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Abstract

The human genome harbors a variety of genetic variations. Single-nucleotide changes that

alter amino acids in protein-coding regions are one of the major causes of human pheno-

typic variation and diseases. These single-amino acid variations (SAVs) are routinely found

in whole genome and exome sequencing. Evaluating the functional impact of such genomic

alterations is crucial for diagnosis of genetic disorders. We developed DeepSAV, a deep-

learning convolutional neural network to differentiate disease-causing and benign SAVs

based on a variety of protein sequence, structural and functional properties. Our method

outperforms most stand-alone programs, and the version incorporating population and

gene-level information (DeepSAV+PG) has similar predictive power as some of the best

available. We transformed DeepSAV scores of rare SAVs in the human population into a

quantity termed “mutation severity measure” for each human protein-coding gene. It reflects

a gene’s tolerance to deleterious missense mutations and serves as a useful tool to study

gene-disease associations. Genes implicated in cancer, autism, and viral interaction are

found by this measure as intolerant to mutations, while genes associated with a number of

other diseases are scored as tolerant. Among known disease-associated genes, those that

are mutation-intolerant are likely to function in development and signal transduction path-

ways, while those that are mutation-tolerant tend to encode metabolic and mitochondrial

proteins.

Author summary

Human genetic variations in various forms are constantly found in whole genome and

exome sequencing of general population and patients. It remains a challenging task to

assess the functional impact of these variations. In this study, we performed comprehen-

sive analysis of single-amino-acid variations (SAVs) in terms of their sequence, structure,

and functional properties. We further developed a deep neural network-based method to

predict the functional impact of SAVs. Our method is among the top performers com-

pared to existing programs in differentiating pathogenic and benign SAVs. We designed a
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mutation severity measure for human protein-coding genes by aggregating the predicted

scores of SAVs found in the human general population. Such a measure reflects a gene’s

tolerance to deleterious missense mutations and serves as a useful tool to study gene-dis-

ease associations. We found that genes implicated in cancer, autism, and viral interaction

are more likely to be intolerant to mutations than genes with other diseases. Disease-asso-

ciated genes with strong mutation intolerance tend to function in development and signal

transduction pathways. On the other end of the mutation severity spectrum, mutation-tol-

erant genes often encode proteins functioning in mitochondria and metabolic pathways.

Introduction

Genetic variations are major determinants of human diseases and phenotypes [1]. Accelerating

pace of large-scale sequencing projects on genomes and exomes has greatly expanded the land-

scape of human genetic variations. It remains a challenging task to assess the functional impact

of these variations [2]. Comprehensive analysis of genetic variations, especially those found in

and near the exons of protein-coding genes [3], may shed light on gene-disease relationships

and provide insight into the mechanisms of diseases and variations in phenotypes [4]. The

increasing number of sequenced human genomes and exomes from the general population

would enhance the statistical power of such analyses [5].

Different types of genetic variations occur at a range of scales from large structural varia-

tions such as chromosomal rearrangements and copy number variations (CNVs), to insertions

and deletions (indels) of up to hundreds of nucleotide positions, and to single-base-pair (sin-

gle-nucleotide) variations (SNVs) [6]. Any type of genetic variation could cause human disease

with a variety of mechanisms, including effects on chromatin organization, gene expression

and regulation, protein function, and genetic instability [7–11]. The observed frequencies of

genetic variations in the general population are tied to their fitness cost as well as the evolu-

tionary history of the human species and its ancestors. While common variations, most nota-

bly SNVs, were first documented, more rare genetic variations (e.g., those with minor allele

frequency (MAF) less than 0.0001) at the individual level have been identified in large-scale

sequencing projects of the general population [5] as well as patients with certain diseases such

as cancer [12] and intellectual disability [13]. Although some recurring variations have been

identified to be the drivers of diseases, a significant number of rare mutations are persistently

found, and their clinical significance are difficult to evaluate. Genome-wide association studies

can pinpoint the genetic loci, mostly marked by common SNVs, with statistically significant

disease or phenotype associations [14, 15]. Association of rare and de novo mutations to com-

mon and rare diseases could be unveiled through familial or trio studies that are facilitated by

genome or exome sequencing nowadays [16, 17]. Coupled with pathway profiling, systematic

analysis of genetic variations in patients could shed light on the biological processes underlying

diseases [18]. However, disease gene prioritization and disease-causing variation discovery are

still difficult [19, 20].

The identity change in a single base pair position is the most common type of genetic varia-

tion. In protein-coding regions, non-synonymous variations (missense mutations) result in

the change of a single amino acid in the protein product [21]. Clinical consequences of these

missense mutations, referred to as single amino acid variations (SAVs), are generally more dif-

ficult to evaluate than synonymous mutations (generally benign) and nonsense (stop codon)

mutations (often resulting in loss of function). Deleterious SAVs could affect various aspects

of protein function, including protein folding and stability, protein-protein interactions,
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protein localization and degradation, post-translational modification, and the activity of

enzymes [22, 23]. A number of computational methods [24] have been developed to assess the

mutational effects of SAVs found in the human proteome encoded by around 20,000 protein-

coding genes.

Essential genes compromise the viability of an individual when their function is lost. Such

genes can be identified by observing intolerance to loss-of-function variants at the population

level [25]. In genetic terms, essential genes tend to exhibit haploinsufficiency, where the loss of

one of two gene alleles is detrimental. Genetic alterations of haploinsufficient genes are not

only a major cause of dominant diseases [26], but also play key roles in developmental disor-

ders [17]. On the one hand, haploinsufficient genes can function as tumor supressors [27]. On

the other hand, essential genes tend to be expressed at higher levels in cancer cells than in nor-

mal cells [28]. Thus, knowledge about gene essentiality can help prioritize deleterious variants

in genetic studies and could help prioritize therapeutic targets in cancer. Given the role of

essential genes in human disease, considerable efforts have gone into developing methods for

haploinsufficiency prediction [5, 29–32].

In this study, we developed a deep convolutional neural network-based method for predict-

ing the clinical impact of SAVs in the human proteome based on analysis of their sequence,

structural and functional properties. The neural network prediction results of SAVs observed

in the general population were used to calculate a mutation severity measure that estimates tol-

erance of each human protein-coding gene to deleterious missense mutations. This measure

correlates with gene essentiality and specific disease classes such as cancer and autism. Finally,

we observed a dichotomy of mutation severity for disease-associated genes: those that are

mutation-intolerant tend to function in development and signal transduction pathways, while

those that are mutation-tolerant tend to function in metabolism.

Results and discussion

Analysis of human disease-related genes and their variants

We obtained a set of likely pathogenic (disease-causing) genetic variants from two database

resources: ClinVar [33] and UniProt [34]. ClinVar aggregates reported variant-disease associa-

tions from submissions of research studies. The ClinVar clinical interpretation of variants fol-

lows the ACMG (American College of Medical Genetics and Genomics) guideline [2] and

have five categories: “Pathogenic”, “Likely pathogenic”, “Uncertain significance”, “Benign”,

and “Likely benign”. We consider the categories “Pathogenic” or “Likely pathogenic” as dis-

ease-causing variants and the categories “Benign” and “Likely benign” as non-disease-causing

while ignoring the category of “Uncertain significance”. It should be noted that errors or

inconsistencies with other databases could be present in ClinVar interpretations, especially the

categories of “Likely pathogenic” and “Likely benign”, where the ACMG’s recommended con-

fidence level is greater than 90% certainty of being disease-causing and benign, respectively

[2]. ClinVar variants annotated as “Pathogenic” or “Likely pathogenic” were found in ~4,200

protein-coding genes, about one fifth of the human proteome. Among those variants, SAVs

were found in the majority (3,410) of these genes. Non-SAV variants were also found in most

of them (~3,300 genes). Non-SAV variants include indel variants, single-nucleotide variations

in noncoding regions (mostly at splice sites), nonsense single-nucleotide variations (to stop

codons), and a small number of synonymous variants (Fig 1A). The 31,171 SAVs made up

about 30% of all ClinVar variants with “Pathogenic” or “Likely pathogenic” annotations (Fig

1B). UniProt is another curated resource for pathogenic SAVs. The number of proteins with

UniProt SAVs annotated as disease-related is 2,755 (Fig 1C). Most of these genes (2,590) over-

lap with the ClinVar disease-associated gene set, with UniProt contributing only 165 disease-
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associated genes not found in the ClinVar set. On the other hand, more than half of the Uni-

Prot pathogenic variants (15,697 out of 29,300, Fig 1D) were not found in the set of ClinVar

pathogenic variants. The total number of likely pathogenic variants in the unified ClinVar and

UniProt set is ~47,000. We also obtained a set of benign variants (~45,000) by combining the

ClinVar variants annotated as “Benign” or “Likely benign” and the UniProt variants in the cat-

egory of “Polymorphism”.

The number of likely pathogenic SAVs are not evenly distributed among the disease-associ-

ated genes. The three genes with the greatest number of SAVs encode long proteins: FBN1

(Fibrillin-1, 2,871 amino acids), LDLR (Low-density lipoprotein receptor, 860 amino acids),

and SCN1A (Sodium channel protein type 1 subunit alpha, 2,009 amino acids), each of which

has more than 500 pathogenic SAVs. In part, it may be due to the length of these proteins. 75

genes possess more than 100 pathogenic SAVs. More than half of the disease-associated genes

with SAVs (2,003 out of 3,575) have less than 5 pathogenic SAVs, and 916 of them have only

one pathogenic SAV. One cause of the uneven distribution of SAVs could be the bias in

research studies of common diseases and certain genes (e.g., the LDLR gene involved in

hypercholesterolemia).

Enrichment analysis of sequence, structure and functional properties in

likely pathogenic SAVs and gnomAD SAVs

We compiled a set of protein sequence, structure, and functional properties predicted by com-

puter programs or retrieved from UniProt Feature fields (see Materials and methods). An

enrichment log-odds score was used to determine if any property is enriched or depleted in

Fig 1. Distribution of disease-associated genes and variants. A) The number of ClinVar disease-associated genes

with different types of variants. The non-SAV category combines the categories of nonsense, synonymous, noncoding,

and indel. B) The number of variants of different types in ClinVar disease-associated genes. C) Venn diagram of genes

with pathogenic SAVs from UniProt and ClinVar. D). Venn diagram of pathogenic variants from UniProt and

ClinVar.

https://doi.org/10.1371/journal.pcbi.1007775.g001
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amino acid positions with pathogenic SAVs compared to the background frequency of that

property in all human proteins (see Materials and methods). We observed a 1.7-fold enrich-

ment of conserved positions (Consv3 in Fig 2A) and more than 3-fold depletion of variable

positions (Consv1 in Fig 2A) in pathogenic SAVs. Similarly, results of three disorder predic-

tion programs (DISOPRED3 [35], SPOT-Disorder [36], and IUPred2A [37]) consistently

show that ordered regions are enriched and disorder regions are depleted in pathogenic SAVs.

Predicted β-strands and α-helices are slightly preferred in pathogenic SAVs, while coil regions

of secondary structure predictions are slightly depleted. The enrichment/depletion of pre-

dicted secondary structure types is not large (less than 1.33 fold). A previous study of

Fig 2. Enrichment of SAVs among sequence, structure and functional properties. A) Enrichment/depletion of

properties in pathogenic SAVs compared to all amino acid positions (y-axis shows log2 based log-odds scores).

Notations: Consv1 –positions with low conservation scores (between 0 and 0.3), Consv2 –positions with medium

conservation scores (between 0.3 and 0.6), Consv3 –positions with high conservation scores (larger than 0.6).

H_psipred, E_psipred, C_psipred are secondary structure predictions of α-helix, β-strand, and coil by PSIPRED. The

same notation is used for secondary structure prediction programs SPIDER (H_spd3, E_spd3, C_spd3) and PREDSS

(H_predss, E_predss, C_predss). O_disopred and D_disopred correspond to ordered and disordered regions predicted

by DISOPRED respectively, and the same notation is used for disorder prediction programs SPOT-DISORDER

(O_spotd and D_spotd) and IUPRED2A (O_iupred2a and D_iupred2a). The notations ncoil and seg are predicted

coiled coil region and low complexity region, respectively. P_MODRES, A_MODRES, and M_MODRES are positions

annotated as being modified with phosphorylation, acetylation, and methylation in UniProt, respectively. SIGNAL,

TRANSIT, and TRANSMEM are positions annotated as signal peptide, transit peptide, and transmembrane segment

in UniProt. DISULFID, SITE, ACT_SITE, MOTIF, METAL, BINDING, CARBOHYD and LIPID are positions

annotated in these key words in UniProt Feature fields (see Materials and methods for their definitions). B)

Enrichment/depletion of amino acid properties in gnomAD SAVs with different MAF ranges (from light blue to dark

blue: MAF< 0.0001, 0.0001�MAF< 0.001, 0.001�MAF< 0.01, 0.01�MAF) compared to all amino acid

positions.

https://doi.org/10.1371/journal.pcbi.1007775.g002
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secondary structure biases based on known structures also revealed that there is little differ-

ence between secondary structure distributions among disease-causing variations and benign

variations, albeit the authors found a weak enrichment of coil/turn/bridge and weak depletion

of β-strand for disease-causing variations [38]. The different findings could be due to differ-

ences in the datasets (full-length proteins in this study versus regions with known structures)

and secondary structure estimation methods (predicted versus real). We also observed slight

depletion of low complexity regions and coiled coil regions in pathogenic SAVs.

For regions with indications of subcellular localization, signal peptides and mitochondrial

transit peptides are depleted in pathogenic SAVs, but transmembrane segments are enriched

by more than 2 fold. Several properties derived from UniProt Features exhibit the strongest

enrichments in pathogenic SAVs. They are related to protein stability (UniProt Feature DIS-

ULFID: cysteine residues participating in disulfide bonds) or function (UniProt Features:

SITE, ACT_SITE, METAL, MOTIF, and BINDING, see their explanations in Materials and

methods and S2 Table). Except the MOTIF Feature, they exhibit more than 4-fold enrichment

in pathogenic SAVs (log2-based odds score more than 2, Fig 2A).

We also analyzed SAVs found in more than 12,000 exomes (>24,000 alleles) in the gno-

mAD (genome Aggregation Database) [5] database, which provides a comprehensive cata-

logue of natural variants from the general population. Common SAVs (MAF� 0.01) should

be mostly benign, and they only make up a small fraction of gnomAD SAVs (27,813 out of

4,885,239, about 0.57%). The gnomAD database possesses many more rare SAVs, with MAF

less than 0.01, a significant portion of which are singletons (found only once in all exomes).

We partition gnomAD SAVs according to their MAFs into four categories (MAF < 0.0001,

0.0001�MAF < 0.001, 0.001�MAF < 0.01, and MAF� 0.01). The majority of SAVs

(4,588,805 out of 4,885,239, about 94%) fall into the category of rare SAVs with

MAF < 0.0001, while about 4.4% (27,813) and 1.1% (53,489) belong to the categories

0.0001�MAF < 0.001 and 0.001�MAF < 0.01, respectively. The population bottleneck

events could be partially responsible for the depletion of common SAVs [39], and the explosive

population growth in recent history can lead to excessive amount of rare SAVs [40].

Enrichments of protein sequence, structure, and functional properties in each gnomAD

SAV category were analyzed in the same way as for pathogenic SAVs (Fig 2B). Common gno-

mAD SAVs (MAF� 0.01) generally exhibit opposite enrichment/depletion trends compared

to pathogenic SAVs. Properties such as DISULFID, SITE, ACT_SITE, METAL, MOTIF, and

BINDING exhibit the most prominent depletion in common gnomAD SAVs and the strongest

enrichment in pathogenic SAVs. In contrast, properties enriched in common SAVs include

variable positions (Consv1), coil regions of secondary structure prediction, predicted disor-

dered regions, low complexity regions, signal peptides, and mitochondrial transit peptides.

The enrichment or depletion of properties were gradually curtailed when moving from the cat-

egory of common gnomAD SAVs to less frequent gnomAD SAV categories (Fig 2B). This

behavior suggests that many low frequency SAVs, especially those with MAF less than 0.0001

in the general population could be deleterious, because functionally important residues (prop-

erties specified by UniProt Features SITE, ACT_SITE, BINDING, METAL, and MOTIF) are

found more frequently in these rare SAVs than in the common SAVs.

DeepSAV–A deep neural network-based method for SAV pathogenicity

prediction

We developed a neural network-based method (DeepSAV) that uses a deep-learning convolu-

tional neural network to predict SAV pathogenicity based on input features of sequence, struc-

ture, and functional information (see Materials and methods). The features include amino
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acid type, sequence profile, sequence conservation, secondary structure and disorder predic-

tions, coiled coil and low complexity region predictions, sequence regions indicating subcellu-

lar localization (signal peptide, transit peptide, transmembrane segments), and functional and

stability properties from the UniProt database such as post-translational modifications, disul-

fide bond, active site, and motifs (S3 Table). Features of a window of 21 amino acid positions

centered around the mutated amino acid were encoded as input. The neural network has

mainly convolutional layers and applies techniques such as max-pooling, residual network,

and dropout (S1 Fig). It is trained and tested on a large set (43,000 pathogenic and 43,000

benign) of SAVs from the ClinVar and UniProt database.

Computational methods of variant impact predictions differ in the sources of information

used, the training data, and the scoring algorithms/machine learning techniques. Some of

these methods such as SIFT [41], LRT [42], MutationAssessor [43], and PROVEAN [44],

explore the evolutionary information in the multiple sequence alignment of homologous pro-

tein or DNA sequences. Many other methods such as PolyPhen-2 [45], FATHMM-XF [46],

CADD [47],PrimateAI [48], and VEST [49], combine various sources of information in addi-

tion to sequence conservation, such as predicted or real structural properties, functional and

epigenetic information from experiments, and genomic context. DeepSAV is similar to these

stand-alone methods in terms of integrating a set of input features with diverse sequence,

structural and functional information. A cross validation test of DeepSAV showed that it

yielded better performance (measured by area under the ROC (receiver operating characteris-

tic) curve (AUC)) to differentiate pathogenic from benign SAVs than most stand-alone pro-

grams such as SIFT [41], PolyPhen-2 [45], FATHMM-XF [46], PROVEAN [44], CADD [47],

LRT [42], MutationAssessor [43], PrimateAI [48], and a simple baseline fitness score (Baseli-

ne_fitness) we used before in the Critical Assessment of Genome Interpretation (CAGI) evalu-

ations [50] (Fig 3A). DeepSAV’s performance is similar to (Eigen [51]) or worse than several

meta-predictors (MetaSVM [52], MetaLR [52], and REVEL [53]) that use prediction results of

a number of other stand-alone predictors (Fig 3A). DeepSAV trails the two best methods

REVEL and VEST4 by about 0.06 in AUC. We were not able to find information about the

algorithm of VEST4, an improved version of VEST [49], which shows the second best perfor-

mance, and used VEST4 scores as given in dbNSFP for comparison [24]. DeepSAV scores cor-

relate best with the prediction scores of REVEL and VEST4, with correlation coefficients of

0.767 and 0.783, respectively (S4 Table).

To study the effectiveness of different features used in DeepSAV predictor, we performed

neural network prediction experiments by using various feature combinations (S3 Fig). If only

the amino acid types (including wild type and mutated) are used as features, the neural net-

work prediction power is significantly lower (ROC AUC: 0.785, S3 Fig) than when all features

are used (ROC AUC: 0.879). Adding sequence conservation (AA+consv) or sequence profile

(AA+prof) yields significant ROC AUC increases (to 0.849 and 0.86, respectively). These two

features appear to be the most important determinants of neural network performance, as add-

ing other types of features individually (AA+seg, AA+coiled.coil, AA+ss.pred, AA+disorder,

AA+uniprotFeat) does not enhance the performance as large as adding them (S3 Fig). Similar

behavior is observed in the experiments of leaving out a particular type of features. Leaving out

either sequence conservation (ALL-consv with ROC AUC 0.864) or profile (ALL-prof with

ROC AUC 0.865) while keeping all the other features resulted in the biggest drop of perfor-

mance compared to leaving out other types features individually (ALL-disorder, ALL-seg,

ALL-sec.struct, ALL-coiled.coil, and ALL-uniprotFeat). In fact, leaving out features such as

coiled coil prediction (ALL-coiled.coil with AUC 0.876), low complexity region prediction

(ALL-seg with ROC AUC 0.878), predicted secondary structure types (ALL-sec.struct with

ROC AUC 0.877), predicted disorder propensities (ALL-disorder with ROC AUC 0.874), and
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Fig 3. A) Performance of variant pathogenicity prediction programs in terms of AUC (area under the ROC curve)

measure. B) Scatter plot of DeepSAV scores and baseline fitness scores for SAVs observed in gnomAD. Datapoints for

four different MAF categories are shown. Their density plots are shown by the axes above (DeepSAV) and right

(baseline fitness). C) to F) Two-dimensional histograms (made with R ggplot2 package) of DeepSAV scores and

baseline fitness scores for gnomAD variants with MAF� 0.01 (C), 0.001�MAF< 0.01 (D), 0.0001�MAF< 0.001

(E), and MAF< 0.0001 (F).

https://doi.org/10.1371/journal.pcbi.1007775.g003

PLOS COMPUTATIONAL BIOLOGY Mutation severity spectrum of rare alleles is predictive of disease type

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007775 May 15, 2020 8 / 31

https://doi.org/10.1371/journal.pcbi.1007775.g003
https://doi.org/10.1371/journal.pcbi.1007775


features derived from UniProt Feature fields (ALL-uniprotFeat with ROC AUC 0.874) has lit-

tle influence in the neural network performance. Collectively, these features give an improve-

ment of 0.09 in ROC AUC when comparing the neural network with all features (ALL) to the

neural network with amino acid types, conservation, and profile (AA+consv+prof).

The DeepSAV predictor is based on information derived from amino acid positions. Thus,

the DeepSAV score reflects the level of deleterious effect to the target protein for any given var-

iant based on its sequence, structural and functional properties. However, protein-level delete-

rious effects do not necessarily lead to human diseases, as a significant fraction of human

protein-coding genes could be compromised without causing diseases. Variations in essential

genes are more likely to cause diseases than in non-essential genes, and disease-associated

genes are generally involved in more protein-protein interactions than genes not associated

with diseases [39]. Adding information based on gene-level annotation or predictions such as

gene essentiality and the number of protein-protein interactions have proven useful in

improving the differentiation between disease-causing mutations and benign mutations [39].

Indeed, the performance of DEOGEN2 [54], which incorporates heterogeneous information

such as the relevance of the gene and the number of protein interactions, is among the best

(ROC AUC: 0.924) in our test. Another valuable source of information independent from the

amino acid positional properties are the frequencies of the variants observed in the human

general population, which is available as minor allele frequencies (MAFs) of the variants in the

gnomAD database. We added gnomAD MAF and 17 gene-level features (extracted from

dbNSFP, see Materials and methods) to the amino-acid-level features in DeepSAV. The result-

ing predictor DeepSAV+PG (DeepSAV with population and gene-level information) was able

to boost the performance from ROC AUC 0.879 to 0.924, close to some of the best methods

(Fig 3A).

One direction for future improvement of our neural network method would be to use

3-dimensional (3D) structural information for regions with known structures or regions

where structures can be reliably modeled, as some current methods do [45, 55]. Predictions of

protein stability and binding free energies changes could be used as features [22, 56]. Available

3D structures would also enable the use of amino acid properties of residues that are structural

neighbors of the target position, some of which could be forming long-range contacts that are

not covered by a local sequence-based window. Such structural information could be useful in

capturing the epistasis effects on protein stability [57, 58] between positions and may be com-

bined with the epistasis effects derived from other sources, such as population frequencies of

compensatory variations [59].

We further calculated DeepSAV scores and baseline fitness scores for human protein SAVs

observed in the gnomAD database (available at http://prodata.swmed.edu/DeepSAV_data).

They show a positive correlation (correlation coefficient: 0.57), and both exhibit bimodal dis-

tributions for SAVs in each of the four different MAF categories (MAF� 0.01 (common

SAVs), 0.001�MAF < 0.01, 0.0001�MAF < 0.001, and MAF < 0.0001) (Fig 3B–3F). The

range of DeepSAV scores is between 0 and 1, with higher scores suggesting an increasing likeli-

hood of being deleterious (pathogenic). For common SAVs (MAF� 0.01), the distribution of

DeepSAV exhibits a high peak in the low score range, and a flat tail in the high score range,

suggesting that the majority of common SAVs are predicted to be benign. With increasing

stringencies of rare SAVs, the volume of the peak in the low-score range decreases while the

tail in the high-score range increases, suggesting that pathogenic SAVs are more likely to

occur in rarer SAVs. The baseline fitness scores display similar behavior for SAVs in different

MAF categories, although the peaks in high and low scoring ranges appears to overlap more

compared to the DeepSAV scores.
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Mutation severity scores enrich for essential genes with potential disease

associations

Deep sequencing of human exomes has highlighted the contribution of rare SAVs to gene

function and complex diseases [60, 61]. Certain genes may be more tolerant to deleterious or

partially deleterious SAVs due to their functional properties. To evaluate the mutation toler-

ance of genes, we chose to use the DeepSAV scores that reflect a variant’s deleterious effect on

the protein product, as the features used for training are based on protein sequence, structure,

and functional properties. DeepSAV+PG scores are better than DeepSAV scores at discrimi-

nating pathogenic (disease-causing) variants from benign variants by adding gene-level infor-

mation that correlates with the likelihood of a gene associated with diseases (e.g., gene

essentiality and interaction numbers). However, to more objectively assess the mutation toler-

ance of genes, DeepSAV scores were used as they reflect the deleterious effects on the protein

products regardless of whether the genes are disease-associated.

Mutation severity refers to the degree of deleteriousness associated with a genetic variation.

Similar terms such as “degree of harmfulness” [38] and “perturbation index” [62] have been

used in previous studies. The deleterious effects of SAVs could have functional impacts on var-

ious aspects of a protein’s function, including protein stability, interactions with binding part-

ners, enzymatic activity, protein degradation, and subcellular localization [23]. The free energy

change in protein folding and binding can be quantified by experiments and structural model-

ing of the wild-type and mutated proteins. It has been shown that the relative magnitude of

energy change (compared to the total folding or binding free energy of the wild type protein)

serves as a better predictor of functional impact of a variant than the absolute values of energy

change [22]. The same energy perturbation would have a more detrimental effect on a small

protein with weak folding energy than the effect on a large protein with strong folding energy.

Natural variants with clinical impact tend to be rare in the human population [48]. Explo-

sive population growth coupled with weak purifying selection in recent human history led to

an excess of rare natural variants observed in large-scale sequencing of human genomes and

exomes [40, 60, 63]. Certain variants likely result in the loss of function (inactivation) of a pro-

tein, such as mutations to stop codons, at essential splice sites, and frameshift indels. These

types of protein-truncating variants have been quantified in measures such as pLI (probability

of being loss-of-function intolerant) and LOEUF (loss-of-function observed/expected upper

bound fraction) based on their occurrences in human population. However, the functional

impact of SAVs of the human population are more difficult to assess, while they could be sta-

tistically more powerful since SAVs are more frequent than commonly used loss-of-function

mutations leading to stop codon, altered splicing and frameshift. DeepSAV scores predict the

deleterious effects of SAVs with input features of protein sequence, structure and function,

thus would serve as a measure of the mutation severity of SAVs. The number of deleterious

rare SAVs at the population level could serve as a simple measure of a gene’s tolerance to them

in recent human history. Since the deleterious effect of any SAV is a continuous variable that

correlates with the DeepSAV score, we transformed the DeepSAV scores of rare SAVs

(MAF < 0.0001) present in the human population (from the gnomAD database [5]) into a

mutation severity measure for each gene called the GTS (Gene Tolerance of rare SAVs) score

(see Materials and methods). The GTS score is a weighted sum of DeepSAV scores for

observed rare SAVs in the human population (normalized by protein length) (available in S1

Table). It is correlated with a simple measure of mutation severity based on the number of pre-

dicted deleterious rare SAVs (DeepSAV score > 0.75) (Fig 4A).

Human genes have been classified by a measure (LOEUF) that reflects their tolerance to

inactivation (loss-of-function) [5]. To see how our GTS score correlates with the LOEUF
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score, we ranked human genes from low GTS score (mutation-intolerant) to high GTS score

(mutation-tolerant). The LOEUF distribution for top-ranking mutation-intolerant genes was

compared to that of a set of known disease-associated genes (Fig 4B). The top-ranking muta-

tion-intolerant genes selected by the mutation severity measure (lowest GTS scores) include

progressively more loss-of-function constrained genes with increased filtering of common

Fig 4. Mutation severity measures based on DeepSAV identify potential disease-associated genes. A) Mutation severity measure (GTS score)

correlates with the average number of deleterious SAVs for 17,480 human genes B) Distribution of gene count among decile bins of loss-of-

function constraint measure (LOEUF) for a set of genes (>3,000) with pathogenic SAVs (red bars, labeled as "path") and for the gene sets

(having the same number genes) with the lowest GTS scores computed at various cutoffs of minor allele frequencies (0.0001, 0.001, 0.01 and 1).

On the x axis, 0 means the first LOEUF decile [0, 0.1] (the same extrapolation applies to other numbers). C) Distribution of gene frequency

among GTS deciles (MAF cutoff 0.0001) for the same gene set with known pathogenic SAVs compared to essential and nonessential gene sets.

D) Distribution of protein interactions from four databases (BioGrid [123], IntAct [124], DIP [125] and HPRD [126]) integrated in PICKLE

[127] for gene sets within three different mutation severity GTS score deciles (0, 0.5 and 0.9). E) Venn diagram highlights overlap among

essential genes with known pathogenic variants (labeled as "Pathogenic"), essential genes with lowest loss-of-function constraint scores

(LOEUF), and essential genes with lowest mutation severity measure (GTS). F) Representation of disease class associated with genes from the

overlapping set of top-ranked genes by LOEUF and GTS (126 genes, not including genes with known pathogenic SAVs).

https://doi.org/10.1371/journal.pcbi.1007775.g004
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variants. In contrast, the disease-associated gene set displays a bimodal distribution of highly

constrained genes at low LOEUF and less constrained genes at median LOEUF. Thus, the

mutation severity measure for rare SAVs reiterates a gene’s tolerance to inactivation, with top-

ranking mutation-intolerant genes being more frequent in the percentile of lowest tolerance to

inactivation.

A fraction of the disease-associated human gene set (17%) is annotated as essential by one

or more CRISPR screens [64, 65]. Among all curated gene-disease associations in DisGeNET

(May 2019 version) [66], the essential disease-associated genes contribute to 2,477 diseases or

syndromes and 1,847 neoplastic processes. We originally reasoned that genes able to accumu-

late numerous detrimental SAVs (evaluated by high GTS scores) were less likely to contribute

to disease phenotypes. However, the GTS scores do not discriminate disease-associated genes

collectively, giving similar gene frequencies displayed across the GTS deciles (Fig 4C, gray

bars). Instead, GTS scores tend to select for gene essentiality, with an increase in essential

genes and a decrease in non-essential genes at the lowest GTS decile (Fig 4C). Sequence con-

servation could partially explain the correlation between GTS score and gene essentiality, as

essential genes tend to be more conserved due to their functional importance and at the same

time accumulate less deleterious rare mutations in recent human history. Similar to noted

trends of both essential and disease-associated genes [67, 68], human genes with GTS scores in

the lowest decile, regardless of their essentiality, exhibit increased numbers of protein interac-

tions than those from higher GTS deciles (Fig 4D).

Although the loss-of-function constraint measure LOEUF [5] and the mutation severity

measure GTS display similar trends in reflecting gene essentiality (Fig 4C), they define differ-

ent gene sets that might be used to evaluate potential new disease-associated genes. A compari-

son of essential genes with the lowest LOEUF scores, essential genes with the lowest GTS

scores, and essential genes with pathogenic SAVs highlights the divide among these gene sets

(Fig 4E). The overlap between low-GTS set and low-LOEUF set (126 genes, not including

genes with pathogenic SAVs) provides a potential source of disease-associated genes. Indeed,

despite the lack of documented pathogenic SAVs in the 126 SAV and inactivation-intolerant

genes, curated DisGeNET gene-disease associations annotate almost half (55 genes) as being

involved in disease. The set includes almost all disease classes, with several being over-repre-

sented when compared to all gene-disease associations: including virus diseases, stomatog-

nathic diseases, immune system diseases, and neoplasms (Fig 4F). Given their propensity to

associate with disease, the essential genes selected by our GTS score could provide insight into

novel gene-disease associations.

Mutation-intolerant essential genes cluster with disease-associated genes

and contribute to diseases

While low GTS scores tend to reflect select for gene essentiality (Fig 4C), they do not necessar-

ily distinguish among a collective set of known pathogenic genes. Thus, to help prioritize dis-

ease associated genes using GTS, we combined the score with other gene-level measures that

helped boost the performance of our deep neural network predictor DeepSAV+PG (Fig 3A).

The essential genes with known pathogenic SAVs (70 genes, Fig 4E) that overlap with both the

loss-of-function-constrained genes (lowest LOEUF) and the low mutation severity genes (low-

est GTS) set a standard to prioritize other potential disease-associated genes (126 overlapping

genes shared by the low LOEUF and the low GTS sets, but without pathogenic SAVs, Fig 4E).

Clustering these two sets of genes (70 known pathogenic +126 potential pathogenic) together

using complete linkage of correlated distances over six gene-level scores that potentially corre-

late with disease-association (see Materials and methods) places potential disease-associated
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genes among those that are known to be associated with diseases (S2 Fig). One cluster with rel-

atively low GTS scores failed to include any known pathogenic genes, suggesting that these

might not be prioritized as disease associated (labels colored gray in S2 Fig). Alternatively, two

relatively large clusters (total of 40 genes) with high proportions of known disease-associated

genes could prioritize the similarly scored genes of unknown pathogenicity as being candidates

of disease-causing genes. These clusters exhibit lower GTS scores than other clusters, indicat-

ing their intolerance to detrimental missense mutations (red labels in S2 Fig). Inspection of

gene-disease associations for genes in these two clusters reveals that 68% are linked to curated

diseases in the DisGeNET database [66], including almost half of the unknown set (10 out of

23 genes).

Enriched GO biological process terms are similar for each identified gene cluster, and

annotation clustering of terms from the combined set (40 genes from two clusters, 17 with

pathogenic SAVs) highlights their function in RNA splicing (enrichment score 9.02, 13 genes),

gene expression (enrichment score 6.81, 31 genes), and chromosome segregation (enrichment

score 4.34, 9 genes). Two disease-associated genes and eleven others belong to the most

enriched cluster and function in RNA splicing, including pre-mRNA processing factor 3

(PRPF3) having variants associated with Retinitis pigmentosa, and splicing factor 3b subunit 1

(SF3B1) having variants associated with acute myeloid leukemia, among other neoplastic pro-

cesses. Five of the potential disease-associated genes involved in RNA splicing (DHX15,

HNRNPH1, SRSF1, PCBP2, and DHX9) are reported to be associated with myelodysplasias in

DisGeNET [66], and the spliceosome has become a therapeutic target for myeloid malignan-

cies [69, 70].

The third most enriched functional cluster includes six disease-associated genes and three

others that function in chromosome segregation. Three of the disease-associated genes

(RAD21, SMC3, and SMC1A) functioning in chromosome segregation have genetic variants

causing Cornelia de Lange syndrome (CdLS), which manifests developmentally as intellectual

and growth retardations. The protein-coding products of these genes comprise three of the

four subunits of the mitotic cohesion complex responsible for chromosome segregation. Muta-

tions in this complex are known to cause a number of diseases termed cohesinopathies, of

which CdLS is the best characterized [71]. One additional chromosome segregation gene from

this set, PDS5 cohesin associated factor A (PDS5A), is associated with CdLS in DisGeNET lit-

erature [72]. Gene dosage appears to be an important component of CdLS severity, which is

consistent with the essential nature of our selected gene set [25].

Mutation-intolerant disease-associated genes function in development and

signaling pathways

Over half of the top 1,000 human genes ranked by low GTS (571 genes) are associated with

1,618 diseases, 262 phenotypes and 184 disease groups such as “Intellectual Disability” that

encompass multiple similar diseases or phenotypes. To understand the functional context of

mutation-intolerant genes that are associated with disease, we assigned them to pathways in

Reactome [73] (467 genes). Functional enrichments of these pathways highlight involvement

in axon guidance (P-value < 1.78E-15), development (P-value < 9.64E-14), and neurotrans-

mitter receptors and postsynaptic signal transmission (P-value < 1.12E-13), among others.

Those genes in the enriched category of "developmental biology" describe early steps in devel-

opment that give rise to diverse tissues in the body and thus represent critical processes that

should contribute to fitness. In fact, 25% of this gene set participate in development, and many

are annotated as essential (47 genes) or conditionally essential (17 genes). However, a signifi-

cant portion of the developmental genes are not considered essential (52 genes). Many of them
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encode protein kinases (18 genes), homeobox transcription regulators (4 genes) or proteins

with other signaling domains that are expanded in the genome like rho-binding domains (3

genes), pleckstrin homology domains (4 genes), or SH3 domains (3 genes).

While a relatively small core set of essential genes exists in eukaryotes whose loss of function

results in lethality, a larger subset of genes exhibits conditional lethality that also affects fitness

[74]. For example, deleterious mutation of immune system genes might not necessarily result

in a lethal phenotype. However, their contribution to survival under specific conditions like

being challenged with an infectious agent could be considered as essential. This spectrum of

gene essentiality is indeed reflected in the disease-associated genes functioning in develop-

ment, as they exhibit essential and conditionally essential responses in CRISPR screens [64,

65]. Furthermore, many of the mutation-intolerant and disease-associated genes not consid-

ered as essential belong to families like protein kinases that have expanded in the human

genome and could be functionally redundant [75]. Thus, the concept of gene essentiality alone

does not necessarily suggest the ability to cause disease.

The mitogen-activated protein kinases ERK1 and ERK2 function in development and signal

transduction pathways. They represent a duplication that is thought to be functionally redun-

dant [76]. However, ERK2 includes two known pathogenic variants that are associated with

various neoplastic diseases (E322K) as well as with inborn genetic disease (R135T). The ERK2

structure (Fig 5A) includes a relatively small set (9 positions) of DeepSAV-predicted deleteri-

ous SAVs from the gnomAD database (DeepSAV score >0.75). One of these SAVs (D106G)

lines the ATP-binding pocket, and four are buried in the structure core (D44Y, G136E,

R148H, and R194T), with R148 belonging to the HRD motif that controls kinase activation.

The rest are in a C-terminal extension to the catalytic domain that lines the surface of the

kinase in between the N-lobe and the C-lobe. The known pathogenic variants cluster together

with many of the predicted deleterious mutations. Thus, while this kinase is thought to be

functionally redundant, some variants have been reported as pathogenic, several others are

predicted as detrimental, and the gene is intolerant to deleterious mutation (GTS score 3.24E-

7 and ranked 142 out of more than 17,000 genes). Accordingly, the ERK2 gene was shown to

be conditionally essential in a CRISPR screen [64], suggesting conditions exist where the func-

tional redundancy of the two kinases breaks down.

Mutation intolerance appears to be a quality exhibited not only by genes associated with

developmental disorders [17], but also by genes contributing to other various disease types

such as cancer (COSMIC) [12], autism [77] (https://gene.sfari.org), and viral interacting pro-

teins [78] (Virus_interact in Fig 5D). However, mutation severity does not select for collective

disease-associated gene sets (PathVar (ClinVar and UniProt genes with pathogenic SAVs) and

DisGeNET, Fig 5C), with nearly uniform distributions of the number of genes among GTS

deciles. Genes associated with X-linked diseases (from the Clinical Genomic Database) [79]

exhibit pronounced preference for high mutation intolerance, with ~70% falling into the two

lowest mutation severity deciles (Fig 5C). Genes associated with autosomal dominant diseases

and genes associated with autosomal recessive diseases [79] show opposite trends in mutation

intolerance (Fig 5C). The preference for mutation-intolerance in selected disease types sug-

gests that the GTS score can be particularly useful for prioritizing disease genes when com-

bined with additional considerations, such a disease type or functional pathways contributing

to the disease state.

Mutation-tolerant genes function in metabolic pathways and mitochondria

The concept of functional redundancy from gene duplication extends not only to critical com-

ponents of developmental and signal transduction pathways, but also to those of metabolic
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Fig 5. Mutation-intolerant and mutation-tolerant genes prefer different pathways and disease types. A) Top

ranked genes with low GTS scores like ERK2 kinase (PDB 4fmq) have relatively few DeepSAV predicted deleterious

variant positions (DeepSAV score> 0.75, red spheres). One of these (black sphere) is near (< 4Å) the active site (ANP

substrate analog in black stick). B) Bottom ranked genes with high GTS scores like CD36 (PDB 5lgd) are tolerant to

predicted deleterious mutations (DeepSAV score> 0.75, red spheres), including several positions (black spheres)

lining the fatty acid (black stick) binding sites or with known pathogenic variation in platelet glycoprotein deficiency

(blue spheres). C) Mutation severity spectrum of disease-associated genes in general, measured by their frequencies in

GTS deciles. (PathVar–genes with pathogenic SAVs in ClinVar and UniProt, DisGeNET–genes with diseases in

DisGeNET database, X-linked, Autosomal dominant, and Autosomal recessive correspond to sets of genes associated
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pathways [59]. Enriched functional pathways of mutation-intolerant genes that are associated

with disease highlight repeated involvement of core genetic information processing (e.g., tran-

scription and RNA processing) and signal transduction components, but they tend to exclude

those of metabolism. In fact, mutation-tolerant genes (a numeric matched set of genes with the

highest GTS scores) are significantly enriched in metabolism (P-value< 2.05E-13) in the Reac-

tome pathway database [73].

An example of a mutation-tolerant gene product is platelet glycoprotein 4 (CD36), which

functions in cell adhesion by serving as a receptor for thrombospondin in platelets as well as in

the metabolism of lipids through binding long chain fatty acids. CD36 represents one of the

most mutation-tolerant genes in the diseases-associated set, with 155 DeepSAV-predicted det-

rimental mutations (DeepSAV score>0.75) in 98 positions covering the structure, including

seven lining the fatty acid binding site (Fig 5B). Although this gene is tolerant to mutation,

known pathogenic variants (I413L, R386W, P90S, and F254L), with I413L lining the fatty acid

binding pocket, cause platelet glycoprotein deficiency, a congenital disease of the hemic and

lymphatic class. Furthermore, DisGeNET associates this gene with metabolic phenotypes of

impaired glucose tolerance, insulin resistance, and insulin sensitivity. While mutations in

CD36 can still lead to disease, the mutation tolerance of the gene might be explained by the

recessive nature of the associated disease, by the ability of two paralogs, SCARB1 and SCARB2,

to serve as functional replacements, or by the tissue-specific nature of the disease [80].

Therefore, a dichotomy seems to exist for disease-associated genes, where those that are

mutation-intolerant tend to function in development and signal transduction pathways, while

those that are mutation-tolerant tend to function in metabolism. These trends imply a greater

overall fitness cost of mutations in developmental and signal transduction genes when com-

pared to metabolic genes. However, extreme functional redundancy in some signal transduc-

tion proteins may lead to their tolerance to mutations. The mutation severity spectrum of

signal transduction proteins with numerous paralogs that could exhibit functional redundancy

are shown in Fig 5E. Paralogous olfactory receptors (OR), which represent a specialized set of

G protein-coupled receptors (GPCRs) that detect odors, are more mutation-tolerant than

other GPCRs. In fact, human OR paralogs include more pseudogenes [81] (464, not included

in Fig 5E) that have accumulated enough mutations to render them inactive than functional

genes (361, included in Fig 5E), and this well-known OR variability likely contributes to an

individual’s sense of smell [82]. Both non-OR GPCRs (Fig 5E, gray bars) and protein kinases

(Fig 5E, orange bars) shift in the spectrum towards mutation intolerance when compared to

either metabolic enzymes [83] (Fig 5E, dark green bars) or nucleus-encoded proteins function-

ing in the mitochondria [84] (Fig 5E, medium green bars), organelles that provide energy

from nutrients using metabolic processes [85].

Metabolic enzymes exhibit similar tendency towards mutation-tolerance as the ORs (Fig

5E). One explanation for the greater tolerance of metabolic genes to mutations might be the

redundancy not only in gene duplications, but also in non-homologous proteins that can serve

as functional analogs of the same reactions [86]. Metabolites can also be acquired through

transport mechanisms, relieving the evolutionary constraints on certain metabolic enzymes.

Finally, metabolic pathways exhibit both redundancy and plasticity, allowing for multiple ways

to arrive at the same metabolite [87].

with X-linked, autosomal dominant, and autosomal recessive diseases in the Clinical Genome Database, respectively)

D) Mutation severity spectrum of disease-associated genes measured by their frequencies in GTS deciles. Associated

disease for each gene set is labeled above. E) Mutation severity spectrum of pathway gene sets and large paralogous

gene sets measured by their frequencies in GTS deciles.

https://doi.org/10.1371/journal.pcbi.1007775.g005
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The mutation-tolerance observed for nucleus-encoded mitochondrial proteins might reflect

their roles in metabolic processes [85]. However, this tendency is also exhibited by the ribo-

somal proteins that function in mitochondria compared to ribosomal proteins functioning in

cytoplasm (Fig 6A): the majority of mitochondrial ribosomal proteins have high GTS scores

while the majority of cytoplasmic ribosomal proteins have low GTS scores. As an example, side-

by-side comparison of ribosomal L14P/L23E-like proteins functioning in the cytoplasm

(RPL23, Fig 6B and 6C) and the mitochondria (MRPL14, Fig 6B and 6D) highlights their differ-

ent levels of mutation-intolerance. Both proteins adopt similar small 5-stranded meander barrel

folds with relatively long loops that interact with RNA in the assembled ribosome. Cytoplasmic

RPL23 and mitochondrial MRPL14 have 34 and 89 gnomAD SAVs respectively, and exhibit

quite different DeepSAV distributions (Fig 6B). The cytoplasmic RPL23 includes only a single

predicted pathogenic variant (I40F, DeepSAV score = 0.788, Fig 6C) (protein length: 140 amino

acid residues), while MRPL14 includes 34 predicted pathogenic variants (DeepSAV score>

0.75, all but one are rare with MAF< 0.0001) covering 28 positions (Fig 6D) (protein length:

145 residues). Neither of these examples possess known pathogenic variants, and only the cyto-

plasmic version is associated with a neoplastic process in DisGeNET. This marked difference in

rare allele mutation severity cannot be explained by either domain or pathway redundancy. The

main function of mitochondria is to supply energy, which can be partly salvaged by increasing

nutrient intake and decreasing energy-demanding activities. In addition, mitochondria might

be able to overcome lowered fitness of mutations in the ribosome through their processes of

fusion and fission that help maintain both functional properties and the integrity of the mito-

chondrial genome that harbors the mitochondrial ribosomal RNA genes [85].

Fig 6. A) Mutation severity spectrum of ribosomal proteins functioning in the cytoplasm (orange bars) and in the

mitochondria (green bars) measured by their numbers in GTS deciles. B). DeepSAV score distribution for 34 gnomAD

SAVs of cytoplasmic ribosomal protein RPL23 (orange) and 89 gnomAD SAVs of mitochondrial ribosomal protein

MRPL14. C) 60S ribosomal protein RPL23 from cytoplasm (PDB: 6ek0, chain LV) in orange cartoon has a single

detrimental predicted SAV (red sphere). D) Mitochondrial 39S ribosomal protein MRPL14 (PDB 5oom, chain L) in green

cartoon has multiple predicted detrimental SAVs.

https://doi.org/10.1371/journal.pcbi.1007775.g006
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Mutation-intolerant and mutation-tolerant genes function in different

disease classes

The set of mutation-intolerant genes define several over-represented disease classes, including

virus diseases, behavior & behavior mechanisms, stomatognathic diseases, hemic & lymphatic

diseases, immune system diseases, musculoskeletal diseases, nervous system diseases, neo-

plasms, pathological conditions, signs & symptoms, and mental disorders (Fig 7A). Develop-

ment and signal transduction are enriched among the mutation-intolerant genes associated

with these specific disease classes. Furthermore, top mutation-intolerant genes tend to partici-

pate in relevant functional pathways. For example, mutation-intolerant genes associated with

behavior diseases are enriched in neurotransmitter receptors and postsynaptic signal transmis-

sion (P-value< 1.11E-16), and those involved in immune system diseases are enriched in cyto-

kine signaling of the immune system (P-value < 1.4E-14).

The disease classes that are the most under-represented in mutation-intolerant (and over-

represented in mutation-tolerant) genes include eye diseases, nutritional and metabolic dis-

eases, otorhinolaryngologic diseases, chemically induced disorders, digestive system diseases,

respiratory tract diseases, and wounds and injuries. These disease classes tend to be either tis-

sue-specific or related to metabolism. For example, eye diseases involve genes functioning in

visual perception, in cilium morphogenesis, as structural constituents of the eye lens, and in

Fig 7. Mutation-intolerant genes exhibit pathway preferences and are exploited by viruses. A) Genes are ranked from low to high by mutation severity

measure, GTS. The top ranked genes are mutation-intolerant, and the bottom ranked are mutation-tolerant. Ratios of observed/expected frequencies of disease

class associations for sets of mutation-intolerant (top-) and mutation-tolerant (Bottom) genes are shown. Diseases are ordered by the exp/obs frequency ratios in

the top1000 set (top 1000 genes with the lowest GTS score). B) Ribbon diagram of KPNB1 (cyan) bound to Ran GTPase (green) with DeepSAV-predicted

detrimental variants (red spheres), including R106L (stick) at the interaction interface (from PDB 1ibr). C) Ribbon diagram of GEF (green) bound to RHOA

GTPase (cyan, PDB 5zhx), with labeled DeepSAV-predicted detrimental variants (red spheres) adjacent to a farnesylation site (orange stick) and near the active

site (stick colored by atom, from superimposed GTPase 1tx4).

https://doi.org/10.1371/journal.pcbi.1007775.g007
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phototransduction. Alternatively, nutritional diseases involve genes of respiratory electron

transport, steroid metabolism, TCA cycle, and fatty acid metabolism, among others. The nutri-

tional diseases associated with mutation-intolerant genes tend to be dominated by a clinically

heterogeneous group of disorders that arise as a result of dysfunction of the mitochondrial

respiratory chain (mitochondrial diseases), as well as by obesity and diabetes that display a

range of severity in affected individuals and can develop in adolescence or later in life. The rel-

atively modest impact of these diseases on survival may be a reason for the genes associated

with such diseases to tolerate mutations.

Viruses exploit disease-causing mutation-intolerant genes for infection

Viral diseases are the highest over-represented disease class among mutation-intolerant genes.

Potentially, viral strategies for successful replication and evasion of host immunity could bene-

fit from targeting essential genes that accumulate fewer mutations. In fact, similar observations

of viral proteins interacting with more evolutionarily constrained host genes suggest that

viruses have driven close to 30% of adaptive amino acid changes in the human proteome, with

HIV infection causing a statistically significant increase in adaptation [78]. These evolution-

arily constrained viral-interacting host proteins tend to be mutation-intolerant (Fig 5D), while

a set of similarly highly adaptive proteins that interact with Plasmodium [88] do not have the

same degree of preference for mutation-intolerance (Plasmodium_interact in Fig 5D).

Over a third of the virus disease gene set is involved in HIV coinfection, which describes

simultaneous infection of a single host cell by two or more virus particles. Identified HIV coin-

fection-associated gene products function in pathways such as signaling by interleukins/cyto-

kines, regulation of RUNX3, stabilization of P53, and host interactions with HIV factors,

among others (ordered by Reactome enrichment). Cytokines, including interleukins, play a

critical role in immunity. Because HIV infects immune CD4 T cells, the connection to inter-

leukin/cytokine signaling molecules that regulate T cell growth and differentiation (i.e.

through IL2 or CCL2) is known [89, 90], and two of the interleukin signaling examples

(PSME3 and PSMC3) represent biomarkers for the disorder [91]. A significant portion of the

HIV-related genes (19 out of 23 or 82%) are annotated as essential, including all host interac-

tion factors (KPNB1, RAN, PSMC3, PSME3, PSMA5, PSMA6, PSMC5, and PSMA4), support-

ing the notion that infection strategies involving essential proteins are utilized by HIV, and

potentially other viruses.

The essential HIV host factor importin subunit beta-1 (KPNB1) includes several gnomAD

SAV positions predicted as detrimental using both DeepSAV and baseline fitness scores. How-

ever, the gene does not belong to our disease-causing set and has no disease associations in

DisGeNET. KPNB1 mediates nuclear import of ribosomal proteins [92], and also works

together with the RAN GTP-binding protein to bind and import HIV Rev into the nucleus

where it exports viral mRNAs for translation [93]. In a structure of KPNB1 bound to RAN

(Fig 7B) [94], these positions are buried (T150P, L238S, and A389V) or partially buried

(R234G, C436Y) in the hydrophobic core of the KPNB1 repetitive α-hairpins. Such variations

could result in local structure instability and loss of function. One surface SAV, R105L, inter-

acts with a nearby E in RAN. Replacement of R by L, which removes a potential interaction of

charges, could lower the key interaction of KPNB1 with RAN that drives nuclear import of

HIV Rev.

Another example of a GTP-binding protein, RHOA, contributes to viral diseases such as

Burkitt Lymphoma, which is a cancer of the lymphatic system with a subtype linked to

Epstein-Barr virus (EBV) [95]. RHOA variants are deemed likely pathogenic for several other

neoplastic disorders, and several missense variants are listed in DisGeNET, although not in
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association with Burkitt Lymphoma. Despite the apparent tumor-promoting effects of RHOA

in various cancers, previous studies suggest mutations of the gene in the case of Burkitt lymo-

homa and other neoplastic processes are inhibitory [96, 97]. There are only two predicted det-

rimental SAVs in RHOA in gnomAD. One of them (G189W) maps to the disordered C-

terminus adjacent to a residue that gets farnesylated. The disordered and modified C-terminus

adopts a coil structure when bound to the RAP1GDS1 guanine nucleotide exchange factor

(GEF) (Fig 7C), and the replacement of a small G to W with the larger sidechain would incur

steric problems in the GEF-bound conformation. Similarly, a larger sidechain adjacent to the

farnesylation site might reduce the modification and influence RHOA localization. While the

second SAV (D87N) is relatively conservative, its position near the GTP binding pocket adja-

cent to a K sidechain that mediates guanine nucleotide binding might influence enzymatic

activity.

Materials and methods

Human proteome, sequence alignment, and baseline fitness score

The human proteome was obtained from the UniProt database (version 2018.12) [98]. The

orthologous groups of human proteins were obtained by OrthoFinder [99] applied to a set of

representative vertebrate proteomes. For human proteins in large orthologous groups, we

replaced their orthologous groups by the ones retrieved from the OMA database [100] that are

usually much smaller and thus exhibit better alignment quality. Multiple sequence alignments

of orthologs were obtained by MAFFT [101]. Sequence profile of each position of an align-

ment, represented as the estimated amino acid frequencies, was calculated as described before

[102]. For any amino acid change, we used a previously devised baseline fitness score to repre-

sent the severity of the mutation, based on the log-odds ratio between the frequencies of origi-

nal amino acid and mutated amino acid [50, 103].

Positional features used in impact predictions by deep convolutional

neural network

For each human protein position, we deduced features reflecting amino acid type, sequence

profile, sequence conservation, structure properties, and available functional annotations. The

type of 20 amino acids is used as one feature with one-hot encoding. Both the original amino

acid and the variant amino acid are encoded in this way, resulting in 40 features. The estimated

amino acid frequencies of each position in the multiple sequence alignment of orthologs were

used as 20 features. Sequence conservation scores of the multiple sequence alignment of ortho-

logs were calculated by AL2CO [104] and used as one feature. Predictions of 3-state secondary

structures (helix, strand, and coil) were made by three programs (PSIPRED [105], SPIDER

[106], and PSSpred [107]), resulting in nine features. Three features are based on disorder pro-

pensities predicted by three programs (DISOPRED3 [35], SPOT-Disorder [36], and IUPred2A

[37]). In addition, low complexity region predictions by SEG [108] and coiled coil predictions

by NCOILS [109] were encoded as two features. We also used features reflecting protein-tar-

geting or functional regions/positions from the UniProt sequence annotations. Regions of N-

terminal signal peptide (indication of proteins going through secretory pathway), transit pep-

tide (indication of mitochondrion targeting), and transmembrane segments were obtained

from UniProt feature records SIGNAL, TRANSIT, and TRANSMEM, respectively. Three

post-translational modifications (phosphorylation, acetylation, and methylation) were

extracted from the UniProt MOD_RES records. Other UniProt Features includes DISULFID

(cysteines participating in disulfide bonds), CARBOHYD (site with covalently attached glycan
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group), METAL (binding site for a metal ion), BINDING (binding site for any chemical group

(co-enzyme, prosthetic group, etc.)), ACT_SITE (amino acid directly involved in the activity

of an enzyme), SITE (any single amino acid site that could be functionally relevant), LIPID

(site with covalently attached lipid group(s)), and MOTIF (short, i.e. up to 20 amino acids,

sequence motif of biological interest). For 1-dimensional convolutional network, the above 89

features from a window of 21 amino acids (the target position and 10 neighboring positions

on each side) were used as input. Features in neighboring positions beyond the first or last res-

idues were zero-filled (zero-padding). One additional feature encodes the indicator of zero-

padding for such positions (1 for positions beyond the first or last residues, and zero for nor-

mal amino acid positions within the protein length). The number of features for each position

is 90. By using a window of 21 positions, a total of 90 x 21 = 1890 values serve as the input of

the convolutional neural network for each training and testing data point.

Architecture and hyperparameters of the deep-learning convolutional

neural network

We used a deep-learning artificial neural network for prediction of SAV pathogenicity. The

diagram of neural network structure is shown in S1 Fig. It consists of seven 1-dimensional

convolutional (conv1d) layers, two max-pooling layers, and two dense layers before the output.

The residual network architecture is implemented twice by combining the input of a conv1d

layer with the output after several layers of that input (thick arrows, S1 Fig). The initial input

has a window size 21 and 90 channels corresponding to 90 features encoding protein sequence,

structure and functional properties (described above, S3 Table). The number of filters and the

kernel size of other conv1d layer are 200 and 3, respectively. Each of the two dense layers has

100 nodes and has a following dropout layer with the dropout rate of 0.5. The ReLU activation

function is used in all layers except the output layer that uses the softmax function. The batch

size is set to 128 in the training process. The neural network was written in python with the

TensorFlow package. The prediction score of any SAV, ranging from zero to one, reflects the

likelihood of the SAV being pathogenic, and is termed DeepSAV score.

The DeepSAV neural network predictor

We obtained SAVs that were classified as likely pathogenic from the ClinVar [33] and UniProt

database. For the ClinVar database, these SAVs are classified as “Pathogenic” or “Likely Patho-

genic”. For the UniProt database, these SAVs are classified as “Disease” in the SwissVar data-

base [110]. Benign SAVs are those classified as “Benign” or “Likely Benign” in the Clinvar

database and those classified as “Polymorphism” by SwissVar in the UniProt database. To eval-

uate the performance of our neural network predictor, we performed 4-fold cross validation

tests. The sets of 43,000 pathogenic variants and 43,000 benign variants were divided into to 4

subsets of equal size. Three subsets of pathogenic variants and three subsets of the benign vari-

ants were used to train the neural network and the remaining variants are used for testing.

This process is repeated four times with each of the four subsets serving as the validation set.

We also obtained scores of various prediction methods from the dbNSFP database [24] and

evaluated their performance on the 43,000 pathogenic variants and 43,000 benign variants.

DeepSAV+PG: Variant pathogenicity prediction incorporating

population-level and gene-level information

We combined amino acid-level features used in DeepSAV with information from human gen-

eral population (minor allele frequency of any variant from the gnomAD database) and gene-
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level information (17 features from dbNSFP) in a deep neural network predictor called Deep-

SAV+PG. The 17 gene-level features include three numbers of protein-protein interactions

(IntAct, BioGrid, and ConsensusPathDB) [111–113], four experimental measures of gene

essentiality [64, 65, 114, 115], four scores of estimated haploinsufficiency (P(HI), HIPred_-

score and GHIS) [26, 29, 116] or gene essentiality (Gene_indispensability_score) [117], esti-

mated probability of the gene involved in recessive diseases (P(rec)) [118], gene damage index

score (GDI-Phred)[31], a loss-of-function intolerance score (LoFtool_score) [119], and three

measures of loss-of-function (lof) intolerance/tolerance (gnomAD_pLI (the probability of

being loss-of-function intolerant), gnomAD_pRec (the probability of being intolerant of

homozygous, but not heterozygous lof variants), and gnomAD_pNull (the probability of being

tolerant of both heterozygous and homozygous lof variants)) [5]. We applied the same four-

fold cross-validation test to evaluate the performance of DeepSAV+PG on the same set con-

sisting of 43,000 pathogenic variants and 43,000 benign variants.

Enrichment analysis of amino acid properties in likely pathogenic SAVs

and gnomAD SAVs

The enrichment log-odds score is defined as the logarithm (with base 2) of the ratio between

two probabilities. This ratio is the probability of observing a property among a subset of amino

acid positions (e.g., positions with pathogenic SAVs, or positions with gnomAD SAVs with

MAF in a certain range) divided by the probability of observing that property among all amino

acid positions in the human proteome. It reflects enrichment (if the log-odds score is above

zero) or depletion (log-odds score less than zero) of the property in the subset compared to the

background (the whole proteome).

Quantification of mutation severity of gnomAD SAVs at the gene level

We applied our deep neural network method to the prediction of mutational impact of gno-

mAD [5] SAVs obtained from the dbNSFP database [24] (version 4.0). Rare SAVs were

defined as those with MAF less than 0.0001. The mutation severity measure (Gene Tolerance

of rare SAVs, GTS score) based on DeepSAV predictions of rare SAVs in the human popula-

tion is calculated as follows:

GTS ¼ sumðDeepSAV scoreðkÞ � MAFðkÞÞ=protein len;

where DeepSAV_score(k) is the DeepSAV score of any rare SAV k, and MAF(k) is its minor

allele frequency, and the normalization factor is the protein length (protein_len) of the gene.

Analysis of mutation severity measures for potential disease-associated

genes

GTS scores were transformed into percentiles (using Excel percentrank) for 17,480 human

protein-coding genes. For comparison of our average mutation severity scores to constrained

genes that are more likely to be detrimental when inactivated (LOEUF score [5]), we trans-

formed LOEUF scores by percentrank (for 16,670 human genes with LOEUF score). The

resulting gene count distributions among LOEUF deciles were plotted for a set of genes with

pathogenic SAVs or the top 3,284 genes ranked by four sets of GTS scores from lowest

(unlikely to acquire damaging mutations) to highest (tolerates acquired mutations). We chose

the GTS score for further evaluation and transformed the score into decile rank. For the dis-

ease-related gene set, we compared decile rank of GTS score to those of human genes
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annotated as essential by either of two large-scale CRISPR experiments [64, 65] (2,108 genes)

or annotated as non-essential (11,589 genes) in both.

To identify potential disease-associated genes, we compared essential genes having the low-

est GTS and LOEUF scores with essential genes with pathogenic SAVs using a Venn diagram.

The overlap between the GTS and LOEUF sets is considered to be enriched for potential dis-

ease-associated genes. The overlapping set (126 genes) was assigned to disease classes using the

DisGeNET curated gene-disease associations (GDAs) [66]. We removed group and phenotype

associations from the GDAs. MeSH (Medical Subject Headings) disease class frequencies for

the set (observed frequencies) were compared to disease class frequencies assigned to all

curated genes (expected frequencies) to evaluate over- and under-representation (observed/

expected frequency ratios).

To further select among potential disease-related genes, we clustered the gene set (126

genes) together with the genes with pathogenic SAVs (70 genes) using ClustVis [120] with six

measures for each gene (GTS, LOEUF [5], lnGDI [31], number of rare gnomAD mutations

(MAF filter: 0.0001), HIPred [29], and P(HI) [26]). The raw scores for each measure were con-

verted to Z-scores and were pre-processed with row centering and no scaling. Principal com-

ponent analysis using the SVD (singular value decomposition) with imputation option

indicated the first and second components explain 40.8% and 25.9% of the data variance,

respectively. Scores were plotted as a heatmap from high (red) to low (blue) Z-score, and both

genes and measures were clustered using complete linkage of correlation distances. The genes

were split into three large groups for visualization (S2 Fig), with the top 20 clusters separated

by space in the resulting heatmaps. Functional analysis for potential disease-related genes were

performed using DAVID clustering (medium stringency with 0.001 ease) of GOfat biological

process terms [121] and GO enrichment of PANTHER classification [122].

DisGeNET gene-disease mapping

We mapped all human genes with GTS scores to curated DisGeNET diseases (using UniProt

to GeneID provided in the Downloads section from the DisGeNET website [66]). Of the 9,414

total GeneIDs with curated GDAs, we mapped GTS scores and ranks from the complete GTS

dataset to 8,426 genes with curated GDAs. Over-representation (enrichment) and under-

representation (depletion) of disease classes from MeSH were calculated over various sets of

genes as the ratio of the observed frequency of each class to the expected frequency of each

class calculated from disease class frequencies in the entire curated gene-disease database. We

chose sets of genes for plotting the distributions of overrepresented disease classes over all GTS

ranks, where genes ranked up to 1,000 (top1000 set) tend to include increased frequencies, and

genes ranked higher than 12,000 (bottom set) tend to have stable frequencies. We included

additional sets surrounding the top1000 (top500 and top1500) to observe trends. We excluded

disease classes with few representatives, including F02: psychological phenomena & processes,

C22: animal diseases, C03: parasitic diseases, C01: bacterial infections & mycoses, C24: occupa-

tional diseases, and C21: disorders of environmental origin. We related genes from various dis-

ease classes to function using Reactome or DAVID enrichment analysis tools [73, 121].
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S1 Fig. DeepSAV neural network structure.
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S2 Fig. ClustVis heatmap of potential disease-causing genes (UniProt label on the right)

and genes with pathogenic SAVs (UniProt label on right with _P). Scores (labeled below)
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for each gene are colored from blue (low) to red (high) and clustered (20 clusters delimited by

spaces) according to complete linkage of correlation distances. Two clusters with low GTS

scores (mutation resistant) have a relatively high proportion of genes with known pathogenic

variants and could help identify new disease-associated genes (red labels).
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S3 Fig. The effects of feature combination and leave-out on neural network performance.

ROC AUC values are reported for neural network predictions made by using subsets of fea-

tures. The notations of the predictors using subsets of features are as follows: AA–using only

amino acid types; AA+seg: using amino acid types and low complexity region predictions; AA

+coiled.coil: using amino acid types and coiled coil region predictions; using AA+sec.struct:

amino acid types and secondary structure predictions; AA+uniprotFeat: using amino acid

types and features derived from UniProt Feature fields; AA+disorder: using amino acid types

and disorder propensity; AA+consv: using amino acid types and sequence conservation; AA

+prof: using amino acid types and sequence profile; AA+consv+prof: using amino acid types,

sequence conservation, and sequence profile; ALL-prof: using all features except sequence pro-

file; ALL-consv: using all features except sequence conservation; ALL-prof-consv: using all fea-

tures except sequence profile and sequence conservation; ALL-uniprotFeat: using all features

except those derived from UniProt Feature fields; ALL-disorder: using all features except dis-

ordered region predictions; ALL-coiled.coil: using all features except coiled coil region predic-

tions; ALL-sec.struct: using all features except secondary structure predictions; ALL-seg: using

all features except low complexity region predictions by seg; ALL: using all features.
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essential2), involvement in diseases (autism, DDD (deciphering developmental disorders),
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