain, all
PDB entries containing that domain were superposed using
the protein backbone of that domain. Ligands were then
detected around the domain. Overlapping ligands were
clustered into groups so that each group would correspond
to one pocket. For each pocket, a fine superposition was
performed based on the R carbons common to all pockets.

Since we started from SCOP domains, it was possible that
pockets within a group could involve different residues or
have different geometries. For our purpose of scoring
function training, it may not be very meaningful to study
the alignment of ligands in different pockets. Therefore we
divided each pocket into subgroups in the following way.
We first collected all R carbons within 7.5 Å of any ligand.
These were then clustered using single linkage clustering
with a cutoff of 1.0 Å. Clusters with no R carbon within 6.0
Å of any ligand were discarded. A table was then constructed
with each row corresponding to one protein and each column
corresponding to one R carbon cluster. A cell of the table
has the residue type as the entry if the protein contributes to
that cluster. The pocket similarity between a pair of proteins
was defined to be the fraction of table columns that are
identical (i.e., same residue type, or empty cell, for all cells
in the column). After the pocket similarities between all
protein pairs were determined, the proteins were clustered,
using complete linkage and pocket similarity as the metric,
with a cutoff of 0.8. In other words, any two pockets in the
same group had at least 80% of the table columns identical.
Each original pocket group might thus be divided into

multiple groups. For each resulting group, a fine superposi-
tion on the 3D structures was performed again using R
carbons common to all pockets, since the definition of the
pocket might have changed due to the change in the content
of the ligand set. This whole procedure was repeated until
there was no new division of the pocket groups.

Upon inspection, some systems were found to be unin-
teresting in the sense that the aligned ligands only displayed
one type of structure at most regions of the pocket. An
example is given in Figure 1. Studying this type of system
would not give us more information than studying self-
alignments. Hence they were discarded from the training set.

It is desirable to have the conformational space reasonably
covered when dummy poses were generated. Therefore the
training ligands were restricted to those having no more than
12 rotatable bonds. Finally, to ensure diversity, a set of
representative ligands was chosen for each system such that
no pair of representatives had a Tanimoto similarity of over
0.8 on their MACCS fingerprints. Systems with fewer than
five representatives were discarded.

Only 100 systems remained after these final filters, and
85 systems had no more than 20 representative ligands. The
highest number of representatives in a system was 53. This
is our comprehensive aligned small molecules data set.

For training a scoring function for the validation runs, 11
of the 100 systems in the comprehensive data set were
excluded because they contained entries that would be used
in the runs. This was more than the number of test systems
(7) because some test systems (e.g., the 57 ligands in the
CDK2 system) had variations in the pocket residue composi-
tion or geometry and were hence subdivided into more than
one pocket group when our comprehensive data set was
constructed.

Dummy Pose Generation. To keep things simple, the
training of the scoring function was based on trying to align
a flexible source ligand onto a rigid target ligand. The input
conformation of the source ligand was randomized from the
crystal conformation. Dummy poses were generated by
making small adaptations to the MOE docking engine,22 as
described below.

For each system of n aligned ligands, all n × n pairs of
ligands were considered with the following requirement. The
fraction of heavy atoms in the target that lie within 2 Å of

Figure 1. Aspartate aminotransferase ligands from their aligned
PDB structures.
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any heavy atom of the source must exceed 0.5, and the
fraction of heavy atoms in the source that lie within 2 Å of
any heavy atom of the target must exceed 0.75. This excluded
ligands with different binding modes and ensured that no
source ligand was substantially larger than the target.

Conformers of the source ligand were systematically
generated by assigning favorable torsion angles. If this
resulted in more than 5000 conformers, a random subset of
the systematically generated conformers would be used. Only
conformers with severe atomic overlaps were discarded. This
is because we envisioned that when the scoring function is
used to distinguish poses with the correct binding mode, any
poses that are fished out can be refined to improve the pose
geometry and any atomic overlap within the molecule will
be relieved. For each source-target pair, 15 000 dummy
alignment poses were generated, one at a time. Each time, a
random set of three heavy atoms on the target ligand was
chosen, together with a random conformer of the source
ligand. Triplets of heavy atoms on the source ligand, which
formed a triangle similar to that formed by the three chosen
target atoms, were used to align the source ligand onto the
target ligand. Poses whose root-mean-square deviation (rmsd)
for the heavy atoms was under 1.5 Å were considered
duplicated, and only one copy was kept.

RESULTS AND DISCUSSION

Scoring Function Training. For each scoring function,
the scores for all dummy poses were calculated. For each
set of alignments involving a particular pair of source and
target ligands, we counted the number of “good” poses, n25,
among the top 25 scoring poses. As for whether a pose is
“good” or not, we used fuzzy logic. Poses with an rmsd
(heavy atoms only) from the correct pose of under 2.0 Å
were considered good. Poses with an rmsd of over 3.0 Å
were considered not good. Poses with an rmsd between 2.0
and 3.0 Å were considered partial good poses, with the
“partiality” decreasing linearly from 1 to 0. For each system
(i.e., same pocket), we averaged the number of good poses
for all source-target pairs in the system. We then averaged
these averaged numbers over all 89 training systems. The
higher this final averaged number was, the better the scoring
function was.

The receiver operating characteristic (ROC) curve is often
used to measure the success of scoring functions for virtual
screening.29 In short, the ROC curve plots the fraction of
true positives recovered (out of all active compounds) against
the fraction of false positives obtained (out of all inactive
compounds), as the cutoff value varies. It is generally
considered that the bigger the area under the curve, the better
is the scoring function. We felt that, for our purpose, using
the area under the ROC curve was not as suitable as using
“the number of good poses amongst the top 25”, since we
generally can only afford to consider a limited number of
top scoring poses. Hence all but the very beginning part of
the ROC curve would be of significance to us.

As for why 25? We think that human inspection can
typically handle 10 or so poses. On the other hand, if a
thorough refinement is desired as part of an automatic
process, then it would be reasonable to intensively process
up to about 100 poses per ligand. Hence here we used the
“top 25 poses”. As a precaution, we repeated all the

calculations and validation runs using the “top 100 poses”
instead of the “top 25”. It turned out that only one out of
the six optimized parameters for the scoring function would
come out different, and the quality of the of validation runs
remained very similar. The details are given in Section A of
the Supporting Information.

As mentioned previously, the constituent terms of the
scoring function are given in Table 1. The scoring function
was built up term by term. At each stage, only one (or two)
parameter was introduced. This parameter was varied, and
the most favorable value for it was picked. We then
proceeded to optimize the next parameter. The optimization
procedure is captured in Tables 2a-2h. Each table corre-
sponds to one stage of optimization where one (or two)
parameter was optimized. The resulting numbers of good
poses among the top 25, n25, corresponding to the various
values of the parameter being optimized are given in the
tables. The optimal value of the parameter and its corre-
sponding value of n25 are highlighted in bold.

We started by including only the volume overlap term (T0

in Table 1) in the scoring function. In other words, to a first
approximation, the bigger the volume overlap between two
molecules, the better was the score. In order to make the
scoring function quick to calculate, hydrogen atoms were

Table 2a. Parameter Optimization for Ra
a

Ra (Å-2) 0.06 0.125 0.175 0.25 0.35 0.5 0.7

n25 3.10 4.11 4.44 4.67 4.79 4.83 4.76

a The scoring function at this stage is T0, the volume overlap
term. Refer to Table 1 for details of T0. This table gives the average
number of good poses, n25, within the top 25 scoring poses for
various values of Ra.

Figure 2. How the scoring function is controlled by the parameter
R, for the case of a target molecule consisting of two atoms, located
at positions -0.75 and 0.75. For a source atom to be superimposed
onto the target molecule, the scoring function is exp(-Rr1

2) +
exp(-Rr2

2), where r1 and r2 are the distances from the source atom
to the two target atoms. The scoring functions corresponding to R
values of 2.0, 1.5, and 1.2 are plotted in blue, red, and black,
respectively.

Table 2b. Parameter Optimization for wDA
a

wDA 0 0.5 1 2 4 8 16 32

n25 4.83 5.28 5.61 5.98 6.10 5.85 5.40 4.99

a The scoring function at this stage is (T0 + T1 + T2). The new
terms are T1 and T2, which correspond to the attraction between
hydrogen-bond donor/acceptor atoms. Refer to Table 1 for the
details of these terms. This table gives the average number of good
poses, n25, within the top 25 scoring poses for various values of
wDA.
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ignored. The only parameter to be optimized was R.
Obviously a smaller value for R would result in a more
diffuse Gaussian function. Consider the simple case to align
one atom (the source) onto a diatomic molecule (the target).
This is similar to trying to align methane, with one heavy
atom, onto ethane, with two heavy atoms. Suppose the
internuclear distance of the diatomic molecule is 1.5 Å (for
comparison, a C-C bond in a benzene ring is about 1.40 Å,
and a C-C bond in an ethane is about 1.54 Å). The shapes
of the scoring function for three different values of R are
plotted in Figure 2. For large values of R, the source atom
will see a score with two distinct peaks located very close
to the two target atoms. It will have a strong tendency to
align with either one of the target atoms. For example, if R
is 2.0 Å-2 (the blue curve of Figure 2), then the distance
between the peaks will be 1.46 Å. The value of the score at
the trough midway between the peaks will be 64% of the

height of the peaks. When R decreases to 1.2 Å-2 (the black
curve of Figure 2), the peaks will move toward each other,
away from the atomic positions. The distance between the
peaks will drop to 1.18 Å, and the trough to peak height
ratio of the score will increase to 94%. In other words, the
score has already very much smoothed out the atomic
positions. The source atom can settle for any position
between the two atoms with little change on the score.

Given a scoring scheme and an initial aligned pose
between two rigid ligands, one can refine the alignment

Table 2c. Parameter Optimization for wHH using the MOE
Definition for Hydrophobic Atomsa

wHH 0 0.5 1 2 4 8

n25 6.10 6.33 6.36 6.23 5.90 5.44

a The scoring function at this stage is (T0 + T1 + T2 + T3). The
new term is T3 and corresponds to the attraction between
hydrophobic atoms. Refer to Table 1 for the details of this term.
This table gives the average number of good poses, n25, within the
top 25 scoring poses for various values of wHH.

Table 2d. Parameter Optimization for wHH, where Hydrophobic
Atoms Are Defined as Atoms That Are at Least Two Bonds Away
from any Hydrogen-Bonding Atoma

wHH 0 0.5 1 2 4 8

n25 6.10 6.30 6.32 6.17 5.81 5.29

a The scoring function at this stage is (T0 + T1 + T2 + T3). The
new term is T3 and corresponds to the attraction between
hydrophobic atoms. Refer to Table 1 for the details of this term.
This table gives the average number of good poses, n25, within the
top 25 scoring poses for various values of wHH.

Table 2e. Parameter Optimization for wR1 using the MOE
Definition for Hydrophobic Atomsa

wR1 0 -0.125 -0.25 -0.5 -1 -2 -4 -8

n25 6.36 6.38 6.40 6.44 6.45 6.36 5.92 4.56

a The scoring function at this stage is (T0 + T1 + T2 + T3 + T4

+ T5). The new terms T4 and T5 correspond to the repulsion
between hydrophobic and hydrogen-bonding atoms. Refer to Table
1 for the details of these terms. This table gives the average number
of good poses, n25, within the top 25 scoring poses for various
values of wR1.

Table 2f. Parameter Optimization for wR1, where Hydrophobic
Atoms Are Defined as Atoms That Are at Least Two Bonds Away
from any Hydrogen-Bonding Atoma

wR1 0 -0.125 -0.25 -0.5 -1 -2 -4 -8

n25 6.32 6.33 6.34 6.35 6.34 6.23 5.89 5.22

a The scoring function at this stage is (T0 + T1 + T2 + T3 + T4

+ T5). The new terms T4 and T5 correspond to the repulsion
between hydrophobic and hydrogen-bonding atoms. Refer to Table
1 for the details of these terms. This table gives the average number
of good poses, n25, within the top 25 scoring poses for various
values of wR1.

Table 2g. Parameter Optimization for wR2
a

wR2 0 -0.125 -0.25 -0.5 -1 -2

n25 6.45 6.45 6.45 6.44 6.43 6.40

a The scoring function at this stage is (T0 + T1 + T2 + T3 + T4

+ T5 + T6 + T7). The new terms T6 and T7 correspond to the
repulsion between hydrogen-bond donor atoms that are not
acceptors and hydrogen-bond acceptor atoms that are not donors.
Refer to Table 1 for the details of these terms. This table gives the
average number of good poses, n25, within the top 25 scoring poses
for various values of wR2.

Table 2h. Parameter Optimization for wPF and Rp
a

wPF 0 0.25 0.5 1 2 4 8

For Rp ) 0.5 Å-2

n25 6.45 6.48 6.50 6.52 6.48 6.35 6.01

For Rp ) 0.25 Å-2

n25 6.45 6.51 6.54 6.60 6.61 6.52 6.22

For Rp ) 0.125 Å-2

n25 6.45 6.54 6.61 6.68 6.71 6.60 6.28

For Rp ) 0.0625 Å-2

n25 6.45 6.57 6.64 6.69 6.66 6.44 5.98

a The scoring function at this stage is (T0 + T1 + T2 + T3 + T4

+ T5 + T8 + T9). The new terms T8 and T9 correspond to the
attraction between hydrogen-bond donor/acceptor projected features.
Refer to Table 1 for the details of these terms. This table gives the
average number of good poses, n25, within the top 25 scoring poses
for various values of wPF and Rp.

Table 3. Optimal Parameters for the Scoring Functiona

Ra Rp wDA wHH wR1 wPF

0.5 Å-2 0.125 Å-2 4 1 -1 2

a The optimal scoring function consists of the terms T0-T5, T8,
and T9, as given in Table 1, with the various parameters as given by
this table.

Table 4. Success Rates of the 28 Rigid-Body Cross-Alignments of
8 Thermolysin Ligands Using Various Methodsa

SURFCOMP,24 electrostatic potential 75%
SURFCOMP,24 lipophilic potential 71%
Cosgrove et al.25 50%
Shapelets6 71%
current work 93%

a The eight thermolysin ligands have PDB ID’s 1THL, 1TLP,
1TMN, 3TMN, 4TMN, 5TLN, 5TMN, and 6TMN. For each pair of
nonidentical ligands, one ligand was chosen as the template, and the
other ligand was aligned onto the template. If the top scoring
solution yielded an rmsd of under 2 Å with the crystallographic
pose for the heavy atoms, then it was considered successful. This
table gives the success rates for the 28 cases, as reported on Table 4
of Proschak et al.6
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by optimizing the score. When we did this with many
starting poses, we found that we ended up with fewer
resulting aligned poses when we used smaller values of
R (unpublished results). This is in line with our expectation
that smaller values of R smooth out the score landscape.

According to previous works of Gaussian function-based
alignment scores, values of R of between 0.1 and 0.5 Å-2

were found to be reasonable.4,16,19,20 In light of this, we

tried out a total of 7 values for Ra, from 0.06 to 0.7 Å-2.
The corresponding numbers of good poses among the top
25 are tabulated in Table 2a. It can be seen that for the
values of Ra tested, a value of 0.5 Å-2 was the best, with
an average of 4.83 good poses among the top 25.

After establishing a value for Ra, the relative weights
of the atom-based terms were optimized one by one. We
first looked at the weight wDA for the hydrogen-bonding
atoms (donor and acceptor) similarity terms (T1 and T2

in Table 1). For this we tried out 7 values for wDA, from
0.5 to 32, in logarithmic intervals. The corresponding
numbers of good poses among the top 25 are tabulated in
Table 2b. A value of 4 turned out to be the most favorable,
with an average of 6.10 good poses among the top 25.

After this, we turned to the similarity term between
hydrophobic atoms (T3 in Table 1). Besides trying to
establish the optimal weight wHH for this term, we also
tried out two schemes of defining hydrophobic atoms. One
used the conventional hydrophobic atom assignment in
MOE.22 The other scheme was based on how far topologi-
cally an atom was from any hydrogen-bonding atom.
Atoms that were two or more bonds away from any
hydrogen-bond acceptors or donors were considered
hydrophobic. Tables 2c and 2d give the numbers of good
poses among the top 25 for various values of wHH using
the two schemes. It can be seen that the two schemes gave
very similar results, with the optimal weighting factor wHH

to be around 1.0 for both schemes.

Figure 3. Rigid-body alignment of 3TMN onto 5TLN (carbons in
green). Carbons of the correct answer for 3TMN are in dark blue.
Carbons of our solutions (top and bottom are best and second best
scoring, respectively) are in cyan.

Table 5. Percentage of Correct Results Given by the Current Scoring Function Compared to Those from Two Published Methodsa

alignment mode rigid flexible

method ROCS FLEXS current ROCS FLEXS current

CDK2 30% 25% 40% 20% 21% 22%
HIV 39% 24% 85% 6% 8% 16%
P38 27% 27% 43% 22% 24% 30%
ESR1 44% 47% 59% 25% 28% 41%
trypsin 57% 73% 80% 55% 29% 61%
rhinovirus 50% 52% 50% 50% 50% 50%

a For each of the six systems, pairwise cross-alignments were carried out for all n × n ligand pairs, where n is the number of ligands in the
system. If the top scoring result yielded an rmsd of under 2 Å for the heavy atoms, then it was considered correct. This table gives the
percentage of correct results for the n × n ligand pairs in the system, as reported on Table 2a of Chen et al.23

Figure 4. Important pharmacophore features for the CDK2 ligands
include two hydrogen-bond donors (magenta sphere) and one
acceptor (cyan sphere).
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Next we considered the repulsion term between hydrogen-
bonding atoms and hydrophobic atoms (T4 and T5 in Table 1).
We continued to test both schemes for defining hydrophobicity.
Results are given in Tables 2e and 2f. Here we see that the
first scheme of defining hydrophobicity was slightly better and
that the optimal weight for the repulsion term, wR1, was around
-1.0. So we chose to define hydrophobic atoms simply using
the MOE definition.

After this we investigated a repulsion term between
hydrogen-bond donor and acceptor atoms (T6 and T7 in Table
1). Naturally, atoms that can be both donor and acceptor
were excluded from consideration. Perhaps surprisingly, it
was found that this term did not seem to improve the scoring

function (see Table 2g). So these terms were dropped from
the scoring function.

Finally the projected acceptor and donor feature points
were considered (T8 and T9 in Table 1). These points
correspond to the expected positions of donors and
acceptors on the binding pocket. In this sense they are
different from the previously considered terms that are
atom based. So we tried out different values of R as well
as different weights, wPF, for this term. The results are
given in Table 2h. It can be seen that an Rp value of 0.125
Å-2 coupled with a weight of 2.0 was a good combination.
Otherwise an Rp value of 0.0625 Å-2 coupled with a
weight of 1.0 was also respectable.

Figure 5. The 13 ligands of the p38 system.
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To summarize, it was found that a good scoring function
is of the form given by the terms of Table 1, except terms
T6 and T7, with the values of the various coefficients given
in Table 3.

Uncertainty Considerations. For each of the parameters
considered, only one run was performed. However, there was
a considerable number of ligand-pocket systems, and in each
system, there was a considerable number (at least 25, but
often much more) of pairs of source-target ligands. There-
fore random noise can be expected to have averaged out.
More importantly, the fact that there are smooth trends in
the numbers in Tables 2a-2h, as the parameters were varied,
serves to confirm that the numbers are accurate enough for
our purpose of locating the optimal values for the parameters.

Validation Runs: The Procedure. MOE’s flexible align-
ment (FlexAlign) functionality22 was used for the validation
runs. For rigid-body alignments, conformers from the PDB
were used as the input. FlexAlign generated random poses
of the source molecule superposed onto the target molecule
and optimized the alignment score S, while keeping the
molecules rigid.

For the flexible alignments, for each source molecule, one
randomized conformation was used as input. FlexAlign
generated a random conformer from this input, randomly
superposed it onto the target molecule, and then optimized
this pose under the influence of the alignment score between
the source and target molecules. The target molecule
remained fixed throughout the process. In order to avoid
unrealistic conformations, the internal energy U of the source
molecule must also be considered alongside the alignment
score S. For the internal energy, we used the MMFF94 force
field22,30 with a distance-dependent dielectric. Pose optimiza-
tion was carried out by minimizing the effective energy, E,
which was defined by

Alignment solutions were also ranked according to their
E values. A value of 4 kcal/mol was used for k. This value
seemed to give a good balance between the internal energy
U and the alignment score S. The difference in the force
field energy U between the conformation of the source
molecule in the top scoring (i.e., the one with the lowest E
value) solution and its corresponding local energy minimum
was generally small. The average of this difference (over
the n × n cross-alignments for each system) for the CDK2,
HIV, p38, ESR1, trypsin, and rhinovirus systems were,
respectively, 0.32, 0.76, 0.25, 0.33, 0.25, 0.25 kcal/mol per
heavy atom. In contrast, the average of the difference in the
internal energy U between the ligand conformer in the crystal
structure and its corresponding local energy minimum is over
1 kcal/mol per heavy atom for all the six systems.

We also investigated whether the value of the alignment
score S or the effective energy E gives an indication of the
goodness of the alignment. Unfortunately there did not seem
to be any correlation (unpublished results).

Validation Runs: The Results. Our results were first
compared with those in Table 4 of Proschak et al.6 This
involved pairwise rigid-body alignments on a system of eight
thermolysin ligands. For each ligand pair, one ligand was
used as the target, while the other was used as the source.
Self-alignments were not performed. Therefore there was a
total of 28 cross-alignments. An alignment was considered
successful if the top scoring pose had a heavy atom rmsd of
under 2 Å from the correct answer. Our results, together with
those obtained by Proshak et al.,6 are tabulated in Table 4.

Figure 6. Different binding modes of the p38 ligands. 1DI9 is in
magenta. 1M7Q, 1OUK, 1OUY, and 1OVE are in yellow.

Figure 7. Two binding modes of the ESR1 ligands. The 6 smaller
ligands (1A52, 1GWQ, 1L2I, 1X7E, 1X7R, and 3ERD) are in cyan.
The 7 larger ligands (1R5K, 1SJ0, 1UOM, 1XP1, 1XP9, 1XQC,
and 2BJ4) are in magenta.

Figure 8. Crystallographic alignment of the 7 trypsin ligands.
Carbon atoms of 1PPH are in dark blue. Those of 1TNI are in
cyan. The remaining ligands are 1TNH, 1TNJ, 1TNK, 1TNL, 3PTB.

E ) U - kS
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According to Proshak et al., when SURFCOMP24 was used
with the electrostatic potential, the success rate was 75%. If
the lipophilic potential was used, then the success rate was
71%. The method of Cosgrove et al.25 gave a success rate
of 50%. The success rate for the authors’ own Shapelets
method was 71%. In contrast, our scoring function yielded
a success rate of 93%; there were only 2 failed cases out of
28 alignments. One of our failed cases was for aligning
3TMN onto 5TLN. Our result is shown in Figure 3. Our
scoring function returned the correct answer as the second
best scoring solution (Figure 3, bottom). In any case, our
best scoring solution looks highly plausible with heavy
overall volumetric overlap as well as the overlap of the
aromatic ring and two carbonyl groups (Figure 3, top).

Tests were also run on six systems mentioned in Chen et
al.,23 where ROCS26 and FLEXS27 were used. An alignment
was considered correct if the top scoring solution had a heavy
atom rmsd of under 2 Å with the crystallographic overlay.
Table 5 gives the overall results for the six systems. Except
for the rhinovirus system, which will be examined in more
details below, and for the flexible alignment of the CDK2
system, our results are significantly better than those obtained
by Chen et al. using FLEXS or ROCS. For rigid-body
alignments, our fraction of correct results was at least 40%
and reached 80% or more in two systems. Naturally, flexible
alignment is more difficult than rigid-body alignment, and

so the percentages of correct results are lower for all systems
except rhinovirus (see analysis below).

For the CDK2 system, our results for the rigid-body
alignments but not for the flexible alignments are significantly
better than those of Chen et al. using ROCS or FLEXS.
CDK2 is a large system (57 ligands) with a complex
pharmacophore model.31 If the six ligands 1DI8, 1P5E,
1PKD, 1PXI, 1PXJ, and 1WCC were excluded, then our
results would improve from 39.6% to 47.6% correct for the
rigid-body alignments and from 22.4% to 26.6% correct for

Figure 9. Flexibly aligning 1TNJ onto 1PPH (carbons in green).
Carbons of the correct pose of 1TNJ are in dark blue. Carbons of
our solutions (top and bottom: best and second best scoring) are in
cyan.

Figure 10. Flexibly aligning 1TNL onto 1PPH (carbons in green).
Carbons of the correct pose of 1TNL are in dark blue. Carbons of
our solutions (from top to bottom: first, second, and third best
scoring) are in cyan.
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the flexible alignments. Of the 57 ligands in the system, only
7 ligands have more than 33 or less than 17 heavy atoms,
and 1P5E, 1PKD, 1PXI, 1PXJ, and 1WCC are among them,
with 13, 36, 14, 14, and 8 heavy atoms, respectively. Since
the pharmacophore model is complex,31 it seems that
volumetric overlap is an important factor for alignment.
Hence ligands that are much smaller or much larger than
average would be difficult to align. Moreover, an important
pharmacophore element is the set of two hydrogen-bond
donors and one acceptor interacting with the hinge region
of the protein. These correspond to pharmacophore features
D1, D2, and A1 mentioned in Zou et al.31 and are shown in
Figure 4. Out of the 57 ligands, only 4 do not have at least
2 out of these 3 features, and ligands 1DI8, 1P5E, and 1WCC
are among them.

The HIV ligands are big. All but one have 35 or more
heavy atoms. The fact that they are relatively comparable in
size (all but three have between 39 and 61 atoms), do not
have a homogeneous (spherical) shape, and have rich feature
sets might have helped the rigid-body alignment result,
because there are not that many possibilities for the molecules
to align well. One possibility for our superior results is that
we have trained our scoring function using a significantly
larger data set from the PDB than the version of FLEXS or
ROCS that were used. Of all six test systems, the drop in
performance in going from the rigid-body to the flexible
mode is most pronounced for the HIV system. This is
because the HIV ligands are particularly big and flexible.
Of the 28 HIV ligands, 5 have 10 rotatable bonds. 7 have
between 12 and 16 rotatable bonds. The other 16 have 18 or
more rotatable bonds. In comparison, no molecules in the
other 5 systems have more than 11 rotatable bonds.

For the 13 ligands of the p38 system, our scoring function
produced an overall correct rate of 43% and 30% for the
rigid-body and flexible alignments, respectively (Table 5).
It is worth noting that one of the ligands, 1WBO, is
significantly smaller than the others (Figure 5). The crystal-
lographic alignment of the remaining 12 ligands is given in
Figure 6. It can be seen that the ligand 1DI9 (magenta in
Figure 6) binds in a mode different from the others. The
four ligands 1M7Q, 1OUK, 1OUY, and 1OVE (yellow in
Figure 6) also bind in a mode somewhat different from the
others. For the remaining 7 ligands, our scoring function
actually got 73% of the pairwise cross-alignments correct
in the rigid-body mode, and 53% correct in the flexible mode.
And for the 16 pairwise cross-alignments of the four ligands

1M7Q, 1OUK, 1OUY, and 1OVE, our scoring function got
them all, 100%, correct in the rigid-body mode and 94%
(all but one of the 16) correct in the flexible mode.

The 13 ligands of the estrogen receptor system can be
divided into two groups. Ligands within each group have
comparable sizes and can be considered to bind in a similar
mode, as can be seen in Figure 7. For the pairwise cross-
alignments of all 13 ligands, our scoring function got 59%
and 41% correct in the rigid-body and flexible modes,
respectively. However, for the group of 6 smaller ligands,
we got 94% of the 36 rigid-body cross-alignments correct
and 72% of the flexible alignments correct. For the group
of 7 larger ligands, we got 92% of the 49 rigid-body cross-
alignments correct and 65% of the flexible alignments
correct.

The crystallographic alignment of the 7 trypsin ligands is
given in Figure 8. Ligand 1PPH (dark blue in Figure 8) is
significantly larger than the others. Ligand 1TNI (cyan in
Figure 8) assumes a binding mode different from the others.
For the remaining 5 ligands, our scoring function got all 25
cross-alignments correct in both the flexible and rigid-body
modes. Figure 9 gives our result for flexibly aligning 1TNJ
onto the much larger ligand 1PPH. Our second best scoring
solution (Figure 9, bottom) yielded the correct alignment
mode. As for our best scoring solution (Figure 9, top), it
involves a perfect atom to atom matching for all atoms of
1TNJ. The aromatic ring is mapped to an aromatic ring of
1PPH, all aliphatic carbons are mapped to aliphatic carbons
on 1PPH, and the nitrogen atom is mapped to a nitrogen on
1PPH. Figure 10 gives our result for flexibly aligning 1TNL
onto 1PPH. Our third best scoring solution (Figure 10,
bottom) roughly yielded the correct binding mode. Our best
scoring solution (Figure 10, top) involves a matching of
atoms similar to that of the best scoring solution of aligning
1TNJ onto 1PPH (Figure 9, top). Our second best scoring
solution (Figure 10, middle) also involves a good matching
of atoms, with the phenyl ring of 1TNL aligned to a six-
membered ring of 1PPH.

For the 8 rhinovirus ligands, our scoring function got 50%
of the pairwise cross-alignments correct in both the rigid-
body and flexible modes. As shown in Figure 11, all eight
ligands have a long shape and are almost symmetric. There
is a heterocyclic ring on either end of each ligand, connected
by a long, flexible linker chain. As noted in the original
publication for the X-ray structures,32 the ligands have two
binding modes, one being the inverse of the other, as shown
in Figure 11. It is easy for the alignment algorithm to

Figure 11. The eight rhinovirus ligands bind in two modes. The carbons are in magenta for one mode (2RM2, 2RR1, 2RS1, and 2RS3) and
in cyan for the other mode (2R04, 2R06, 2R07, and 2RS5).
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superpose the two rings on either end but difficult to
distinguish between the two binding modes. Hence all the
cross-alignments within a binding mode were obtained
correctly, but the inverse binding mode was obtained for each
pair across the different binding modes.

Scoring Function Training with All Data. When the
scoring function was trained for the validation runs,
systems involved in the test sets were excluded. After the
validation runs, the training process was repeated to make
use of all data, including systems involved in the test sets.
It turned out that using all the data did not lead to any
change in the scoring function. The updated Tables 2a-2h
are given in Tables a-h of section B of the Supporting
Information. Although the numbers of good poses among
the top 25 (n25) have changed slightly, the positions
for the optimal values for all the parameters have not.
Hence the scoring function remained the same when all
data was included for training.

CONCLUSION

Based on the PDB17 and SCOP,28 a comprehensive set of
aligned ligands binding in the same pocket has been
compiled. We used only high-resolution structures and
considered only pockets that are highly similar and have
diversified, drug-like ligands. For each pair of ligands binding
in the same pocket, one ligand was used as the target, and
dummy aligned poses of the other ligand were generated.
By studying the correlation between the score of these
dummy poses and their similarities with the correct answer,
a small molecule alignment scoring function was built up
term by term. Eventually we obtained the scoring function
composed of terms given by Table 1, except terms T6 and
T7, with parameters as given by Table 3.

We verified our scoring function by comparing results of
rigid-body and flexible alignments performed using the
flexible alignment functionality in MOE22 with those reported
in the literature. We found that our results are superior to
those of five methods reported in two recent publications.6,23

We are happy to share our comprehensive aligned small
molecules data set with other scientists so that they can use
it to optimize their own scoring functions.
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