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Objective. Accumulating evidence suggests the critical role of autophagy in the pathogenesis of diabetic retinopathy (DR). In the
current study, we aim to identify autophagy genes involved in DR via microarray analyses. Methods. Gene microarrays were
performed to identify differentially expressed lncRNAs/mRNAs between normal and DR retinas. Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes analyses of lncRNA-coexpressed mRNAs were used to determine the related pathological
pathways and biological modules. Real-time polymerase chain reactions (PCR) were conducted to validate the microarray
analyses. Results. A total of 2474 significantly dysregulated lncRNAs and 959 differentially expressed mRNAs were identified in
the retina of DR. Based upon Signalnet analysis, Bcl2, Gabarapl2, Atg4c, and Atg16L1 participated the process of cell death in
DR. Moreover, real-time PCR revealed significant upregulation of Atg16L1. Conclusion. This study indicated the importance
and potential role of Atg16L1, one of the autophagy genes, as a biomarker in DR development and progression.

1. Introduction

Diabetic retinopathy (DR) is a major contributor to vision
loss in patients with diabetes mellitus [1]. DR incidence has
been increasing rapidly in recent years, from 127 million in
2010 to a projected 191 million by 2030 [2]. The underlying
key biochemical pathways may include genetic and epige-
netic factors, polyol pathway activation, production of
advanced glycation endproducts (AGEs), protein kinase C
(PKC) activation, hexosamine pathway activation, and poly
(ADP-ribose) polymerase upregulation. However, DR patho-
genesis is complex and remains incompletely understood [3].

Autophagy is the primary intracellular catabolic mecha-
nism mediating degradation and recycling of proteins and
organelles. Due to its essential role in development, aging, star-
vation, cellular differentiation, and cell death, autophagy has

attracted marked attention in recent years. Dysregulation of
autophagy and lysosomal pathways is the hallmark of many
diseases, from diabetes to neurodegenerative disorders and
lysosomal storage diseases [4–6]. Moreover, growing data have
suggested the crucial role of autophagy in DR pathophysiology
[7, 8]. Heretofore, there remains limited understanding regard-
ing the exact autophagy genes involved in DR development
and progression. The advent of microarray technology has
facilitated detection of the comprehensive pattern of simulta-
neous transcript expression [9]. In this study, we aim to identify
the autophagy genes involved in DR by microarray analyses.

2. Methods

2.1. Diabetic Mouse Model. All animal procedures were
approved in accordance with the Association of Research in
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Vision and Ophthalmology Treatment of Animals in
Research and the Capital Medical University’s Animal Care
and Use Committee Guidelines. All in vivo experiments were
performed upon adult male C57BL/6 mice (8 weeks old).
Experimental mice were randomized to receive HFD
(60 kcal%) (Research Diets Inc. D12492i) or normal diet con-
trol (ND, D12450Bi). Eight months after ND or HFD, mice
were anesthetized with 2% isoflurane. Blood glucose concen-
trations were measured 48 hours after STZ injection and
weekly thereafter. Only animals with blood glucose levels
exceeding 250mg/dL were considered diabetic. After 10–12
weeks, the animals were sacrificed by pentobarbital overdose.
The retinas were quickly removed, placed in liquid nitrogen,
and stored at −80°C for biochemical measurement.

2.2. Microarray Analysis. Total RNAs were isolated from the
retinas of diabetic mice and age-matched controls using TRI-
zol reagent (Life Technologies, Carlsbad, CA, USA) and puri-
fied with an RNeasy mini kit (Qiagen, Valencia, CA, USA)
per manufacturer’s protocol. Microarray profiling was per-
formed by mouse Clariom™ D Assay (Affymetrix Gene-
Chip®, USA, an assay containing 65956 gene-level probe
sets). Raw data were normalized at the transcript level by
the TAC software (Transcriptome Analysis Console; version:
4.0.1) using Affymetrix default analysis settings (Robust Mul-
tichip Analysis workflow). The median summarization of
transcript expressions was calculated.

Based upon differentially expressed lncRNAs, hierarchi-
cal clustering was performed by R package heatmap (version:
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Figure 1: Identification of DR-related lncRNAs/mRNAs by microarray analysis. (a) Heatmap from the hierarchical clustering analysis
demonstrating the differentially expressed lncRNAs between nondiabetic and diabetic retinas. (b) Heatmap demonstrating the
dysregulated mRNAs between nondiabetic and diabetic retinas. (c) Volcano plot illustrating the differentially expressed lncRNAs in
nondiabetic and diabetic retinas.

Table 1: Top ten differentially expressed lncRNAs in diabetic
retinas compared to undiabetic retinas.

lncRNAs Strand P value Fold change

Upregulated

Chr18: 65390334-65393029 Forward 0.0002 2.63

Chr10: 122606616-122609483 Reverse 0.0005 1.84

Chr15: 73979542-73994040 Forward 0.0007 1.58

Chr7: 35838522-35839628 Forward 0.0008 1.56

Chr4: 129830892-129833771 Forward 0.0015 1.55

Chr5: 43784046-43786117 Reverse 0.0017 1.44

Chr12: 81308672-81311207 Reverse 0.0018 1.37

Chr6: 84883190-84884193 Reverse 0.0025 1.35

Chr1: 132943512-132945320 Reverse 0.0028 1.33

Chr2: 129082743-129084444 Forward 0.0034 1.25

Downregulated

Chr4: 10136920-10138026 Reverse 0.0001 1.60

Chr11: 3193516-3194263 Reverse 0.0008 1.55

Chr13: 51168717-51170674 Reverse 0.0020 1.38

Chr4: 3089552-3091186 Forward 0.0022 1.38

Chr1: 84984529-84984611 Forward 0.0026 1.36

Chr14: 42037609-42040012 Reverse 0.0028 1.29

Chr5: 131041336-131044079 Reverse 0.0028 1.27

Chr8: 73353725-73362159 Forward 0.0041 1.25

Chr10: 61858666-61859663 Reverse 0.0043 1.23

Chr7: 21523277-21524200 Reverse 0.0045 1.20
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1.0.12). Gene Ontology (GO) analysis determined the main
function of the differentially expressed genes, yielding the
likely gene regulatory network on the basis of biological pro-
cesses and molecular function. Specifically, a two-sided Fish-
er’s exact test and chi-square test were used to classify the GO
category. The false discovery rate (FDR) was calculated to
correct the P value (the smaller the FDR, the small the error
in judging the P value). Pathway analysis was conducted
upon the differential genes identified, per Kyoto Encyclope-
dia of Genes and Genomes (KEGG) databases. Fisher’s exact
test was performed to select the significant pathway. The
threshold of significance was considered P < 0:05. Based the
interactions of genes in the KEGG database, global signal
transduction network (Signalnet) was generated to demon-
strate the interaction between the differentially expressed
genes in treated groups. The visualization of network was
built by software Cytoscape (version: 3.6.0).

2.3. Real-Time Quantitative PCR. Quantitative real-time
PCR (qRT-PCR) was applied to validate the selected genes
from the microarray analyses. Total RNAs were extracted
using TRIzol reagent (Invitrogen, Carlsbad, Canada) and
reverse-transcribed per manufacturer’s instructions. qRT-
PCR reaction was monitored by the ABI Prism 7500
Sequence Detection System (Applied Biosystems, Foster
City, CA) and run in duplicate for each sample. The PCR
reaction mixture (20μl) contained 2μl of cDNA template,
0.6μl forward and reverse primers, and 10μl of 2×SYBR-
Green PCR Mix (Takara). The level of mRNA expression

was calculated from the fluorescence intensity (b-actin served
as internal control). Primers targeting Atg4c (F: 5′-GATG
AAAGCAAGATGTTGCCTG-3′ and R: 5′-TCTTCCCTG
TAGGTCAGCCAT-3′) and Atg16L1 (F: 5′-CAGAGCAGC
TACTAAGCGACT-3′ and R: 5′-AAAAGGGGAGATTC
GGACAGA-3′) were used for real-time RT-PCR amplifica-
tion. The relative gene expression was calculated by the ΔΔ
threshold cycle (Ct) method. Real-time PCR reaction was
run in biological triplicates for each sample. Melting curve
analysis was used to verify the product purity at the end of
the PCR run.

3. Results

3.1. Overview of lncRNA-mRNA Microarray Analysis. To
reveal a differential gene expression profile, hierarchical
clustering analysis compared lncRNA-mRNA expression
between diabetic and nondiabetic retinas (Figures 1(a)
and 1(b)). Differentially expressed lncRNAs (with statisti-
cal significance) between the two groups were identified
via volcano plot filtering (Figure 1(c)). The combined criteria
of a P value <0.05 and fold change > 1:1 identified 2474
lncRNAs expressed differentially, including 1487 upregu-
lated and 987 downregulated lncRNAs. 317 significantly
increased and 642 decreased mRNAs were also identified.
The top 10 differentially expressed lncRNAs and mRNAs
between diabetic and nondiabetic retinas are listed in
Tables 1 and 2, respectively.

Table 2: Top ten differentially expressed mRNAs in diabetic retinas compared to undiabetic retinas.

Gene symbol Description P value Fold change

Upregulated

Hdc Histidine decarboxylase 0.0004 1.66

Dnah7b Dynein, axonemal, heavy chain 7B 0.0009 1.47

Erap1 Endoplasmic reticulum aminopeptidase 1 0.0010 1.47

Alpk2 Alpha-kinase 2 0.0011 1.36

Gsc2 Goosecoid homebox 2 0.0016 1.36

N4bp2l1 NEDD4 binding protein 2-like 1 0.0027 1.27

Skap2 src family-associated phosphoprotein 2 0.0028 1.25

Zscan29 Zinc finger SCAN domains 29 0.0033 1.25

Tmprss7 Transmembrane serine protease 7 0.0039 1.24

Atg16l1 Autophagy-related 16-like 1 0.0043 1.18

Downregulated

Camk1g Calcium/calmodulin-dependent protein kinase I gamma 0.0002 1.44

Vmn1r121 Vomeronasal 1 receptor 121 0.0003 1.43

Sly Sycp3 like Y-linked 0.0003 1.40

Serinc5 Serine incorporator 5 0.0004 1.33

Clybl Citrate lyase beta like 0.0018 1.32

Hist1h1c Histone cluster 1, H1c 0.0018 1.31

Ubtd2 Ubiquitin domain containing 2 0.0022 1.27

Ttc12 Tetratricopeptide repeat domain 12 0.0030 1.26

Rhobtb1 Rho-related BTB domain containing 1 0.0036 1.26

Duxbl2 Double homeobox B-like 2 0.0037 1.25
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3.2. Gene Enrichment and Pathway Analysis of lncRNA-
Coexpressed mRNAs. GO analysis determined the main gene
functions and gene product enrichment affected by diabetes.
The GO database revealed (of 21 upregulated GOs) photore-
ceptor cell morphogenesis, activation of MAPK activity, and
autophagy were related to retinal function (Figure 2(a)). Of
11 downregulated GOs, only eye photoreceptor cell develop-
ment was directly related to retinal function (Figure 2(b)).
The summaries of those genes involved in the significant sig-
naling pathways relevant to retinal function are listed in
Table 3. KEGG analysis revealed highly enriched upregulated
signaling pathways included phosphatidylinositol signaling
system, glycosphingolipid biosynthesis, fatty acid degrada-
tion, PPAR signaling pathway, arginine and proline metabo-
lism, and protein digestion and absorption (Figure 2(c)).
Significantly downregulated pathways included biosynthesis
of unsaturated fatty acids, protein export, nitrogen metabo-
lism, and calcium signaling pathway (Figure 2(d)).

3.3. Construction of the lncRNA-mRNA Coexpression
Network and Identification of Genes in the Process of Cell
Death. Based upon significant pathway and GO analysis,
the Signalnet analysis screened the key genes associated with

DR pathogenesis. A total of 369 key genes were identified in
the transduction network. Specifically, Bcl2, Gabarapl2,
Atg4c, and Atg16L1 were involved in the process of cell
death. Figure 3 showed the Signalnet of cell death-related
lncRNA-mRNA coexpression network. To evaluate the
expression of these 4 specific genes in diabetic and nondia-
betic retinas, hierarchical clustering analysis was further per-
formed. The heatmap (Figure 4(a)) suggested the good
classification of mRNA expression profile between those
two groups.

3.4. Confirmation of Gene Expression in Autophagy by RT-
PCR. To further validate the microarray analysis results, we
conducted qPCR assays for the genes involved in autophagy.
qRT-PCR analysis revealed significantly upregulated expres-
sion of Atg16L1 compared to control, while Atg4c expression
was unremarkable (Figure 4(b)). The potential role of
Atg16L1 in DR pathogenesis was further supported.

4. Discussion

The pathogenesis of DR is hugely complex and likely impli-
cates the dysregulation of many biochemical and molecular
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Figure 2: Gene Ontology (GO) analyses and KEGG analysis of the dysregulated lncRNAs with top enrichment scores of biological processes.
(a) Significantly upregulated differentially expressed genes, by GO analysis. (b) Significantly downregulated differentially expressed genes, by
GO analysis. (c) Significant pathways of differentially expressed upregulated genes. (d) Significant pathways of differentially expressed
downregulated genes.

Table 3: The involved genes in signaling pathways relevant to retinal function.

Pathway name P value Gene symbol

Photoreceptor cell morphogenesis 0.000933385 Cabp4, Grk1

Activation of MAPK activity 0.006855100 Map3k13, Fgf2, Adam9

Autophagy 0.009045081 Atg4c, Atg16L1
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signaling pathways. Despite great strides, the detailed molec-
ular mechanisms responsible for DR are incompletely
known. Recent studies have demonstrated that autophagy
participates in DR pathology [10, 11], but the underlying
responsible genes are unclear. To better understand the sig-
nificance of autophagy in DR, we evaluated the associated
genes by microarray analyses. Signalnet analysis suggests
the involvement of Bcl2, Gabarapl2, Atg4c, and Atg16L1 in
the process of cell death in DR. As expression of Atg16L1
was significantly increased, this particular molecule may be
an important participant in DR development and
progression.

lncRNAs/mRNAs have garnered attention in recent years
for their potential regulatory role in DR [12, 13]. Addition-
ally, the important roles of lncRNAs were investigated in
PDR by harvesting fibrovascular membranes [14]. In the
current study, we identified 2474 significantly dysregulated
lncRNAs and 959 differentially expressed mRNAs, further
confirmed by PCR analysis. In another prior study, lncRNAs
were investigated with respect to DR pathogenesis in a mouse
streptozotocin-induced diabetic model, utilizing microarray
analyses. Only 303 aberrantly expressed lncRNAs were iden-
tified in the retinas of early DR [13]. Different animal models
and protocol may lead to this discrepancy. Future bioinfor-
matic analysis of the lncRNAs/mRNAs will be helpful to
confirm these results.

Accumulating evidence suggests that autophagy plays an
essential role and may act as a double-edged sword in DR [15,
16]. Activation of autophagy results in cell survival under
mild stress in DR, while dysregulated autophagy can lead to
massive cell death during severe stress conditions. In high
glucose concentrations, autophagy activation in cultured
ARPE-19 cells decreases proinflammatory cytokine produc-
tion [17]. High glucose upregulates autophagy in retinal
Müller cells during early DR pathogenesis phases [10]. In
agreement with these previous studies, we demonstrate
(based on GO analysis) that autophagy is upregulated during
DR.While the contribution of autophagy to DR development
requires further study, our findings may open interesting
perspectives for novel therapies.

Interestingly, two conserved mRNAs, including Atg16L1,
were identified to be involved with autophagy in the current
study. As a key player in early autophagy initiation, Atg16L1
also regulates subsequent steps of this pathway [18]. More-
over, recent progress has demonstrated that Atg16L1 may
be involved in diabetic pathophysiology by regulating
autophagy [19, 20]. In consistent fashion, we report signifi-
cantly increased expression of Atg16L1 in diabetic mouse
retinas. Based upon these findings, we hypothesize that
Atg16L1 may be an important component of the DR patho-
logical process. Further studies are warranted to better
understand the functional role of this novel mRNA in DR.

Figure 3: Signalnet of cell death-related lncRNA-mRNA coexpression network (the circles highlighted with green ring). The red circles
represent upregulated genes, and blue circles represent downregulated genes. Interaction between the genes is shown as follows: a:
activation; b: binding/association; c: compound; ex: expression; inh: inhibition; ph: phosphorylation; ubi: ubiquination.
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In conclusion, we identified dysregulated autophagy
genes involved in DR by microarray analyses. Atg16L1 may
be a potential biomarker for the diagnosis and prognosis of
DR. It may serve as a potential therapeutic target blocking
and slowing DR progression. Future work is required to con-
firm these findings and elucidate the specific underlying
molecular signaling mechanisms.
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