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Abstract

Negative examples – genes that are known not to carry out a given protein function – are rarely recorded in genome and
proteome annotation databases, such as the Gene Ontology database. Negative examples are required, however, for several
of the most powerful machine learning methods for integrative protein function prediction. Most protein function
prediction efforts have relied on a variety of heuristics for the choice of negative examples. Determining the accuracy of
methods for negative example prediction is itself a non-trivial task, given that the Open World Assumption as applied to
gene annotations rules out many traditional validation metrics. We present a rigorous comparison of these heuristics,
utilizing a temporal holdout, and a novel evaluation strategy for negative examples. We add to this comparison several
algorithms adapted from Positive-Unlabeled learning scenarios in text-classification, which are the current state of the art
methods for generating negative examples in low-density annotation contexts. Lastly, we present two novel algorithms of
our own construction, one based on empirical conditional probability, and the other using topic modeling applied to genes
and annotations. We demonstrate that our algorithms achieve significantly fewer incorrect negative example predictions
than the current state of the art, using multiple benchmarks covering multiple organisms. Our methods may be applied to
generate negative examples for any type of method that deals with protein function, and to this end we provide a database
of negative examples in several well-studied organisms, for general use (The NoGO database, available at:
bonneaulab.bio.nyu.edu/nogo.html).
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Introduction

Despite the recent influx of machine learning algorithms applied

to function prediction, there has been relatively little study devoted

to the issue of class imbalance in function labels. This imbalance

stems from the fact that the current standard set of labels for

protein functions, the Gene Ontology (GO) database [1], rarely

stores which proteins do not possess a function. If no annotation is

present for a given gene to a particular GO term, it does not mean

that such a gene is a negative example for that term, but rather

that it is either a negative example or a positive example that has yet

to be annotated. This situation arises due to experimental

constraints: function assays are typically applied to single proteins

and that protein function can be context dependent, making

negative statements/labels quite uncertain, and leading to very few

(or for most protein functions, not any) verified negative examples.

This imbalance presents an obvious problem for the vast majority

of machine learning techniques, which require enough examples

of both the positive and negative class in order to train an accurate

predictor. Without these labeled negative examples, authors often

resort to heuristics in order to define the non-positive class; but

mistakes stemming from these heuristics can lead to false negatives

in the training set, and are detrimental to classifier performance.

The situation described above, in which the only known labels

are of the positive class, is not unique to the protein function

prediction (PFP) problem, but also occurs in several other

domains. It has been given the name Positive-Unlabeled (PU)

learning, and there has been a surge of interest lately in this

particular subset of semi-supervised machine learning problems.

One branch of PU algorithms attempts to learn in a one-class

scenario, as has been applied to biology, specifically mRNA

detection [2]. As the authors point out, however, 2-class machine

algorithms often perform better when the negative class can be

well defined. In another 1-step algorithm [3], the authors

demonstrate that if certain conditions hold, learning without

explicitly knowing negative examples is possible and even more

accurate than existing methods. Unfortunately, this assumption

requires the probability of a true positive example being labeled to

be independent of the example itself (the set of observed positive

labels should be selected at random from the total set of true

positives). Since GO terms are often propagated via homology

methods, there is a high degree of correlation between many of the

labeled positive examples, and so this assumption does not hold in

our domain. Thus we focus on the majority of PU algorithms,

which proceed by first predicting a set of reliable negative

examples before applying a traditional machine learning classifier
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to the enriched data as usual. These 2-step algorithms take many

forms (see [4] for review of these methods), but in this work we will

refer to two main subcategories: passive 2-step PU algorithms,

which learn the negative examples through a separate mechanism

from the classifying algorithm, and active 2-step PU algorithms,

which work in conjunction with the classifier to learn the negative

examples.

The main focus of PU-learning literature has been to improve

text classification [4], a problem in which labeling a document’s

topics is time-intensive, and it is not practical to label all the topics

a document does not contain. Yet the analogies to protein function

are clear: proteins are rarely labeled with the functions they do

NOT possess, and proteins are nearly always multi-topic, in that

the annotation of a protein to a particular GO-term does not

exclude the potential for several other functional classifications (we

use the word ‘‘function’’ synonymously with ‘‘GO term’’,

regardless of which branch of GO that term occurs in). Therefore

PU algorithms are applicable to the function prediction problem,

and hold great potential for improvements in machine learning

algorithms applied in this context. For example, we have

previously shown that more-reliable negative examples boost the

predictive power of protein function prediction algorithms [5].

We proceed by focusing directly on the first step of the PU

learning task, namely generating a reliable set of negative

examples for protein function and directly evaluating the quality

of our negative examples, rather than their indirect effect on

classifier performance. While PU learning has been applied to the

biological domain before [2], [6], [7], to the best of our knowledge

no study has focused on evaluating the quality of negative

examples for GO functions. We examine many of the heuristics

used for protein function negative examples in the past, including:

designating all genes that don’t have a particular label as being

negative for that label [8], randomly sampling genes and assuming

the probability of getting a false negative is low (often done when

predicting protein-protein interactions, as in [9]), and using genes

with annotations in sibling categories of the category of interest as

negative examples [10], [11]. To these heuristics we add two

common PU algorithms used in text classification but here

adapted to PFP, the Rocchio algorithm [12] and the ‘‘1-DNF’’

algorithm [13], as well as our ALBNeg algorithm [5], and one of

the few previously-published protein-negative-example-selection

algorithms, the AGPS algorithm [7]. In addition, we present two

new techniques: the first, Selection of Negatives through Observed

Bias (SNOB), is an extension of our ALBNeg algorithm (which can

itself be viewed as a generalization of the ‘‘1-DNF’’ PU algorithm),

while the second, Negative Examples from Topic Likelihood

(NETL), is based on a Latent Dirichlet Topic model of GO data.

Our algorithms, as well as competing algorithms borrowed from

text classification, require only existing GO annotations in order to

predict negative examples. As new annotations are continuously

added to GO this allows testing via training on archived GO data,

and examining the number of incorrectly predicted negative

examples using current GO data to identify true positives that

were predicted to be negative. The AGPS method utilizes

additional feature data, such as Gene Expression, Protein-

Protein-Interaction, etc., but can still be evaluated in the same

manner as the other algorithms. We provide a case study to show

how these examples can benefit the performance of other

algorithms, specifically a function prediction method tested in A.

thaliana[14]. Additionally, we demonstrate increases in function

prediction accuracy when our negative examples are used, testing

on human, mouse, and yeast proteins, using our earlier-published

function prediction algorithm [5]. Lastly, we provide a resource,

NoGO, which contains lists of high-quality negative examples for

GO categories in a variety of well-studied organisms (Human,

Mouse, Worm, Yeast, Rice, and Arabidopsis).

Results

Evaluation of Negative Example Quality
Function prediction results are biased negatively (estimations of

function prediction accuracy are typically lower limits) by the fact

that a positive prediction without a corresponding validation

annotation might simply indicate lack of study of the gene rather

than an incorrect prediction. It therefore follows that negative

example validations are biased by the same effect, but positively

(estimated error rates are lower bounds). Just because a gene is not

annotated with the function in the validation data doesn’t

guarantee that it was correctly identified as a negative example.

In order to attempt to rigorously evaluate potential negative

example selection algorithms, we utilize the average number of

false negative predictions over categories in each of the three

branches of GO.

We determine false negatives through a temporal holdout in

order to mitigate bias [15], running all of our algorithms on data

from the human genome obtained in Oct. 2010, and then

validating with data obtained in Oct. 2012. This process involves

restricting the training phase of all algorithms to data available in

Oct. 2010, removing the potential for test and training data

correlation that can happen during cross-validation. Any gene

that was predicted as a negative example from 2010 data, which

received a positive annotation in the 2012 data, is considered an

error in prediction (a false negative example). For extra

stringency, we consider an ‘‘Inferred by Electronic Annotation’’

(IEA) evidence code annotation as an indication of false negativity

(even though these types of annotations are traditionally

considered less reliable). For completeness, we also include an

evaluation without considering IEA annotations, presented in

Figures S4 and S5.

Prediction errors are calculated separately for each GO term,

and then averaged together within each branch of GO. Only

categories that have between 3 and 300 annotations are evaluated,

so as to consider only terms specific enough to be interesting but

not so specific as to have little chance of being validated, since

prediction errors can be observed only if new annotations appear

for the category in question in the Oct 2012 data that were not

present in the Oct 2010 data.

Author Summary

Many machine learning methods have been applied to the
task of predicting the biological function of proteins based
on a variety of available data. The majority of these
methods require negative examples: proteins that are
known not to perform a function, in order to achieve
meaningful predictions, but negative examples are often
not available. In addition, past heuristic methods for
negative example selection suffer from a high error rate.
Here, we rigorously compare two novel algorithms against
past heuristics, as well as some algorithms adapted from a
similar task in text-classification. Through this comparison,
performed on several different benchmarks, we demon-
strate that our algorithms make significantly fewer
mistakes when predicting negative examples. We also
provide a database of negative examples for general use in
machine learning for protein function prediction (The
NoGO database, available at: bonneaulab.bio.nyu.edu/
nogo.html).

Negative Example Selection for Function Prediction
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Additionally we focus on a specific GO term in human (RNA

Binding), augmenting the temporal validation with annotations

from a recent high throughput screen for RNA binding proteins

[16]. Lastly, we evaluate using a gold-standard set for a single GO

term in the yeast genome [17].

As the trivial solution (predicting no negative examples) would

obviously have the lowest number of false negatives, we present

results in two dimensions, where the vertical axis is average

number of false negatives, and the horizontal axis is number of

negative examples predicted (in this setup, the origin represents the

trivial solution, while the upper right corner of the plot represent

choosing all non-positive genes as negatives). Algorithms that do

not have the capability to vary the number of negative examples

that they predict appear as points on the performance graph,

instead of lines. Because prediction errors can be evaluated only if

new annotations appear during the course of the temporal holdout

time period, the error rate calculated is an observed error rate,

rather than the true error rate. This observed rate will vary in

magnitude from GO term to GO term, as it is bounded from

above by the number of new annotations. Since the magnitude of

the number of false negatives in each branch is dependent on the

total number of new annotations added in that branch between

2010 and 2012, the numbers cannot be compared across

branches. In order to provide a reference point that is comparable

across each branch, we treat the performance of random selection

of negative examples as a baseline. Thus while the magnitude of

the observed error rate cannot be compared across branches, the

difference between an algorithm and the random baseline is

comparable, both across branches and between GO-terms of

differing specificity.

SNOB and NETL, Two New Novel Negative Selection
Algorithms

Our first novel negative example selection algorithm, Selection

of Negatives through Observed Bias (SNOB), is an extension of

our previously published ALBNeg algorithm [5], which selected

negative examples for a function based on whether or not a gene’s

most specific functional annotations had ever appeared alongside

that function. ALBNeg in turn can be viewed as a generalization of

a popular passive 2-step PU-learning algorithm known as ‘‘1-

DNF’’ negative example selection. This algorithm works in the

context of text classification by identifying words that are enriched

among the positive class, and using as negatives all unlabeled

documents that do not contain any of these positive ‘‘indicator’’

words [4]. We consider each GO term annotation as a ‘‘word’’ in

the ‘‘document’’ of a protein, then apply the ‘‘1-DNF’’ technique

to choose negative examples for a protein function by excluding

proteins with GO terms that are enriched among proteins

containing the function of interest.

In ALBNeg, we generalized the idea of ‘‘enrichment’’, by

computing the empirical conditional probability of the GO

function of interest, denoted g, given the presence of each other

GO function in all three branches [5]. Proteins whose most

specific annotations had non-zero conditional probabilities of

appearing in a gene alongside g were ruled out from the potential

negative set for g, effectively using the conditional probability as an

indicator of potential positivity in the same way that the ‘‘1-DNF’’

algorithm uses enriched terms.

In our new algorithm (SNOB), presented here, we follow the

same approach as ALBNeg, and for each GO term g, compute the

pairwise empirical conditional probability of seeing g given the

presence of each other GO term. We further develop ALBNeg, i)

by including IEA annotations in our calculations as well. We then

obtain a score for each protein for each GO term g, by averaging

the conditional probabilities of all GO terms (including IEA)

annotated to that protein, ii) by including all GO terms in the

average, not just the most specific terms, and iii) instead of

choosing all proteins with a score of 0 as negatives for the function

g, we allow the user to set a desired number n of negative examples,

and choose the n proteins with the lowest scores as our negatives

for g. See the Methods section for details of this calculation.

Our second novel algorithm, Negative Examples from Topic

Likelihood (NETL), again treats proteins analogously to ‘‘docu-

ments’’, with the GO terms annotated to each protein serving

analogously to a document’s ‘‘words’’, but now we consider the

proteins to have latent ‘‘topics’’ as well. These hidden topics

represent the ‘‘true’’ function of the protein, both accounting for

new functions (functions not annotated because they have to be

verified/tested) as well as errors and missannotations (having a

GO annotation does not guarantee that a protein actually

performs the function in question due to potential errors in

annotation, especially with IEA annotations). We can then apply a

multi-topic inference algorithm, specifically Latent Dirichlet

Allocation [18], to learn the distribution of these latent topics, or

‘‘true’’ functions, and also learn the conditional distribution of the

‘‘words’’ or annotated GO terms based on those topics. Once

these distributions are known, NETL selects as negatives the

proteins whose latent topic distributions are as dissimilar from the

positive class as possible, allowing the user to specify how many

negative examples are desired.

Ideally each latent topic would represent a single GO term, but

since the size of the vocabulary in our corpus is also equal to the

number of GO terms, this is not feasible. Instead, we utilize the

GO hierarchy to select fewer but more general topics, while

ensuring coverage of the entire GO tree. Such a setup does not

guarantee an intuitively interpretable relation between the latent

topics and specific GO terms: topic x does not directly correlate to

any one GO term, but rather is likely a combination of GO terms.

Thus the calculation of the likelihood of a particular protein being

a negative example for a particular GO term is infeasible, and

must instead be inferred through a similarity metric (see methods).

Previous Methods for Negative Example Prediction
In order to provide a reference for the quality of our algorithm’s

negative examples, we include past heuristics used for negative

example selection, as well as the popular passive 2-step PU

algorithms, ‘‘1-DNF’’ and ‘‘Rocchio’’, which we have adapted to

the PFP context through the GO term ‘‘word’’ and protein

‘‘document’’ mechanism described above. In the case of the

Rocchio algorithm, we made an additional adjustment allowing

the number of negative examples to be varied (See Methods for

details). We have chosen to focus on passive 2-step PU algorithms

as the performance of active 2-step methods is intertwined with the

performance of the underlying classification algorithm, as well as

the input feature data. A stronger classifier will produce better

negative examples, as will a classifier that can use more

discriminative data. This increases the difficulty of judging the

relative performance of active 2-step PU algorithms, as different

classifiers utilize different mechanisms and datasets. These

underlying differences make it difficult to correctly attribute

relative performance of negative example selection to the 2-step

algorithm itself, as opposed to the quality of the classifier or

underlying data. Additionally, 2-step algorithms are self-reinforc-

ing, in that the classifier identifies as negatives those proteins which

are most different from the positive class by whatever mechanism

that classifier is using, which only reinforces that particular kind of

discrimination when the classifier is run again with the negative

examples in the second step. In general, a classifier is better served

Negative Example Selection for Function Prediction
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with negative examples that are actually more similar under the

classifying mechanism, in order to force the classifier to be more

discriminative. Lastly, the passive 2-step algorithms presented here

function solely with GO data input, allowing for very rapid

calculations and avoiding the need to gather large amounts of

feature data, which can quickly become difficult for less-studied

organisms.

The exception to our focus on passive 2-step algorithms is the

AGPS algorithm, which is an active 2-step PU algorithm with

which we make a comparison. We have included this algorithm, as

it is one of the few explicit negative example selection algorithms

in the protein function prediction (PFP) literature.

Performance of Negative Example Methods in Homo
sapiens

Results for the methods tested on the human proteome are

presented in Figure 1. Among the methods tested, all algorithms

performed better than the random baseline, with the exception of

the sibling algorithm, whose weakness is also confirmed in [10].

The heuristic of choosing all non-positive genes as negative also

does not perform better than the baseline, as it is itself a special

case of the baseline where the number of negative examples is

allowed to be the size of the genome (minus the number of positive

examples). The best performance was achieved by the SNOB

algorithm, which achieved an equal or lower average number of

false negatives than all other algorithms, heuristics, and the

baseline, across all three branches. The NETL algorithm, as well

as our adaptation of the Rocchio algorithm to PFP, also exhibited

strong performance compared with other algorithms.

Driving the performance of SNOB was its ability to achieve

significantly fewer false negative predictions for more general GO

categories (categories with more annotations in the human

genome). Figure S1 shows false negative rates broken down by

the specificity of the function, demonstrating that while the

Rocchio algorithm can compete with or even outperform our

SNOB algorithm on the most specific categories, it is eclipsed by

SNOB in the more general ones. This discrepancy among

categories is most likely driven by the fact that the SNOB

algorithm directly utilizes the co-occurrence of functions (See the

Methods section), and thus has less information to work with for

the most specific categories.

While not performing as well as SNOB, our previously

published ALBNeg algorithm still achieves comparable or better

performance than the AGPS algorithm. This comes as somewhat

of a surprise, as AGPS has the benefit of access to a wealth of

biological data beyond the GO information utilized by our

algorithms, and much of that data post-dates the training GO

annotations, providing unfair bias due to the correlation of many

data types with GO annotations. However, with that additional

data comes additional noise, and we recognize that the AGPS

algorithm might be able to improve upon its performance with

additional parameter tuning and feature selection among the data

inputs.

The results presented in Figure 1 represent the average of a

large number of individual evaluations, each with an error rate

whose magnitude can vary largely depending upon the specificity

of the term. We encourage the reader to examine Figure S1, which

presents the same results but broken down by specificity, reducing

the information lost by averaging. These results agree with those in

Figure 1. Performance measures for negative example prediction on the human genome. The number of erroneous negative example
predictions is plotted as a function of the number of negative examples chosen, for each of the three branches of GO. The Rocchio, NETL, and SNOB
algorithms show consistently strong performance, with SNOB achieving the lowest error rate in each branch. The ‘‘Sibling’’ and ‘‘All non-positive as
negative’’ heuristics have been omitted, as their poor performance dramatically skewed the scale of the images (see figure S3 for results including the
sibling method).
doi:10.1371/journal.pcbi.1003644.g001
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Figure 1. To further substantiate our evaluation, we focused on

one particular molecular function term: GO:0003723 RNA

Binding, presented in Figure 2. We augmented the temporal

holdout validation data with additional annotation not yet present

in GO, but which have been experimentally verified in [16] via a

large-scale genomics experiment designed to detect mRNA

binding proteins genome-wide. These additional annotations

significantly increase the number of potential false negative

examples, allowing for greater discrimination between algorithms.

Continuing in the same patterns as the entire human genome

evaluation, the NETL, SNOB, and Rocchio algorithms perform

similarly, and significantly better than the random baseline, with

SNOB edging out the other two algorithms for larger numbers of

negative predictions. Both NETL and Rocchio, however, maintain

a zero false negative rate for a larger number of predicted negative

examples than SNOB. AGPS and ALBNeg do well, but only

provide a small number of negative examples, and both predict

one false negative while NETL and Rocchio achieve zero errors at

the same number of negative examples. The ‘‘1-DNF’’ algorithm

performs very poorly on this category.

Golden Set Evaluation in S. cerevisiae: Mitochondrial
Organisation

In order to further explore the potential biases in the evaluation

of negative example selection methods, we include evaluation on a

gold-standard set of annotations in yeast, obtained from [17]. This

golden set, for the biological process term GO:0007005 Mito-

chondrial Organization, represents an exhaustively verified set of

annotations, such that all positive and negative occurrences of this

GO term are known across the entire yeast genome. Because the

number of true positives and negatives is known, this GO term in

yeast allows us to utilize cross-validation on the data to calculate a

Receiver-Operator Characteristic (ROC) curve or point for each

algorithm. While cross-validation is problematic in the evaluation

of function-prediction in general, due to the interconnectedness of

GO and many types of feature data which introduces large

positive bias into the evaluation, here we are examining and

holding out only GO terms, and so such bias is mitigated.

In the yeast golden set, we see similar results (presented in

Figure 3) as in our evaluation with human data: The SNOB

algorithm is the strongest performer, followed closely by the

Rocchio and NETL algorithms. The ALBNeg algorithm also

performs well, achieving zero false assertions of negative function-

ality with a large number of predicted negative examples (473.2 on

average). The 1-DNF algorithm also achieves zero false assertions of

negative functionality, but with fewer predicted negative examples

(only 76.6 on average), and the AGPS method predicts fewer

negative examples than ALBNeg, with a much higher number of

false negatives (2.6 on average). It is also worth noting that 59 of the

4625 negative examples in the golden set had received positive

annotations for GO:0007005 in the years since the golden set was

formed (the annotations set is updated accordingly here).

Case Study: Improving Function Prediction in Human,
Mouse, and Yeast

In order to demonstrate the importance of high quality negative

examples, we use our previously published algorithm [5] to predict

functions across all three branches of GO, for human, mouse, and

yeast proteins. We validate these predictions with a temporal

holdout (see methods), which enables us to compute the area

under the curve (AUC) for the Receiver-Operator-Characteristic

(ROC) plot. We repeat this process using negative examples

selected by each of the best-performing negative-example-selection

methods, as well as with random negative examples to serve as a

baseline. Results are presented in Figure 4.

Comparing the average AUC_ROC values of function prediction

with the negative examples selected by each method, we see relative

performance very similar to our earlier evaluation of negative

example quality. All three of the negative-example-selection

algorithms yield much stronger function prediction performance

than when negative examples are selected randomly from proteins

lacking the positive example. Between the three algorithms,

performance is fairly similar, with function prediction utilizing the

SNOB negative examples slightly outperforming the other methods.

Case Study: Improving Function Prediction in Arabidopsis
thaliana

We apply our SNOB algorithm to the work of Puelma et al.

[14], which employs discriminative local subspaces in gene

Figure 2. Performance measures for RNA binding. Performance of the competing algorithms on a specific GO category: GO:0003723 RNA
binding, with validation data augmented by annotations taken from [16]. The left panel shows the complete results, while the right is a scaled to see
the differences between algorithms near the origin. The SNOB algorithm achieves the fewest false negatives for large numbers of negative examples,
while the Rocchio and NETL algorithms maintain a zero false negative rate for a greater number of negative examples.
doi:10.1371/journal.pcbi.1003644.g002

Negative Example Selection for Function Prediction

PLOS Computational Biology | www.ploscompbiol.org 5 June 2014 | Volume 10 | Issue 6 | e1003644



expression networks to predict function in Arabidopsis thaliana. We

choose this work as a case study because the authors specifically

mention the importance of negative examples in their work, and

devise an algorithmic approach for selecting high-confidence

negative examples for the 101 biological process categories they

used to test their PFP method. We use their provided data to select

negative examples with SNOB, generating the same number of

negative examples per category as the author’s original algorithm

(a total of 313592 across all categories). Table 1 shows the results

of our case study, demonstrating that even though our algorithm

only had access to 1/3 of the data it usually requires (here the

authors provided only Biological Process data, and no data from

the other two branches of GO), SNOB produces significantly

fewer false negatives, negative examples with greater specificity,

and performs better when evaluated by the metric chosen by the

authors. It is also interesting to note that even though the rate of

false negatives is very small (originally only 0.6%), further

reduction still produces performance gains in downstream function

prediction.

Negative GO (NoGO) Database
We have collected negative example predictions from the

SNOB, NETL, and Rocchio algorithms in an online database for

use by other researchers. While the NoGO database uses the most

current annotations for its ranking of negative examples, we have

also included false negative rates for each species in the database,

obtained from temporal holdouts on older data, to allow

researchers to have a reference for the quality of negative

Figure 3. Performance measures for mitochondrian organization. ROC curves are depicted for each algorithm on the golden set of
annotations for GO:0007005 in yeast, calculated through cross-validation. SNOB shows the highest area under the curve (AUC), followed by NETL and
Rocchio, which have approximately equal AUCs.
doi:10.1371/journal.pcbi.1003644.g003

Figure 4. Performance measures for function prediction. AUC_ROC measures for function prediction using the best-performing negative
example selection methods, with the random negative example selector included for comparison. Performance measures are broken up by ontology
branch, and represent the average AUC_ROC for all GO terms predicted in that branch.
doi:10.1371/journal.pcbi.1003644.g004

Negative Example Selection for Function Prediction
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examples in that organism. We describe the quality by the area

under the false negative curve, as a percentage of the area under

the random baseline curve, allowing the number of negative

examples to range up to 20% of the size of the genome of that

organism. Results are presented in Figure 5.

SNOB and Rocchio achieve the lowest overall errors, with the

performance gap between Rocchio and NETL larger than in our

other evaluations (see figure S2 for performance broken down by

organism). The reduction of the performance gap between NETL

and Rocchio in Figure 5b as compared to Figure 5a, indicates that

while Rocchio performs better on more general categories,

NETL’s performance is on par with or better than Rocchio for

the more specific GO terms (and thus a greater number of GO

terms). It is also interesting to note that across all organisms,

SNOB and Rocchio perform similarly on cellular component

terms, SNOB has stronger performance on molecular function

terms, and Rocchio performs better on biological process terms,

suggesting systematic differences in the way that GO annotations

relate to each other within each of the three branches.

Our Web interface to the NoGO database provides a plot for

each GO function that shows the number of false negative

predictions as a function of the number of negative examples

chosen (Figure 2 is an example of such a plot, for GO:0003723).

This allows researchers to make an informed decision about which

algorithm to use for their specific organism, GO terms, and task.

These plots also allow researchers to determine how many

negative examples to use for each category (see methods).

Discussion

We have demonstrated (using the human, yeast, and A.

Thaliana proteomes) that the SNOB algorithm achieves signif-

icantly lower prediction errors when predicting negative

examples than several previously described alternative ap-

proaches (including heuristics, techniques borrowed from PU-

learning in text classification, and other negative-example

prediction algorithms). These results, supported by additional

literature that has explored the inter-relationships between GO

categories [19], [20], indicate that despite lacking a significant

number of negative annotations, the GO database encodes

implicit information about likely negative examples via its

positive annotations. Additionally, these pairwise term implica-

tions span all three branches of GO (cellular component,

biological processes and molecular function).

Despite the success of our approach, there will inevitably be

cases where the information from GO alone is not enough to

predict a good set of negative examples. So-called ‘‘moonlighting’’

proteins, for example, can have unique combinations of functions

that defy conventional annotation patterns. Additionally, ap-

proaches that rely on existing GO annotations are limited to

proteins that have already been studied to some extent, which in

many organisms can be a relatively small proportion of the

genome. For these reasons, our group is considering active

methods that can incorporate additional data types (such as gene

expression, protein-protein interaction, domain structure, etc.).

Table 1. Results of our SNOB algorithm vs. the algorithm published in [14].

Algorithm False Negatives Negative Frequency Avg Enrichment P-Value

Puelma Neg 1806 71.88 39.00%

SNOB 1241 29.05 36.26%

The ‘‘False Negatives’’ column shows the total number of false negatives produced by each algorithm across all 101 BP categories examined in the paper, as determined
by BP data collected by the authors two years after the training data. The ‘‘Negative Frequency’’ column shows the average number of times any gene was selected as a
negative example for different function categories, if it was selected at all (a higher number means the same proteins are selected as negative examples across more
categories). The ‘‘Avg Enrichment P-Value’’ column is the metric the authors used to evaluate their function predictions, with a lower value indicating better
performance (see [14] for details).
doi:10.1371/journal.pcbi.1003644.t001

Figure 5. NoGO database performance statistics. Performance metrics for each algorithm in the NoGO database, averaged across all species,
separated by branch of the GO ontology. A) The average area under the false negative curve, as a percentage of the area under the random baseline
curve, weighted by the number of annotations in each GO category. B) The same values re-calculated so that each GO category contributes equally to
the average, regardless of specificity (depicted without the random baseline as that is still 1.0 for every category but skews the scale of the plot). C)
The false negative rate for each algorithm when predicting the same number of negative examples as the number of positive annotations for each
GO category. Here lower numbers represent fewer errors.
doi:10.1371/journal.pcbi.1003644.g005
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The algorithms presented here represent a significant improve-

ment over the active 2-step AGPS method that has access to data

outside of GO. Our SNOB algorithm achieved a lower false

negative rate than any other comparison algorithm tested,

significantly lower than the ‘‘1-DNF’’ algorithm that served as

its conceptual basis. Through our case study in Arabidopsis,

SNOB also demonstrated its ability to improve existing function

prediction algorithms. Youngs et al. 2013 [5] showed that even a

moderate increase in the quality of negative examples has the

power to improve function prediction in general, and those results

are replicated here by our case study in human, mouse, and yeast.

We have shown the ability of high quality negative examples to

improve function prediction accuracy, again with the SNOB

algorithm achieving the best results. Additionally, this case study

represents a very basic use of these negative example methods, and

we believe even further accuracy can be gained by more careful

selection of the number of negative examples chosen for each

prediction task.

Further work includes the incorporation of additional data

types, and potentially the use of active 2-step PU methods.

Another potentially fruitful avenue is the explicit incorporation of

the GO hierarchy in a negative example method. While GO

annotations obey the ‘‘true path rule’’, meaning that every protein

with an annotation a also implicitly has all annotations which are

ancestors of a, negative annotations follow the inverse of this rule:

a protein p that is a negative for g is also implicitly a negative for all

descendants of a. This rule holds for the molecular function branch

of GO, but is more complex in the biological process and cellular

component branches, as there is more than one type of ancestry

(terms may be direct descents, or connected by a ‘‘part-of’’ link, for

example). These differences most likely account for some of the

systematic performance differences of different algorithms on each

branch of GO across all the organisms in the NoGO database.

These systematic performance differences across branches,

combined with the fact that our GO-term specificity effects

algorithms’ relative performance, suggest the potential utility of

ensemble methods (a combination of methods that use one of

multiple algorithms depending on a GO term’s specificity,

placement in the tree, and desired size of the negative class). It

is quite natural to think that the optimal algorithm will be quite

different for predicting rare functions (functions that with only a

handful of examples of per genome) and common functions (like

information processing proteins that have hundreds of paralogous

examples per genome). Further exploring the differences between

the performance of NETL and SNOB for rare and common

functions separately is likely to result in improved performance via

hybrid methodologies.

In conclusion, we have presented a significant step forward in

the calculation of negative examples for protein function

prediction. Following the example set for negative protein-protein

interactions by the Negetome database [21], we have made our

predictions readily available for a variety of organisms. Our

NoGO database also includes useful statistics to allow researchers

to choose the number of desired negative examples and the likely

false negative rate of those examples when used in their own

experiments and algorithms.

Methods and Materials

Data Processing
Data for the human genome was obtained from the GO

database archive, with training annotations obtained from

October 2010 and validation annotations from October 2012.

The set of genes was obtained from HUGO by selecting all

protein-coding gene symbols, resulting 19060 genes. GO terms for

these genes were gathered by querying all official symbols for all

annotations that have at least one annotated protein in the human

genome, resulting in 7432 biological process categories, 2681

molecular function categories, and 997 cellular component

categories. GO terms are fully propagated according to the ‘‘True

Path Rule’’, meaning that an annotation of a protein to a

particular term also implies annotations to all ancestral terms.

For the RNA Binding term example, there were 686 positive

annotations (including IEA) in our training data, and with an

additional 157 annotations added in temporal holdout validation

data. To these 157 new annotations, we added an additional 381

annotations, which were obtained from [16], but are not yet

present in GO. This raised the total of potential false negatives to

538.

For the case study in Arabidopsis Thaliana, all data was obtained

from the supplementary materials provided by [14].

Annotation data for the GO:0007005 golden set in yeast was

obtained from [17], with training GO annotations obtained from

the GO ontology in April 2013. The yeast annotations were taken

for the same set of genes as the original positive and negative

classes defined in [17], comprised of 4966 unique yeast gene

symbols, with annotations in 4226 biological process categories,

2231 molecular function categories, and 820 cellular component

categories.

Data for the NoGO database was obtained from GO for each

organism, with training data for the negative examples collected in

April 2013, and training data for the validation plots collected in

October 2011 and validated with the April 2013 data. The gene

sets for each organism were also obtained from GO, by extracting

all unique official gene symbols within that organism which had at

least one annotation in any branch of GO. Table 2 lists the

number of genes and GO categories for each organism, as well as

the NCBI Taxa ID for each specific species used.

Validation Plot Generation
In order to generate the validation plots in Figure 1 and Figure

S1, we plot the average number of false negatives as a function of

the number of negative examples. For algorithms that allow the

specification of the size of the negative class, we sample the

number of false negatives at 100, 200, 500, 1000, 2000, and 3000

negative examples. The average number of false negatives is

determined using the temporal holdout, by seeing how many

proteins that were designated as negative received an annotation

in the function in question (including an IEA annotation).

Functional categories that received no new annotations during

the temporal holdout are not evaluated, nor are categories with

fewer than 3 or more than 300 annotations. Plots are broken down

by branch of the GO hierarchy, with each plot showing an average

of the results for functions in that branch that meet the specified

criteria. The plot for Figure 2 is identical in construction, but for

one specific GO category, rather than an average over GO

categories.

The plots in Figure 5 and Figure S2 are three representations of

algorithmic performance on all organisms in the NoGO database,

and each organism, respectively. The leftmost graph was

generated by sampling the number of false negatives at negative

class sizes equal to 0.1%, 0.5%, 1%, 2.5%, 5%, 10%, 15% and

20% of the size of the genome of the organism in question. This

value is then turned into a single number by computing the area

under the sample curve for each algorithm, and for the random

baseline. These numbers are summed over all categories in the

organism (or in the case of Figure 5 across all categories in all

organisms), and then divided by the number obtained from the
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random baseline. The central graph is calculated identically,

except here the area under the curve for each algorithm is divided

by the random baseline area before being summed over all

categories, meaning that each GO category contributes equally

to the score, regardless of the number of annotations in that

category. The rightmost graph represents the total false negative

rate, over all GO categories in each branch, when predicting a

number of negative examples equal to the number of positive

annotations for that GO category. All false negative statics are

obtained via a temporal holdout.

Note that in the plots for performance in the NoGO database, it

is possible for algorithms to appear worse than the random

baseline. This is due to the fact that the random baseline chooses

from all possible unlabeled proteins, whereas the algorithms are

constrained to only those proteins with GO annotations. Since it

can often be the case that new annotations in the temporal holdout

set are concentrated among proteins that are already partially

annotated, the GO-restricted algorithms are penalized over the

random baseline.

Selection of Negatives through Observed Bias (SNOB)
Implementation

The Selection of Negatives through Observed Bias algorithm

takes as its basis the pairwise conditional probability calculation

of seeing annotation a given the presence of annotation m,

which is specified for the ALBias algorithm in Youngs et al.,

2013:

p̂p(ajm)~nz
ma
�
nz

m
, where nz

ma is the number of genes where m

appears alongside g in the dataset, and nz
m is the total number of

genes annotated with m in the dataset. As mentioned in the

results, SNOB removes the restriction that the score is calculated

from leaf annotations only, or that a protein must have an

annotation in the same branch as the GO term in question in

order to be chosen as a negative. In addition, all annotations are

utilized, including IEA annotations. The score vector ~ssa, which

holds the scores for all genes as potential negative examples for a

given GO function a, is calculated as the average of the

conditional probabilities of all other annotations in each gene,

which is efficiently calculable as: ~ssa~W{1AP, where A is the

annotation matrix of the dataset, with each row representing a

gene and each column a GO category, W is the diagonal matrix

with Wii equal to the total number of annotations for protein i,

and P is the conditional probability matrix with P(m,a)~p̂p(ajm).
These scores are then ranked to produce a list of negative

examples, with the lower scores indicating higher probability that

a particular protein is a negative example for the GO term in

question.

Negative Examples from Topic Likelihood (NETL)
Implementation

For the Negative Example from Topic Likelihood algorithm, we

again formulate a protein as a document, with GO annotations

(including IEA) from all three branches as the words in that

document. We then run Latent Dirichlet Allocation (Code

obtained from David Blei’s ‘‘lda-c’’ package) on the document

corpus to identify the parameters of the Dirichlet topic distribu-

tion, and perform inference on each document to obtain the

posterior topic distribution given the GO terms present in that

protein (See [18] for the details of LDA). Ideally, we would set the

number of latent topics t equal to the number of GO categories m,

but this choice yields infinite perplexity in the corpus, as the

number of unique words w = m as well. In order to achieve w ..

t, to increase the quality of the learned topics, yet also to preserve

coverage of all GO categories, we set the number of topics for each

organism equal to the total number of annotated direct

descendants of the root ontology terms. For example, in our

Human validation data, the biological process node has 27 direct

descendants with annotations in the data, the molecular function

node has 14 direct descendants, and the cellular component node

has 10, for a total of 51 latent topics. By invoking the inverse of the

true path rule, whereby negative examples are propagated

downwards through the GO graph, this approach guarantees

coverage of all GO categories for the purposes of negative example

selection.

Since LDA discovers latent topics, which are not predefined

before the algorithm is run, it is not immediately obvious which

learned topic corresponds to which GO term. Indeed despite our

efforts to ensure coverage of every GO category directly descended

from a root node, it is not necessarily the case that the

correspondence between the topics and the selected GO terms

are 1–1. Instead it is possible, even likely, that some combinations

of topics/GO terms relate to each other, making exact inference of

the probability that a given protein possesses a given GO term

difficult under the LDA model. To overcome this problem, we

chose to represent the positive class with the average of the

Dirichlet posterior vectors for all proteins annotated to the

function in question (including IEA annotations). Then for each

unlabeled protein u, we calculate a Distributional-Overlap Score

(DOS) representing the similarity of topics distributions between u

and the positive class average topic distribution. This score can be

viewed as a symmetric simplification of the Kullback-Leibler

Divergence metric, and is calculated simply as

DOS(i~aa,j~aa)~
P

t

min(iat,jat), where ia and i ja are two Dirichlet

posterior parameter vectors (since each posterior vector sums to 1,

the DOS score is also bounded by [0,1]). The unlabeled proteins

Table 2. Gene counts, GO term category counts, and NCBI_Taxa IDs for each of the organisms in the NoGO database.

Organism NCBI Taxa ID Genes BP Categories MF Categories CC Categories

Arabidopsis 3702 30266 3074 2338 577

Yeast 4932 6380 3533 2091 756

Mouse 10090 25488 9340 3284 1127

Human 9606 18851 9885 3732 1238

Rice 39947 58747 3115 1988 534

Worm 6239 16154 3074 1476 596

doi:10.1371/journal.pcbi.1003644.t002
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are then ranked according to this score, with the lowest DOS

values indicating the most likely negative proteins, as these are

proteins which are least likely to share topics with the positive class

of proteins.

Random Baseline Implementation
In order to calculate the random baseline, we consider the

positive class to be all proteins with an annotation in the function

of interest (including an IEA annotation), and all other proteins to

be the unlabeled class. We sample uniformly at random without

replacement from those unlabeled proteins in order to pick

negative examples, allowing the user to specify the desired size of

the negative class. In order to reduce noise from this stochastic

operation, we calculate the baseline 100 times for each branch of

GO, and then display the average of those 100 calculations.

Rocchio Implementation
In order to adapt the Rocchio algorithm to protein function, we

follow the pseudocode in [12], treating the set of GO terms across

all three branches as our lexicography, each protein as a

document, and the annotations of that protein as a word. This

formulation allows the computation of the tf-idf vectors required by

the algorithm, and for each function we treat the positive class as

all proteins with an annotation in that function (including IEA),

and the rest of the proteins as the unlabeled class. The algorithm

then builds a representative vector for the positive and unlabeled

class, and computes the cosine similarity of the tf-idf vector for each

unlabeled protein with each of the representative vectors. Where

the traditional algorithm would assign as negative examples all

proteins whose similarity to the unlabeled class vector is greater

than to the positive class vector, we assign a score to each protein,

defined as: UnlabeledSimilarity – PositiveSimilarity. This allows us

to rank the proteins in terms of confidence of their negativity, with

the highest-scoring proteins as the most likely to be negative

examples.

1-DNF Implementation
For the 1-DNF algorithm, we again formulate proteins as

documents and GO terms across all three branches as words. We

proceed according to the pseudocode laid out in [4], utilizing as

the positive class all proteins with an annotation in the function of

interest (including IEA). Other GO terms that appear more

frequently in the positive set than the unlabeled set are considered

our ‘‘enriched’’ words, and negative examples are all proteins that

are not in the positive class and do not contain any of these

enriched words. As there is no immediately obvious way to

translate this decision into a score, we only implemented this

algorithm for one choice of the number of negative examples,

rather than thresholding it to allow the user to specify the desired

size of the negative class.

AGPS Implementation
Code for the AGPS algorithm was generously provided by the

authors of [7]. AGPS requires features to operate, which we

obtained through the similarity networks provided by the

Genemania server [22]. Each of these networks (235 networks

for human, 297 for yeast) represents similarity between pairs of

genes according to a particular datatype. For human data it was

necessary to translate the networks from being specified by

ENSEMBL ids to gene symbols by using the HUGO lookup for

gene symbol and ENSEMBL pairs. For both yeast and human, we

performed a simple linear combination of all of the networks,

where each component network and the final network was

normalized according to the scheme: N 0~D{1
2ND{1

2, where D is

the diagonal row sum matrix of W. Once the final network was

obtained (a 19060619060 matrix for human, 496664966 for

yeast), we applied Principal Component Analysis to reduce the

feature size to a 190606200 matrix and a 49666200 matrix,

which were the input feature sets for AGPS for each organism,

respectively. We ran the algorithm provided by the authors using

all of the default constants provided, but as described in the

author’s text, ran cross-validation for each category and only used

negative examples that were chosen in the majority of the cross

validation runs. We choose to segment data into 5 cross-validation

segments.

AGPS was only validated on functional categories with at least

85 annotations (the reliance of the method on cross-validation

increases the number of necessary positive examples for a

meaningful result). The lengthy runtime of the algorithm also

restricted our application of the method to function categories with

more than 85 annotations. To allow for a fair comparison to other

methods we utilized the inverse of the true path rule, and for GO

functions with fewer than 85 annotations in the human genome,

we set the negative examples as the union of all of the negative

examples of all parent categories of that GO term.

Sibling Heuristic Implementation
For the heuristic that chooses siblings as negatives for a function,

we follow the specification laid out in [11], whereby a protein is a

negative for a function if it is annotated to the parent of that

function, but not to the function itself. This includes proteins

annotated to sibling categories, as well as those annotated to the

parent but to none of the children of that parent. Because some

function categories will have no proteins that satisfy these

requirements, we revert in this case to the strategy of choosing

all non-positive proteins as negative, where the positive class is all

proteins with an annotation in the function in question (not

including IEA annotations). As Mostafavi 2009 points out, the

sibling approach is problematic in that many sibling categories are

not mutually exclusive, but we present the technique here for

completeness. Since the heuristic will produce different numbers of

negative examples for different function categories, the point on

the validation plot corresponding to this algorithm represents an

average over different sizes of the negative class.

Function Prediction Implementation
For function prediction, we used our previously published

algorithm [5]. Training GO annotations were obtained from the

GO archive in April 2013, with validation annotations obtained in

December 2013. Input data included protein-protein interaction,

Interpro database data [23], gene expression data, sequence

similarity, and phylogenetic profiles. Predictions were made for all

terms in all three branches, regardless of specificity, but validations

were calculated only for those terms that received new annotations

during the temporal holdout period.

For each term predicted, the number of negative examples was

selected to be the maximum of the number of positive examples of

that term, or 20% of the size of the genome. A further restriction

capped the number of negative examples at 50% of the number of

non-positive genes for the function in question. The area under the

curve of the Receiver Operator Characteristic plot was calculated

using the methodology presented in [5].

Data Access
Negative examples are available in the NoGO database, located

at: bonneaulab.bio.nyu.edu/nogo.html. Negative examples are
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currently available for the following species: Human, Mouse,

Yeast, Rice, Arabidopsis and Worm. For each function in each

organism, a ranked list of genes shows the most to least likely

negative examples, available for the SNOB, NETL, and Rocchio

algorithms described here. All negative examples were computed

using GO data from April 2013.

Accompanying each list is a validation plot (See Figure 2 for a

sample, GO:0003723 in Homo Sapiens), which shows the

performance of SNOB against a random baseline, trained on

GO data obtained from October 2012 and validated with data

from April 2013. This plot gives a researcher an idea of the relative

performance of the SNOB algorithm against the random

reference, in order to give confidence as to the likelihood of false

negatives, and also allows a researcher insight into how many

negative examples to choose based on the false negative rate

presented in the graph.

MATLAB code for generating negative examples from custom

data is also be available from the downloads section of the NoGO

database, as well as directly from: http://markula.bio.nyu.

edu:8080/downloads. The database will be updated with negative

examples computed from new GO annotations in April 2014, and

then subsequently every three months.

Supporting Information

Figure S1 Specificity-segmented performance. Perfor-

mance of negative example selection algorithms broken down by

specificity for a. Biological process, b. Molecular Function and c.
Cellular component. Specificity is defined by the number of

annotations present for a GO category in the human genome

training data, split into buckets of size: 101–300, 31–100, 11–30,

and 3–10.

(TIF)

Figure S2 Performance metrics broken down by organ-
ism. Organism plots for a) Arabidopsis, b) Yeast, c) Mouse, d)

Human, e) Rice, and f) Worm. The leftmost graph for each

organism represents the average area under the false negative

curve, as a percentage of the area under the random baseline

curve, weighted by the number of annotations in each GO

category. The central graph is the same set of values re-calculated

so that each GO category contributes equally to the average,

regardless of specificity. The rightmost graph depicts the false

negative rate for each algorithm when predicting the same number

of negative examples as the number of positive annotations for

each GO category.

(TIF)

Figure S3 Performance measures including the sibling
method. These plots are duplicates of the performance plots in

Figure 1 of the paper, but including the Sibling Negatives

heuristic, to illustrate the poor performance of that heuristic.

(TIF)

Figure S4 Performance measures evaluated without
IEA annotations. Performance measures for negative example

prediction on the human genome, in each of the three branches of

GO. These results are the similar as those presented in Figure 1,

with the difference being that here error rates are calculated using

only curated GO annotations, and ignoring IEA annotations.

(TIF)

Figure S5 Specificity-segmented performance evaluat-
ed without IEA annotations. Performance of negative

example selection algorithms broken down by specificity for a.
Biological process, b. Molecular Function and c. Cellular

component. Specificity is defined by the number of annotations

present for a GO category in the human genome training data,

split into buckets of size: 101–300, 31–100, 11–30, and 3–10.

These results are similar to those presented in Figure S1, with the

difference being that here error rates are calculated using only

curated GO annotations, and ignoring IEA annotations.

(TIF)
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