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Background: Some studies suggest that as much as 40% of all causes of death in a
group of patients with schizophrenia can be attributed to suicides and compared with
the general population, patients with schizophrenia have an 8.5-fold greater suicide risk
(SR). There is a vital need for accurate and reliable methods to predict the SR among
patients with schizophrenia based on biological measures. However, it is unknown
whether the suicidal risk in schizophrenia can be related to alterations in spontaneous
brain activity, or if the resting-state functional magnetic resonance imaging (rsfMRI)
measures can be used alongside machine learning (ML) algorithms in order to identify
patients with SR.

Methods: Fifty-nine participants including patients with schizophrenia with and without
SR as well as age and gender-matched healthy underwent 13 min resting-state
functional magnetic resonance imaging. Both static and dynamic indexes of the
amplitude of low-frequency fluctuation (ALFF), the fractional amplitude of low-frequency
fluctuations (fALFF), regional homogeneity as well as functional connectivity (FC) were
calculated and used as an input for five machine learning algorithms: Gradient boosting
(GB), LASSO, Logistic Regression (LR), Random Forest and Support Vector Machine.

Results: All groups revealed different intra-network functional connectivity in ventral
DMN and anterior SN. The best performance was reached for the LASSO applied to FC
with an accuracy of 70% and AUROC of 0.76 (p < 0.05). Significant classification ability
was also reached for GB and LR using fALFF and ALFF measures.

Conclusion: Our findings suggest that SR in schizophrenia can be seen on the level of
DMN and SN functional connectivity alterations. ML algorithms were able to significantly
differentiate SR patients. Our results could be useful in developing neuromarkers of SR
in schizophrenia based on non-invasive rsfMRI.

Keywords: schizophrenia, suicidal ideations, machine learning, resting state fMRI, mental pain, classification,
gradient boosting, feature selection
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INTRODUCTION

Schizophrenia research suggests that as much as 40% of all death
causes in this group can be attributed to suicides (Wildgust et al.,
2010), while 25–50% of individuals with schizophrenia attempt to
commit suicide during their lifetime (Bohaterewicz et al., 2018;
Cassidy et al., 2018). Hence, there is a vital need of developing
more accurate and objective methods to predict the risk of suicide
among individuals with schizophrenia.

Functional magnetic resonance imaging (fMRI) is a non-
invasive, widely employed method allowing one to measure
activity of a human brain. Resting state (rs), in turn, is
considered highly effective as it captures 60–80% of the brain’s
total activity (Smitha et al., 2017). Furthermore, some studies
show that it allows monitoring treatment outcomes as well
as assessing biomarkers of psychiatric disorders (Glover, 2011;
Moghimi et al., 2018).

Previous studies indicate gray matter volume reduction in
dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus,
as well as insular cortex in patients after suicide attempt,
compared to the ones without suicide attempt in the past
(Besteher et al., 2016; Zhang et al., 2020), whereas fMRI
studies revealed that during a simple task based on cognitive
control, suicide thoughts were associated with decreased activity
in PFC and the history of previous suicide attempt resulted
in decreased activity of premotor cortex (Minzenberg et al.,
2014; Potvin et al., 2018). Previous results from volumetric
as well as functional task fMRI analyses indicate the potential
resting-state brain activity changes in the regions included in
Default Mode Network (DMN), Salience Network (SN), and
Sensorimotor Network (SMN).

In recent years, there has been a growing number of machine
learning (ML) applications on rsfMRI data in order to make
prognostic evaluation and to differentiate between various groups
or conditions (Pereira et al., 2009). Lately, ML classifiers with the
input from fMRI as an unbiased biomarker have been adopted to
identify people engaged in the suicide-related behavior, including
suicide ideations. For example, Just et al. (2017) were able
to correctly identify 15 out of 17 suicidal participants with a
sensitivity of 0.88 and a specificity of 0.94 using Gaussian Naïve
Bayes algorithm and task fMRI data. In more recent work,
Gosnell et al. (2019) used a Random Forest (RF) algorithm and
rsfMRI functional connectivity data from psychiatric inpatients
that enabled them to correctly classify suicidal behavior with
a sensitivity of 81.3%. To the best of our knowledge, none
of the previous studies focused on various ML classifiers in
order to discriminate between healthy controls (HCs), suicidal
risk (SR), and non-suicidal risk (NSR) schizophrenia patients
based on rsfMRI data.

In the current work, our objective was to conjoin ML methods
with rsfMRI data in order to investigate whether the selected
classifiers allow differentiating between schizophrenia patients
with and without a suicide risk. Ultimately, five algorithms
such as Gradient Boosting (GB), Least Absolute Shrinkage and
Selection Operator (LASSO), Logistic Regression (LR), RF, and
Support Vector Machine (SVM) were performed to increase
the reliability of diagnostic accuracy. Each metric presents

a different degree of complexity; therefore, establishing their
separate and combined precision allows gaining a wider picture
in the aforementioned classification. Moreover, the article aims at
explaining the association between the resting-state brain activity
and suicide risk among schizophrenia patients; thus, stationary as
well as dynamic measures with sliding windows approach were
calculated. Based on the literature, the authors hypothesize (a)
varied neural activity in the regions included in DMN, SN, and
SMN networks to be involved in suicide risk in patients with
schizophrenia; (b) that the predictive ability of classifiers will be
better while using dynamic indexes as the features in comparison
to the static ones; (c) that the results of ML-based discrimination
will differ using diverse parcellation approaches; (d) ML-based
algorithms to discriminate between SR and NSR groups with the
accuracy exceeding 50%.

MATERIALS AND METHODS

Participants
A total of 66 participants were recruited for the study.
The clinical group consisted of 43 patients with paranoid
schizophrenia diagnosed according to the ICD-10 criteria.
The clinical group covered two subgroups: 24 patients with
acute suicidal risk (SR) and 19 patients without such risk
(NSR). The control group (HCs) consisted of 23 individuals
matched in terms of gender and age with a clinical group,
without diagnosis of mental disorder or a history of mental
illness in first-degree relatives. All the participants were right-
handed, as measured by the Neurological Evaluation Scale
(Buchanan and Heinrichs, 1989). The inclusion criterion for the
clinical group was treatment with atypical antipsychotic agents
from the group of dibenzoxazepine: clozapine, olanzapine, or
quetiapine. Additionally, valproic acid treatment was accepted.
The exclusion criteria for both clinical and control groups were
as follows: (1) history of alcohol or drug abuse (according
to substance use disorder of DSM-5); (2) severe, acute, or
chronic neurological and somatic diseases; (3) severe personality
disorders; (4) treatment other than those mentioned in the
inclusion criteria. All of the abovementioned conditions were
confirmed by clinical interviews based on DSM-5 criteria.
Detailed information about patients’ medication is presented in
the Supplementary Materials. Written consent was obtained
from all of the participants. The study was approved by the
Jagiellonian University Bioethics Committee.

Assessment of Suicidality
Suicidal risk was assessed with the Polish adaptation of
Suicide Behavior Questionnaire—Revised (SBQ-R) (Osman
et al., 2001; Chodkiewicz and Gruszczyńska, 2020), with the
cutoff of ≥8 points in accordance with the Osman et al.
(2001) recommendations. Moreover, the Polish adaptation
(Chodkiewicz, 2013) of The Psychache Scale (TPS) (Holden
et al., 2001) was used to evaluate the subjective experience
of participants’ psychological pain, considered to be highly
associated with suicidal thoughts and acts (Ducasse et al., 2018).
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MRI Data Acquisition
MRI data were acquired using a 3-T Siemens Skyra MR System
(Siemens Medical Solutions, Erlangen, Germany). Anatomical
images were obtained using sagittal 3D T1-weighted MPRAGE
sequence with TR = 2,300 ms and TE = 3.9 ms. A total of
13 min of functional resting-state BOLD images was acquired
using a gradient-echo single-shot echo planar imaging sequence
with the following parameters: FOV = 256 mm; TE = 27 ms;
TR = 2060 ms; voxel size = 3 mm × 3 mm × 3 mm, with no
gap. Altogether, 39 interleaved transverse slices and 400 volumes
were acquired. During the resting-state procedure, the subjects
were instructed to keep their eyes open and to think of nothing
particular. They were also asked not to fall asleep, which was
controlled using an infrared binocular eye tracker (Eyelink 1000
Plus, SR Research, Mississauga, ON, Canada). In addition, during
the EPI sequence, neutral gray background was presented using
a MRI-compatible LCD screen and Siemens Head Coil Viewing
Mirror. Both structural and functional sequence details are in
Supplementary Data Sheet 1.

Data Preprocessing
Data preprocessing was performed using Dpabi v. 4.2 (Yan
et al., 2016) and SPM 12 (Friston, 1994), both working under
Matlab v.2018a (The Mathworks Inc.). The first 10 time points
were discarded due to signal equilibration, and next slice timing
and realignment with assessment of the voxel specific head
motion were conducted. The subjects with movements in one
or more of the orthogonal directions above 3 mm or rotation
above 3◦ were discarded from the analysis. A total of three
participants from the control group and four patients from
the clinical sample (four from SR group) were excluded due
to the excessive head movements. Consequently, 39 patients
and 20 HCs were included in the final analyses. Functional
scans were then coregistered using T1 images and normalized
to Montreal Neurological Institute (MNI) space using DARTEL
and a voxel size of 3 mm3. The 24 motion parameters (Friston
et al., 1996) derived from the realignment step were regressed
out from the functional data by linear regression as well as five
principal components from both cerebrospinal fluid and white
matter signals using principal components analysis integrated in
a Component-Based Noise Correction Method (Behzadi et al.,
2007). The global signal was included due to its potential in
providing additional valuable information (Liu et al., 2017). The
signal was then band-pass filtered (0.01–0.08 Hz). Finally, the
functional data were spatially smoothed with 4-mm Full Width
at Half Maximum (FWHM) kernel.

Parcellation
For validation purposes and to exclude a chance of parcellation-
specific results, the preprocessed data were parcellated using
two functional atlases: Power et al. (2011), which utilizes 264
functionally independent regions, and Automated Anatomical
Labeling (AAL) atlas, which separates brain into 116 regions
(Tzourio-Mazoyer et al., 2002). Using centroids obtained from
both atlases, the raw signal from individual brain maps was
extracted and averaged within a 4-mm-radius sphere using

MarsBaR v. 0.43 (Brett et al., 2002). In addition, in accordance
to our hypothesis, in order to investigate possible between-
group differences among DMN, SN, and SM networks, the
authors used templates from FIND lab1. Raw time series were
extracted and averaged in each ROI within ventral default
mode network (vDMN), dorsal default mode network (dDMN),
anterior salience network (aSN), posterior salience network
(pSN), and SMN (Shirer et al., 2012) (see Supplementary Table 1
for detailed information about the ROIs).

Measures
For the purpose of developing a predictive classification model,
the authors used Regional Homogeneity (ReHo), Amplitude
of Low Frequency Fluctuations (ALFF), Fractional Amplitude
of Low Frequency Fluctuations (fALFF), and Functional
Connectivity (FC). Each measure has its static and dynamic
equivalent, and each measure was extracted for both atlases (see
Figure 1 for study flowchart and Supplementary Materials for
detailed description of the measures).

Stationary Approach
The mReHo, ALFF, and f/ALFF maps were segmented into 116
and 264 brain regions, and the values were extracted accordingly.
Each participant got 116 × 1 (AAL atlas) and 264 × 1 (Power
et al. atlas) matrices, consisting of a single value for each brain
region among all 390 time points. Z-transformed correlation
coefficients were obtained for each brain atlas, which resulted in
264 × 264 as well as 116 × 116 matrices for each participant.
The lower half and diagonal values were removed and not used as
features for ML algorithms, so that the total of 6,670 and 34,716
z-score values were used.

Dynamic Approach
The dynamic mALFF, mf/ALFF, and mReHo indexes were
computed using the Temporal Dynamic Analysis module of
Dpabi (Yan et al., 2017) using a sliding window approach with
a hamming window shape.

According to previous work of Leonardi and Van De Ville
(2015), in order to reduce the likelihood of spurious fluctuations
in the dynamics of observed data, minimum window length
should have at least 1/f min, where f min is the minimum frequency
of the time series; a similar approach was used among others
in the work of Li et al. (2019), where the authors showed
alterations in temporal dynamics of the brain associated with
suicidal ideations in depression. In our case, f min after band-pass
filter equals 0.01 Hz (100 s), and for this reason, window size was
set to 50 TR (103 s) length and was shifted by 1 TR (2.06 s). The
full time series was divided into 341 windows for each participant.
As in case of stationary maps, dynamic maps were segmented
using AAL and Power atlases. As a result, each participant gets
a matrix of size 341 × 116 for AAL atlas and 341 × 264 for
Power et al. atlas for dynamic ReHo (dReHo), dynamic ALFF
(dALFF), as well as dynamic f/ALFF (df/ALFF). Each column
represented a brain region and rows were populated with a
single value for each window. Dynamic functional connectivity

1http://findlab.stanford.edu/functional_ROIs.html
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FIGURE 1 | Flowchart of the steps taken in order to extract rsfMRI features.

(dFC) was computed using the same window size, shift, and
method via DynamicBC v.2.2 (Liao et al., 2014). After the
calculations, data were represented by a 341 × 116 × 116
matrix for AAL atlas and 341 × 264 × 264 for Power atlas,
where each of the 341 windows were “populated” with z-score
Pearson correlation values. As in the case of stationary FC,
upper half and diagonal values were removed from each of
the 341 matrices so that 6670 and 34,716 z-score values for
each window were used, which gave a total of 2.274470 (aal)
and 11.838156 (Power) z-score values used as an input for
classification algorithms.

Classification Models
The authors used a selection of the most effective classification
algorithms, each with a different level of complexity: LR (Cramer,
2002), LASSO (Tibshirani, 1996), SVM (Boser et al., 1992),
RF (Ho, 1995), and GB (Friedman, 2001). See Supplementary
Materials for a detailed description of the algorithms. Python,
SciPy, NumPy, and scikit-learn (ver. 0.21) (Pedregosa et al.,
2011) were used to compute the results. Standard scikit-learn
model classes, score calculation routines, grid search, and dataset
splitting functions were applied where possible.

The source code is available at https://github.com/gmum/
schizo_fmri.

Classification Framework
The dataset was divided into train and test sets of approximately
equal sizes (19 and 20 patients, respectively) with stratification.
The training dataset was used to train a classifier pipeline

consisting of optional data standardization and dimensionality
reduction using Principal Component Analysis (PCA) steps and
of the actual classifier. A grid search with fivefold cross-validation
was performed to find the optimal hyperparameters. The entire
hyperparameter grid search and training procedure is illustrated
in Figure 2. It was run separately for every combination of
the classifier type, input data type, and whether dimensionality
reduction was performed.

For static data, the model simply accepts the entire data of
selected measure types for the given patient. For dynamic data,
the model is given only a single window and, thus, predicts a
binary label for each window. An aggregation scheme is needed to
make a final prediction for a patient. For this purpose, we applied
a simple thresholding and counting scheme. Window results are
first transformed to binary results using 0.5 as the threshold value.
The final result was defined as the ratio of positive results to the
total number of windows.

Classification Performance
Area Under Receiver Operating Curve (AUROC) was used as the
score metric for grid search cross-validation procedure, and both
AUROC and accuracy of the final classifier were evaluated on
the test dataset.

In addition, the p-value of each AUROC score was calculated
in order to determine the statistical significance of the obtained
results. To do this, 1,000 permutations of the target labels
were generated. Then, for each permutation, the classifier was
retrained on the permuted labels, and its AUROC score was
measured. The p-value was defined as the ratio of runs that
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FIGURE 2 | Illustration of the machine learning classification framework.

achieved a score greater than or equal to the score of the original
classifier (Ojala and Garriga, 2010).

Statistical Analysis
Two-sample t-tests were used in order to seek for possible
differences in suicidal risk (SBQ-R), mental pain (TPS), severity,
and illness duration between the SR and NSR groups. One-way
analysis of variance (ANOVA) was used to check for possible
differences in age, mean FD, and education (in years) between SR,
NSR, and HCs groups, and the Kruskal–Wallis H test was used to
compare gender differences.

One-way ANOVA was used to investigate possible differences
in FC among three rsfMRI networks between SR, NSR, and
HCs groups. The results were corrected with the Benjamini and
Hochberg (1995) False Discovery Rate correction at p < 0.05.

One-way ANCOVA with the Bonferroni post hoc test was used
to investigate the differences in static ALFF, fALFF, ReHo between
SR, NSR, and HCs. Age, gender, and mean FD were used as
covariates. The same set of analyses was applied to compare the
group-level temporal variability of ALFF, fALFF, ReHo, and FC.
Temporal variability for ALFF, fALFF, and ReHo was expressed
as a coefficient of variations (SD/mean) and, for FC, as a variance
calculated across sliding-window dynamics, and then compared
using one-way ANOVA with FDR correction. The statistical
significance level for ALFF, fALFF, and ReHo analyses was set as
pFWER < 0.05 with 5,000 times permutation using Permutation
Analysis of Linear Models (Winkler et al., 2016) as a part of
DPABI. The cluster forming threshold was set to z = 2.3, which
is equal to p < 0.01 and the cluster extent threshold at k > 25
(Li et al., 2019).
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RESULTS

Demographic and Clinical
Characteristics
The final analysis was conducted based on the data obtained from
59 participants, 39 of whom were schizophrenia patients. No
differences in age [one-way ANOVA; F(2,57) = 2.13; p = 0.1282],
gender [Kruskal–Wallis; H(2) = 2,468; p = 0.291], and head
motion [one-way ANOVA; F(2,57) = 0.66; p = 0.5214] were found
among the three groups. SR and NSR groups were significantly
different in SBQ-R score (t = 7.645; p < 0.001) and illness
duration (t = 1.69; p = 0.01), but no differences were found in
the case of TPS scores (t = 1.904; p = 0.064) The range of SBQ-R
score in the SR group was 8–17 points (Table 1).

Differences in rsfMRI Measures
No differences were found among the three groups in static
ALFF, fALFF, and ReHo. No significant differences were found
in the case of temporal variability of ALFF, fALFF, or ReHo
either. Significant differences between SR, NSR, and HCs groups
were found in both static functional connectivity and temporal
variability of FC. One-way ANOVA showed that the three

TABLE 1 | Detailed participant demographic and clinical information.

Demographics HCs SR NSR

Group size (n) 20 20 19

FD (0–3) 0.079 ± 0.04 0.09 ± 0.05 0.097 ± 0.063

TPS (13–59) 15.38 ± 6.88 33.65 ± 10.24 26.57 ± 12.86

SBQ-R (3–17) 4.42 ± 2.11 10.7 ± 2.97 5.10 ± 1.32

Gender (female/male) 10/10 5/15 9/10

Age (27–65) 36.57 ± 7.25 42.6 ± 9.4 39.1 ± 9.23

Handedness (right/left) 20/0 20/0 19/0

Illness duration (years) (10–39) – 18 ± 10.1 10.89 ± 5.93

SBQ-R, Suicide Behaviors Questionnaire—Revised; TPS, The Psychache Scale.
Ranges of the variables are provided in the parentheses.

groups were different in FC among ventral DMN (F = 19.02;
p < 0.001) and anterior SN (F = 6.85; p = 0.001) (Figure 3).
Post hoc tests showed that the significant differences among
ventral DMN network were present between SR and NSR groups
(p < 0.001; FDR corrected) and NSR and HCs groups (p < 0.01;
FDR corrected). In the case of anterior SN, post hoc tests
indicated differences between SR and NSR groups (p = 0.03;
FDR corrected). No differences were found among dorsal DMN,

FIGURE 3 | (A) Receiver operating characteristic curve for LASSO classificator applied to Functional Connectivity with Power 264 atlas. (B) Box-and-whisker plot
illustrating the differences between three groups in Functional Connectivity among ventral Default Mode Network. (C) Box-and-whisker plot illustrating the differences
between three groups in Functional Connectivity among Anterior Salience Network. The outliers can be seen due to the high variance of dFC values.
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TABLE 2 | Dynamic functional connectivity and functional connectivity differences
among NSR, SR, and HC groups.

Region F p Pairwise comparison

Dorsal DMN 1.55 0.2133 –

Ventral DMN 19.02 <0.001 SR vs. NSR (p < 0.0001, MD = −0.0582);
NSR vs. HCs (p < 0.0001, MD = 0.0550)

Anterior SN 6.85 0.0011 SR vs. NSR (p = 0.001, MD = 0.0482);
NSR vs. HCs (p = 0.029, MD = −0.0347)

Posterior SN 1.23 0.2919 –

Sensorimotor
Network

1.66 0.1898 –

Dynamic
variance Power
Atlas FC

677.67 <0.001 SR vs. NSR (p < 0.0001, MD = −0.00103);
SR vs. HCs (p < 0.0001, MD = −0.00095);
NSR vs. HCs (p = 0.0404,
MD = 0.0000775)

Dynamic
variance AAL
FC

108.61 <0.001 SR vs. NSR (p < 0.0001, MD = −0.00098);
SR vs. HCs (p < 0.0001, MD = −0.00068);
NSR vs. HCs (p = 0.00031,
MD = 0.000303)

Statistical differences were computed using one-way ANOVA with FDR correction.

posterior SN, or SMN between the three groups. Temporal
variability of FC, calculated at each voxel for the two atlases,
showed that the three groups were significantly (p < 0.001)
different in total FC variability measured using AAL, as well as
Power atlases. Post hoc tests with FDR correction showed that in
the case of both atlases, FC variability was significantly different
between SR and NSR, between SR and HCs, and between NSR
and HCs groups (Table 2 and Supplementary Figures 1, 2).

Classification Results
The 10 most important features of amplitude of low-frequency
fluctuations (ALFF) for LR as well as of Functional Connectivity
for LASSO classifiers are presented in Table 3. The accuracies
and AUROCs of five ML algorithms for each static and dynamic
rsfMRI measures, divided into two atlases, are listed in Table 4.

Three variants of ML algorithm and rsfMRI measures turned
out to be significant at p < 0.05. (1) The LASSO applied to static
functional connectivity with Power atlas reached an accuracy of
70% and an AUROC of 0.76. (2) The LR algorithm applied to
dynamic ALFF with AAL atlas reached an accuracy of 65% and
an AUROC of 0.75. (3) The GB algorithm applied to static fALFF
with AAL atlas reached an accuracy of 65% and an AUROC of
0.74. It can be seen that AUROCs of the majority of variants
were at chance level, even when accuracies were above 50%.
In short, the obtained results suggest that the combination of
LASSO algorithm and static functional connectivity calculated
on 264 ROIs provide superior accuracy/AUROC of classification
between SR patients and non-SR patients and allow correct
classification of 14 out of 20 SR patients.

DISCUSSION

In the present article, a successful discrimination between
schizophrenia patients with and without a suicide risk using ML
algorithms and rsfMRI data was demonstrated.

TABLE 3 | The 10 most important features for Logistic Regression and LASSO
classifiers.

Ensemble Method Logistic Regression

Feature ROI labels Coordinates
(MNI)

1 Angular_L −39, −74, 43

2 Precuneus_L −11, −56, 15

3 Cingulum_Ant_L −2, 41, 16

4 Temporal_Sup_L −60, −25, 13

5 Postcentral_R 65, −7, 24

6 Precentral_R 20, −29, 60

7 Postcentral_R 50, −20, 42

8 Postcentral_L −53, −10, 24

9 Rolandic_Oper_R 43, −23, 20

10 Frontal_Sup_L −20, 45, 39

Ensemble Method LASSO

Feature ROI–ROI labels

1 Supramarginal_R–Precentral_R

2 Postcentral_R–Precuneus_R

3 Angular_R–Precentral_R

4 Frontal_Sup_Medial_R–Parietal_Sup_R

5 Paracentral_Lobule_L–Postcentral_R

6 Frontal_Sup_Medial_R–Frontal_Mid_R

7 Precentral_R–Frontal_Sup_Medial_R

8 Frontal_Inf_Tri_L–Occipital_Mid_L

9 Precentral_R–Frontal_Sup_Medial_R

10 Frontal_Sup_Medial_L–Precentral_R

Data are presented for (a) Logistic Regression applied to dynamic amplitude of
low-frequency fluctuations with AAL atlas and (b) LASSO applied to static ROI–ROI
Functional Connectivity with Power 264 atlas.

Although previous studies developed the rsfMRI-based ML
classification models capable of distinguishing suicidal patients
with different diagnoses, such as anxiety disorder, depression,
or borderline personality disorder (Gosnell et al., 2019; Wang
et al., 2020), to the best of the authors’ knowledge, none
of the previous studies were focused on schizophrenia. Ipso
facto, the presented study is the first attempt to find rsfMRI
features that allow detecting the risk of suicide in schizophrenia
with the use of the ML algorithms. Moreover, this is the first
work using rsfMRI to explain the differences in brain activity,
which might be associated with suicide risk in schizophrenia
patients. Above that, unlike most of ML–fMRI studies focused
on classifying suicidal participants, the authors used five various
ML classifiers. The results of conventional analyses showed
that patients with and without suicidal risk, as well as the
healthy controls, demonstrated different patterns of temporal
variability of dFC and FC, with the latter being an important
feature for ML classification. Furthermore, ALFF and fALFF
measures also contributed to ML-based classification, but no
significant differences in the above measures were found in the
conventional group analyses.

Du et al. (2015) and also Gosnell et al. (2019) results
are partly congruent with the ones obtained from this study,
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TABLE 4 | The accuracies and AUROCs of five ML algorithms for each static and dynamic rsfMRI measures, divided into two atlases.

ALFF fALFF FC REHO Concatenated

AAL 116 Static With PCA Without PCA With PCA Without PCA With PCA Without PCA With PCA Without PCA With PCA Without PCA

GB 55%/0.6 55%/0.62 65%/0.74* 40%/0.25 65%/0.65 55%/0.47 45%/0.46 45%/0.43 55%/0.62 55%/0.49

LASSO 55%/0.41 50%/0.41 55%/0.54 65%/0.61 50%/0.58 50%/0.65 65%/0.54 50%/0.6 50%/0.27 45%/0.55

LR 60%/0.55 45%/0.5 35%/0.29 35%/0.34 35%/0.34 35%/0.32 35%/0.36 35%/0.32 45%/0.43 35%/0.29

RF 45%/0.57 50%/0.55 65%/0.66 30%/0.34 50%/0.43 60%/0.44 30%/0.32 25%/0.24 55%/0.67 50%/0.36

SVM 50%/0.46 50%/0.42 50%/0.55 40%/0.29 50%/0.14 40%/0.37 50%/0.38 30%/0.34 45%/0.38 60%/0.48

AAL 116 Dynamic

GB 45%/0.47 60%/0.5 40%/0.42 50%/0.5 – – 60%/0.5 40%/0.29 – –

LASSO 40%/0.45 50%/0.39 60%/0.57 50%/0.45 – – 40%/0.43 55%/0.49 – –

LR 50%/0.65 65%/0.75* 60%/0.56 35%/0.39 35%/0.27 – 50%/0.51 35%/0.41 45%/0.44 –

RF 45%/0.49 50%/0.57 35%/0.48 45%/0.47 50%/0.43 – 35%/0.38 40%/0.41 70%/0.6 –

SVM 45%/0.46 45%/0.42 40%/0.42 40%/0.41 – – 45%/0.32 55%/0.39 – –

Power 264 Static

GB 60%/0.55 40%/0.5 40%/0.32 55%/0.56 45%/0.67 50%/0.5 40%/0.4 30%/0.33 50%/0.62 50%/0.5

LASSO 45%/0.42 25%/0.42 70%/0.65 55%/0.31 50%/0.41 70%/0.76 35%/0.34 35%/0.36 45%/0.51 50%/0.41

LR 55%/0.61 60%/0.48 45%/0.51 40%/0.44 45%/0.47 45%/0.43 50%/0.51 40%/0.45 45%/0.48 45%/0.4

RF 60%/0.65 40%/0.41 45%/0.47 55%/0.46 60%/0.69 55%/0.38 55%/0.68 70%/0.57 55%/0.48 50%/0.49

SVM 50%/0.34 50%/0.39 50%/0.45 50%/0.33 50%/0.68 50%/0.46 45%/0.24 40%/0.43 50%/0.69 50%/0.46

Power 264 Dynamic

GB 55%/0.58 45%/0.6 50%/0.5 60%/0.57 – – 55%/0.6 55%/0.64 – –

LASSO 60%/0.5 55%/0.65 45%/0.62 45%/0.38 – – 45%/0.58 45%/0.5 – –

LR 60%/0.57 70%/0.66 55%/0.51 50%/0.44 50%/0.46 – 50%/0.47 50%/0.5 50%/0.48 –

RF 45%/0.44 55%/0.53 50%/0.34 50%/0.48 50%/0.41 – 40%/0.61 60%/0.55 50%/0.49 –

SVM 45%/0.46 45%/0.6 40%/0.47 55%/0.42 – – 50%/0.55 50%/0.51 – –

GB, gradient boosting; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; RF, random forest; SVM, support vector machine. Significant
results (p < 0.05), estimated using the permutation method, are marked with an asterisk and bolded. The binary classification was conducted using NSR and SR groups.

indicating frontal and temporal brain region abnormalities to be
the most useful in ML classification of suicidal risk, suggesting
activity of specific brain structures to be characteristic for
suicide risk among all psychiatric patients. Cao et al. (2015), in
turn, demonstrated altered ReHo in suicide attempters without
psychiatric diagnosis in left precuneus, which also remains
consistent with the region allowing discriminating between SR
and NSR patients reported in our study. In addition, regions
that turned out to be discriminative in ML-based classification
are also congruent with the studies using cognitive control tasks,
revealing the association between decreased activity of the frontal
cortex and suicide risk in schizophrenia (Zhang et al., 2013;
Potvin et al., 2018). Our results are also consistent with the studies
showing significance of ACC, angular gyrus, as well as both
precentral and postcentral gyrus in understanding the suicidal
behavior (Reisch et al., 2010; Fan et al., 2013; Tsujii et al., 2017;
Harms et al., 2019).

Numerous fMRI studies indicate the association of suicide-
related behaviors and prefrontal cortex alterations due to its
role in decision-making as well as action planning (Potvin
et al., 2018; Brown et al., 2020). Other studies suggest decreased
connectivity between ACC and PFC to be related to suicidal
behavior (Minzenberg et al., 2015; Chase et al., 2017). PFC
and ACC are considered responsible for anticipating the
consequence of actions, inhibition of inappropriate behavior,
and impulsiveness (Zhou et al., 2016; Brown et al., 2019),

which are indirectly related to suicidal behavior (Wang et al.,
2017; Koval and Baumann, 2019). Alterations in ACC and
PFC have also been found in patients with schizophrenia
(Cordes et al., 2015; Fryer et al., 2019) while their impulsivity
has been reported as correlated with increased suicide risk
(Iancu et al., 2010). Notably, the above regions are included
in DMN as well as SN, which have already been established
as disrupted in schizophrenia (Garrity et al., 2007; White
et al., 2010; Palaniyappan et al., 2012). Weaker functional
connectivity within DMN is reported to be associated with the
difficulties in abstract thinking, planning the future, as well
as analyzing social behaviors (Andrews-Hanna, 2012), while
decreased functional connectivity within SN has been reported as
linked to higher trait anxiety and decreased cognitive regulation
(Geng et al., 2016). The above symptoms might additionally
elevate suicidal risk.

Importantly, our results from conventional static FC analyses
confirm the aforementioned results, revealing functional
connectivity differences in ventral DMN and anterior SN
between SR and NSR patients. The above dissimilarity was also
apparent between NSR patients and HCs. Moreover, The LASSO
algorithm, applied on static functional connectivity data, allowed
the discrimination between SR and NSR patients, supporting our
hypothesis. Furthermore, all the three groups varied from each
other in the case of temporal variability of dFC with the use of
both AAL and Power atlases.
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According to another hypothesis, all five ML algorithms
presented different classification performance. The LASSO,
applied on static functional connectivity without PCA on Power
atlas, achieved 70% accuracy and an AUROC of 0.76, proving
to be the best ML classifier used in the study. As a result,
LASSO allowed the correct classification of 14 out of 20 suicidal
patients. The possible reason why the LASSO outperforms the
other classifiers is the type of its regularization loss term. The
processed dataset has high dimensionality but very few samples,
which could possibly make the standard classifiers heavily overfit
to the train set and therefore perform poorly on the test set.
As a result, a regularization method needs to be used in order
to reduce overfitting and increase generalization. The L1 cost
used in LASSO has a property of much stronger parameters’
shrinkage due to its diagonal regularization contour, leading to
a more sparse model.

Noteworthy, raw performance of the classifiers differed
depending on the selected parcellation scheme. However,
contrary to our assumptions, the dynamic measures did not
improve the prediction ability of ML classifiers compared to
static measures. As far as the authors are aware, none of
the previous studies used ML-based classifiers to discriminate
between SR and NSR schizophrenia patients. Further studies
should consider to enlarge sample size in order to demonstrate
the replicability of our study.

LIMITATIONS

The conducted study has some limitations. Firstly, EPI sequence
was introduced to participants after the structural scans (T1–
MPRAGE) and not before them, which could influence the
results. Secondly, results may possibly depend on the size of the
smoothing kernel. Another noteworthy limitation of this study
is the restricted sample size; thus, the presented results should
be interpreted with caution. Further studies should consider
extending the sample size by adding the control group to the
input training data. Moreover, the specific window size as well
as arbitrarily chosen atlases could influence the results. What is
more, the high number of features may cause high susceptibility
to any noise signal; therefore, distinctive features could be
possibly different in another sample size, i.e., patients. Based on
the literature, we have also decided to include the global signal,
which is not always considered to be beneficial. Additionally,
further studies should incorporate a semi-supervised approach
with a pre-training phase using the data of HC.
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