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2,3,5,4󸀠-Tetrahydroxystilbene-2-O-𝛽-D-glucoside (THSG) is active component of the Chinese medicinal plant Polygonum
multiflorum Thunb. (THSG). Pharmacological studies have demonstrated that THSG exhibits numerous biological functions in
treating atherosclerosis, lipid metabolism, vascular and cardiac remodeling, vascular fibrosis, cardiac-cerebral ischemia, learning
and memory disorders, neuroinflammation, Alzheimer and Parkinson diseases, diabetic complications, hair growth problems,
and numerous other conditions. This review focuses on the biological effects of THSG in antiaging and antiaging-related disease
treatments and discusses its molecular mechanisms.

1. Introduction

Aging is inevitable; it is a progressive, irreversible process that
every human will experience in his life.The aging population
of the international community brings increasing medical
expenses and health care costs. Therefore, prevention and
early treatment of aging-related diseases can be effective
means of relieving society’s burden and living a better life for
individuals.There aremany theory researches of agingmech-
anisms. The most famous one is the oxidative stress theory.
Free radicals and peroxides attack all components of cells,
including proteins, lipids, RNA, and DNA. Oxidative damage
occurs in various aging-associated disease pathologies, espe-
cially the cardiovascular diseases and neurological diseases.
Theoretically, antioxidant supplementation should be able to
reduce the risk of aging-related diseases. The Mediterranean
diet with red wine, fruits, vegetables, and other plant foods
has been shown to have cardiovascular protection against
oxidative damage. At present, the extraction of biological
antioxidants from plants is becoming one of the hot topics
in the field of medical chemistry.

Polygonum multiflorum Thunb. (何首乌, he-shou-wu)
(Figures 1(a) and 1(b)) is a traditional Chinese medici-
nal plant. As early as 973 A.D., it was incorporated into

Kaibao Bencao, an encyclopedia of medical plants edited
under an imperial edict of Song Taizu, the first emperor
of the Song Dynasty. The plant is processed to product
radix Polygoni Multiflori preparata (Figure 1(c)), traditionally
taken to increase vitality, improve the health of blood and
blood vessels, blacken hair, strengthen bones, nourish the
liver and kidney, and prolong life. Currently, Polygonum
multiflorum Thunb. is listed in the Chinese Pharmacopoeia,
and radix Polygoni Multiflori preparata is widely used for
clinically treating of arteriosclerosis, hyperlipidemia, hyperc-
holesterolemia, and diabetes. It is also used in many Chinese
medicinal supplements to improve general health.

2,3,5,4󸀠-Tetrahydroxystilbene-2-O-𝛽-D-glucoside (THSG)
(Figure 1(d)) is the main component of Polygonum multi-
florum Thunb., which is used as a standard compound for
appraising Polygonum multiflorum Thunb. in the Chinese
Pharmacopoeia [1]. THSG belongs to polyhydroxystilbene
group. The structure of THSG is similar to that of resveratrol
(3,4󸀠,5-Trihydroxy-trans-stilbene), which is quite well known
for its numerous biological activities especially in cardio-
vascular protection. As a resveratrol analog with glucoside,
THSG has been proved to possess strong antioxidant and
free radical scavenging activities even much stronger than
resveratrol in superoxide anion radical scavenging, hydroxyl
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Figure 1:The images ofmedicinal material Polygonummultiflorum andmolecular structure of THSG. (a) Seedling herbs, (b) harvested herbs,
(c) processed herbs, radix Polygoni Multiflori preparata, and (d) chemical structure of THSG.

radical scavenging, and DPPH radical scavenging [2]. It is
because THSG has a 2-O-Glu group in chemical structure, in
which C

5
-OH and C󸀠

4
-OH are more active to H-abstraction

[3]. Furthermore, 2-O-Glu group can stabilize the phenoxyl
free radicals and they are easy to be hydrolyzed in extreme
pH environments (in the gastrointestinal environment).

Contemporary pharmacological studies have demon-
strated that THSG exhibits numerous biological functions
in antiaging and antiaging-related disease treatments. In this
review, we focus on THSG, discussing its biological effects
and molecular mechanisms.

2. Delaying the Senescence Effect

A few years ago, we found that THSG can delay vascular
senescence and markedly enhance blood flow in sponta-
neously hypertensive rats (SHRs), but it does not affect
blood pressure or body weight [4]. The data revealed that
senescence-associated 𝛽-galactosidase (SA-𝛽-gal) staining,
𝛾H2AX phosphorylation, and p53 acetylation are suppressed
by THSG in the aortic arches of SHRs. THSG promotes
deacetylation of p53, a transcription factor associated with

aging. THSG also induces endothelial nitric oxide synthase
(eNOS) expression in the aortas and urinary mononitrogen
oxide (NOx) production. In vitro, THSG activates SIRT1
activity, stimulates eNOSpromoter reporter gene activity, and
ameliorates H

2
O
2
-induced human umbilical vein endothelial

cell (HUVEC) senescence [4]. Our unpublished data show
that in vivo THSG is more effective in delaying vascular
senescence than resveratrol.

A recent study revealed that THSG prolongs the lifespan
of senescence-accelerated prone mouse (SAMP8) by 17%
and notably improves their memory. THSG also increase
neural klotho protein level and reduce levels of the neural
insulin, the insulin receptors, insulin-like growth factor-1
(IGF-1), and IGF-1 receptor in the brain of SAMP8 [5].
In a subsequent report, this research group again demon-
strated that THSG improves memory, reduces levels of
reactive oxygen species (ROS), nitric oxide (NO), and IGF-
1, and increases protein levels of superoxide dismutase
(SOD) and klotho in serum. Furthermore, THSG upregulates
klotho protein expression in cerebrum, heart, kidney, testis,
and epididymis tissues of D-galactose induced aging mice
[6].
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A German study reported that THSG exerted a DAF-
16-independent antiaging effect in a Caenorhabditis elegans
model [7]. THSG prolongs themean, median, andmaximum
adult lifespans of C. elegans by 23.5%, 29.4%, and 7.2%,
respectively, and increases the resistance of C. elegans to
lethal thermal stress, comparable to the effects of resveratrol.
THSG also exerts a higher antioxidative capacity in nematode
compared with resveratrol and reduces the levels of the aging
pigment lipofuscin.

3. Cardiovascular Protection

3.1. Atherosclerosis and Lipid Metabolism. An experimen-
tal investigation using New Zealand rabbits demonstrated
that THSG reduces atherosclerotic plaque accumulation
caused by a high cholesterol diet, and lower plasma choles-
terol, low-density lipoprotein (LDL) cholesterol, very-low-
density lipoprotein (VLDL) cholesterol, and triglyceride
levels [8]. Moreover, THSG decreases secretion protein
levels of the intercellular adhesion molecule- (ICAM-)
1 and the vascular endothelial growth factor (VEGF)
in the U937 foam cell cultured medium [8]. Subse-
quent studies have reported that in rat aortic walls in
high-cholesterol-fed rats THSG improves the serum lipid
profile and suppresses serum C-reactive protein (CRP),
IL-6 and TNF-𝛼 levels, and matrix metalloproteinase-
(MMP-) 2, MMP-9 mRNA, and protein expressions [9].
THSG also restores the mRNA and protein expression of
eNOS in the rat aorta and improves acetylcholine-induced
endothelium-dependent relaxation [10]. THSG exhibited
antioxidant properties and protected against apoptosis in
a lysophosphatidylcholine- (LPC-) induced endothelial cell
injury model [11]. THSG suppresses intracellular ROS and
malondialdehyde (MDA) and restores SOD and glutathione
peroxidase (GSH-Px) levels. THSG apparently reversed the
loss of mitochondrial membrane potential, the activation of
caspase-3 and poly(ADP-ribose) polymerase 1 (PARP-1), the
decrease of Bcl-2, the upregulation of Bax, and the release of
cytochrome C in LPC-stimulated HUVECs [11].

Ten years ago, a Japanese group found that THSG does
not affect the food intake, growth, or blood pressure of SHRs,
consistent with our data [4, 12], but significantly reduces
free fatty acid content in serum. THSG significantly reduces
cholesterol and neutral lipid content in the VLDL fraction
and neutral lipid content in the high-density lipoprotein
(HDL) fraction in the blood, as well as neutral lipid con-
tent in the liver [12]. Another study reported that THSG
administration to rats for 1 week can effectively control
serum levels of total cholesterol and LDL cholesterol. The
expression of LDL receptors in the liver was significantly
upregulated in a high-fat-fed rat model [13]. Furthermore, in
vitro experiments revealed a downregulation effect of THSG
on 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA)
reductase and an upregulation effect on cholesterol 7 alpha-
hydroxylase (CYP7A) in human steatosis L02 cells. THSG
enhanced downregulation activities in TC, LDL cholesterol,
andVLDL contents and increased activity inHDL cholesterol
[14].

3.2. Vascular Remodeling and Fibrosis. In vitro, THSG pre-
vents the proliferation of vascular smooth muscle cells
(VSMCs) and blocks the G1/S phase progression of the
cell cycle in platelet-derived growth factor-BB- (PDGF-BB-)
or angiotensin II-induced VSMCs [15, 16]. THSG inhibits
the phosphorylation of Rb and extracellular signal-regulated
kinase 1/2 (ERK1/2); it also inhibits the expressions of cyclin
D1, cyclin-dependent kinase-4 (CDK4), CDK2, cyclin E,
the proliferating cell nuclear antigen (PCNA) in PDGF-BB-
induced VSMCs [15], phosphorylated ERK1/2, MEK1/2, Src,
c-fos, c-jun, and c-myc mRNA in angiotensin II-induced
VSMCs [16]. In vivo, THSG inhibits neointimal hyperplasia
in a rat carotid arterial balloon injury model [17], and the
ratio of intima-to-media was significantly reduced, and the
expressions of PCNA, 𝛼-smooth muscle actin (𝛼-SMA), and
PDGF-BB were suppressed. Moreover, signaling pathways
associated with smooth muscle cell proliferation, migration,
and inflammation were inhibited, in addition to the activa-
tion of AKT, ERK1/2, and nuclear factor 𝜅B (NF-𝜅B) and
the expressions of c-myc, c-fos, c-jun, MMP-2, MMP-9, and
collagens I and III [17]. Our recent study reported that orally
administering THSG for 14 weeks significantly inhibited vas-
cular remodeling and fibrosis in SHRs with increasing blood
flow and with constant blood pressure [18]. THSG reduces
intima-media thickness in the aortic arch of SHRs, increases
the vascular diastolic rate in response to acetylcholine, and
reduces remodeling and fibrosis-related mRNA expression,
such as that of genesACTA2,CCL3,COL1A2,COL3A1,TIMP1
WISP2, IGFBP1, ECE1, KLF5, MYL1 BMP4, FN1, and the
plasminogen activator inhibitor-1 (PAI-1). THSG inhibits the
acetylation of Smad3 and prevents Smad3 binding to the PAI-
1 proximal promoter in SHR aortas [18].

3.3. Heart. THSG improves cardiac ischemia-reperfusion,
cardiac remodeling, and cardiac stem cells. The infarct size,
ST segment recovery, and incidence of arrhythmia in the
THSG postconditioning group are all significantly improved
compared with the control group [19]. THSG has also been
shown to promote mitochondrial biogenesis and induce the
expression of erythropoietin (EPO) in nonhematopoietic
cells, including primary cardiomyocytes, and enhance EPO–
EPO receptor autocrine activity. THSG robustly increases the
endurance performance activity of healthy and doxorubicin-
induced cardiomyopathic mice in ischemic disorders, stim-
ulates myocardial mitochondrial biogenesis, and improves
cardiac function [20].

In cardiac remodeling, THSG can attenuate pressure
overload-induced cardiac pathological changes. Such patho-
logical changes include increases in heart weight/bodyweight
and left ventricular weight/body weight ratios, increased
myocyte cross-sectional areas and left ventricular posterior
wall, hypertrophic ventricular septum, and accumulation
of myocardial interstitial perivascular collagen, as well as
elevated cardiac hydroxyproline content [21]. Furthermore,
THSG significantly reduces myocardium angiotensin II,
enhances the activities of SOD and GSH-Px in serum and
myocardial tissue, and inhibits the protein expression of
transforming growth factor beta 1 (TGF-𝛽1) and the phos-
phorylation of ERK1/2 and p38 MAP kinase in myocardial
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tissue [22]. However, THSG treatment increases the per-
centage of the S-phase in sorted c-kit(+) rat cardiac stem
cells and promotes expressions of PCNA, VEGF, the T-
box transcription factor, hyperpolarization-activated cyclic
nucleotide-gated 2 (HCN2), HCN4, the 𝛼 myosin heavy
chain, 𝛽 myosin heavy chain mRNA, stem cell antigen
1, cardiac troponin-I, GATA-4, Nkx2.5, and connexin 43
protein [22].

3.4. Platelets. In vitro, THSG treatment inhibits adenosine
diphosphate- (ADP-) or thrombin-induced platelet aggrega-
tion dose-dependently. THSG does not affect intracellular
calcium ion dynamics at rest; however, in the ADP or throm-
bin stimulation, THSG reduces dose-dependently the rise in
intracellular calcium flow [23]. Another study demonstrated
that THSG prevents dose-dependently collagen-induced
platelet aggregation and ATP secretion [24]. THSG also
inhibits platelet P-selectin expression, glycoprotein IIb-IIIa
binding, and platelet spreading on immobilized fibrinogen, as
well as Fc receptor Fc𝛾RIIa, Akt (Ser473), and GSK3𝛽 (Ser9)
phosphorylations [24].

4. Neuroprotective Effects

4.1. Learning and Memory. In 𝛽-amyloid peptide-in-
duced dementia mice, ischemia-reperfusion gerbils,
and D-galactose induced dementia mouse models, oral
administration of THSG for dementia prevention or
treatment improves learning and memory function in
Morris water maze tests. THSG significantly decreases
MDA level and monoamine oxidase B activity in the
cerebral cortex, reduces the affinity of NMDA receptors
with 3H-MK801, and increases expression of nerve growth
factor (NGF) and neurotrophic factor-3 in the hippocampal
CA1 region [25–27]. Moreover, THSG promotes the
differentiation of PC12 cells, increases the intracellular
calcium level in hippocampal neurons, and facilitates high-
frequency stimulation-induced hippocampal long-term
potentiation (LTP) in a bell-shaped manner. The facilitation
of LTP induction by THSG required calcium/calmodulin-
dependent protein kinase II and ERK activation [28]. In
vivo, THSG treatment also restores memory impairment,
as assessed using the passive avoidance test, in models for
sleep-deprived mice, amyloid-𝛽-injected aging mice, and
kainic acid-injected brain-damage mice. Concurrently,
THSG induces expressions of erythropoietin, PPAR-𝛾
coactivator 1𝛼 (PGC-1𝛼), and hemoglobin in astrocytes and
PC12 neuronal-like cells and in the hippocampus of mice
[29].

4.2. Neuroinflammation. Neuroinflammation is closely
implicated in the pathogenesis of neurological diseases.
Thus, the inhibition of microglial inflammation may have
potential therapeutic significance for neurological diseases.
Researchers have used a microglia BV2 cell line as a
model to investigate the antineuroinflammatory effects
of THSG, finding that THSG reduced the LPS-induced
microglia-derived release of proinflammatory factors such
as TNF-𝛼, IL-1𝛽, IL-6, and NO and attenuated LPS-induced

nicotinamide adenine dinucleotide phosphate oxidase
activation and subsequent ROS production [30, 31]. THSG
failed to suppress I𝜅B-𝛼degradation,NF-𝜅Bphosphorylation
and nuclear translocation, and ERK1/2, JNK, and p38
phosphorylation. However, THSG markedly reduced the
binding of NF-𝜅B to its DNA element in the iNOS promoter
[31]. Moreover, THSG stimulates the secretion of the glial
cell-line derived neurotrophic factor and the secretion of
brain-derived neurotrophic factor and NGF in cultured rat
primary astroglial cells, by activating the ERK1/2 pathway
[32].

4.3. Alzheimer and Parkinson Diseases. In chronic aluminum
exposure or amyloid-𝛽(

1–42)-injected rat models, THSG
improves cognitive impairment evaluated using passive
avoidance task orMorris watermaze tests. THSG reverses the
rise in amyloid precursor protein (APP) expression and the
downregulation in Src and NR2B mRNA and protein levels
in the rat hippocampus [33, 34]. In APP transgenic mouse
models, THSG also reverses the increase in 𝛼-synuclein
expression and aggregation in the hippocampus at the late
stage of transgenic mice [35].

In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated
C57BL/6 mouse models of Parkinson disease, THSG pro-
tects dopaminergic neurons from degradation in substantia
nigra tyrosine hydroxylase-positive cells, enhances striatal
dopaminergic transporter protein levels, and increases stri-
atal Akt and GSK3𝛽 phosphorylation and the upregulation
of the Bcl-2/BAD ratio. Furthermore, in the pole test, THSG
reduces the times required to turn the body and climbing
down to the floor [36]. In vitro, THSG protects PC12 cells
and SH-SY5Y cells against MPP+-induced neurotoxicity.
The antiapoptotic effects of THSG were probably mediated
through the inhibition of ROS generation and modulation
of JNK activation [37, 38], involving activation of PI3K-Akt
pathway [39].

4.4. Cerebral Ischemia. Previous studies have shown that
THSG significantly decreases the percentage of apoptotic
cells in injured rat brain tissue induced by ischemia reper-
fusion, promotes Bcl-2, and inhibits Bax protein expres-
sion in brain tissue [40]. THSG also promotes changes
in animal nerve behavior; improves neurological function
scores; increases the expression of NGF, growth-associated
protein 43, and PKA catalytic subunit proteins; and presents
a positive correlation between neurological function scores
and determined protein expression [41]. In the middle cere-
bral artery occlusion (MCAO) models, THSG significantly
reduces the brain infarct volume and the number of apoptosis
cells in the cerebral cortex according to a TUNEL assay
[42]. Furthermore, the authors used an in vitro ischemic
model of oxygen-glucose deprivation followed by reperfusion
(OGD-R), revealing that THSG reverses intracellular ROS
generation and mitochondrial membrane potential dissipa-
tion and inhibits c-Jun N-terminal kinase (JNK) and Bcl-
2 family-related apoptotic signaling pathway. Concurrently,
THSG prevents the expression of iNOS induced by OGD-
R through the activation of SIRT1 and inhibition of NF-𝜅B
[42].
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Figure 2:The signal transduction pathways regulated by THSG in the antiaging and aging-related diseases. THSG displays different activities
in blocking and activating signaling and gene expression in vitro and in vivo.

5. Diabetes and Other Diseases

5.1. Diabetes. The beneficial effects of THSG in alleviating
diabetic complications are reflected in diabetic nephropathy
and gastrointestinal disorders. Treatment with THSG reduces
the increase in total cholesterol and triglyceride levels of
diabetic rats [43]. Treatment with THSG also significantly
reduces blood urea nitrogen, creatinine, 24 hours urinary
protein levels, the ratio of kidney weight/body weight,
and MDA and markedly increases the activities of SOD
and GSH-Px in diabetic rats. Furthermore, THSG inhibits
diabetes-induced expression of TGF-𝛽1 and cyclooxygenase-
2 and restores the reduction of SIRT1 expression in diabetic
nephropathy [43]. For disorders of gastrointestinal function
in diabetes, long-term preventive treatment with THSG
relieves delayed gastric emptying and increases intestinal
transit, impaired nonadrenergic-noncholinergic relaxations,
and deficiency of neuronal NO synthase expression in
streptozotocin-induced diabetic mice. Moreover, THSG pre-
vented significant decreases in PPAR-𝛾 and SIRT1 expression
in diabetic ileum [44].

5.2. Bone Mineral Density. Recently, a study reported that
THSG promotes bone mineral density and bone strength in
the femoral bones of rats and enhances the bone mineral
weight and bone mineral size in the iliac and humeral
section after 90 days of administration [45]. Another report
described in greater detail how in vitro THSG significantly
enhances the cell survival, alkaline phosphatase (ALP) activ-
ity, and calcium deposition in H

2
O
2
-injured osteoblastic

MC3T3-E1 cells. THSG enhances mRNA expressions of ALP,
collagen I, and osteocalcin but weakens the receptor activator
of nuclear factor-𝜅B ligand and IL-6, as well as intracellular
ROS and MDA production [46].

5.3. Hair Growth. A report indicated that a THSG fed
group had significantly more hair growth compared with

the control group, and that THSG accelerated the growth
rate of early hair in C57BL/6J mice. In vitro, THSG also
promoted hair growth in the cultured tentacles follicles of
mice, with longer hair than that in the control group after
8 days [47]. Another report indicated that in vitro THSG
increased the proliferation of dermal papilla cells of mice
compared with the control group [48]. In addition, THSG
promoted tyrosinase activity and melanin biosynthesis dose-
dependently [49, 50].

6. Summary

Although THSG has been found to exhibit many medicinal
properties, because no systematic study has investigated its
regulatory mechanisms and proteomics or genomics data, its
functional targets remain unclear. Nevertheless, we summed
up the signal transduction pathways that are regulated by
THSG, shown in Figure 2, which presents multipathway
multitarget characteristics that block and activate different
signaling and gene expression. In all the animal experiments
in this study, the rats and mice were the main models
(Table 1). However, the experiments involving the genetic
model and the specific gene knockout model were used less.
Most experimental drug dosages of THSGare between 20 and
120mg/kg, with some individual extreme doses of 300mg/kg
or more. In most studies, THSG has been administered daily
by oral gavage, but in some cases it has been delivered
by intraperitoneal injection. The pharmacologic activity of
THSH in low concentration in cellular studies is summarized
in this review (Table 2). Dosages of THSG in vitro are
normally between 0.1 and 100 𝜇mol/L, whilst in some dosages
the concentration will reach a maximum of 300 𝜇mol/L.
Then the high concentration of THSG may play a role in
toxicological effects instead of activation effects. Because of
this, clinical value may be restricted.

From the perspective of drug effects, THSG achieves
favorable results in delaying senescence and in treating
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aging-related diseases, especially in the cardiovascular and
nervous system. Some studies have shown that THSG may
be more effective than resveratrol in delaying senescence.
Nevertheless, more research is necessary to explain the
mechanism of THSG.
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