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Simultaneous loss of interlayer coherence and
long-range magnetism in quasi-two-dimensional
PdCrO2
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& N.E. Hussey1,2

In many layered metals, coherent propagation of electronic excitations is often confined to

the highly conducting planes. While strong electron correlations and/or proximity to an

ordered phase are believed to be the drivers of this electron confinement, it is still not

known what triggers the loss of interlayer coherence in a number of layered systems with

strong magnetic fluctuations, such as cuprates. Here, we show that a definitive signature

of interlayer coherence in the metallic-layered triangular antiferromagnet PdCrO2 vanishes

at the Néel transition temperature. Comparison with the relevant energy scales and with

the isostructural non-magnetic PdCoO2 reveals that the interlayer incoherence is driven by

the growth of short-range magnetic fluctuations. This establishes a connection between

long-range order and interlayer coherence in PdCrO2 and suggests that in many other low-

dimensional conductors, incoherent interlayer transport also arises from the strong

interaction between the (tunnelling) electrons and fluctuations of some underlying order.
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M
any correlated metals, such as cuprates, ruthenates and
iron-based superconductors have highly anisotropic
electronic properties, often resulting in an interlayer

conductivity that is incoherent, even at low temperatures. Despite
intense theoretical and experimental investigation, the origin of
this incoherence is unknown, though it is likely due to some
combination of strong electron correlations, the lamellar crystal-
line structure and/or proximity to an ordered phase. In quasi-
two-dimensional (Q2D) systems that are both metallic and
magnetic, the (weak) electronic coupling between the conducting
planes can also influence the interlayer exchange coupling J0.
Although the effect of electronic coupling on the magnetic
ordering—for example via the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction1–4—has been widely studied5,6, there has
been very little experimental exploration of the effect of
magnetism itself on the interlayer electronic coupling and on
the electronic dimensionality.

PdCrO2 is a rare example of a highly metallic 2D triangular
antiferromagnet. As shown in Fig. 1a, PdCrO2 has a delafossite
structure, consisting of stacked layers of highly conducting Pd layers
sandwiched between planes of Mott-insulating CrO2 (refs 7,8). The
Cr ions have a localized spin of 3/2 and are highly frustrated,
forming a non-coplanar and non-collinear antiferromagnetic 120�
helical structure at TN¼ 37.5 K (refs 7,9–12). Quantum
oscillation8,13 and angle-resolved photoemission studies14 have
mapped out the Fermi surface (FS) of PdCrO2. At T4TN, the FS
consists of a single six-fold symmetric electron pocket centered at G
and is mostly derived from the 4d9 electrons15. At TN, band-folding
due to the Cr3þ spin ordering leads to formation of a
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supercell and results in FS reconstruction into the more complex FS,
indicating a strong coupling between the magnetism and the
conduction electrons. A recent magnetothermopower study also
revealed a strong interaction between the 4d9 electrons and the
short-range spin correlations persisting well above TN (ref. 10).

Here we report the observation that the interlayer coherence of
the Pd electrons is lost upon transition from the magnetically
ordered to the paramagnetic regime above TN. Through high-field
angle-dependent magnetoresistance (ADMR) measurements at
temperatures above and below TN, we chart the evolution of the
so-called Hanasaki coherence peak—one of the most definitive
and sensitive probes of electronic coherence16–21—as a function
of temperature. We show that the coherence peak is fully
suppressed just above TN, implying a close correlation between

the magnetic order on the Cr sites and the coherence of the Pd
electronic states. This finding raises the question of whether it is
the interlayer electron coherence that renormalizes J0 and hence
TN, or whether it is the melting of the magnetism that induces a
dimensional crossover in the conduction electrons. We extract
the interlayer hopping parameter t? from the Hanasaki peak, and
through comparison with the isostructural non-magnetic
PdCoO2, we argue that it is the loss of long-range magnetic
order that ultimately decouples electronically the conducting
planes.

Results
Angle-dependent magnetoresistance. Figure 2b shows the c-axis
magnetoresistance rc(y) of PdCrO2 at T¼ 4.2 K in magnetic
fields of 15 and 30 T as the sample is rotated around the polar
axis, from the field perpendicular (y¼ 0�, H||[001]) to parallel
(y¼ 90�, H||[110]) to the conduction planes. The data show a
broad near-sinusoidal background with a minimum at y¼ 0� (the
Lorentz force-free configuration), on which is superimposed a
series of complex ADMR oscillations (AMROs). These peaks, also
known as Yamaji oscillations, occur at certain orientations of the
magnetic field whenever the interplane electron velocity, when
averaged over its corresponding cyclotron orbit22, is minimized23.
The angular location of these peaks is governed by the relation
dk jjF tan y ¼ p n� 1=4ð Þ for each FS pocket, where n is an integer,
d¼ 6.03 Å is the interplanar distance and k jjF is the projection of
the Fermi wave-number on the conducting plane23. While the
multi-component nature of the FS in PdCrO2 leads to some
ambiguity when assigning individual peaks to a specific pocket,
some peaks can still be identified. As an example, the series of
peaks indicated by arrows in Fig. 2b correspond to a pocket of
radius k jjF ¼ 0:57ð3Þ� 1 (see inset of Fig. 2b), consistent with that
of the g pocket identified by Shubnikov–de Haas oscillations8,13.
The presence of polar AMRO, however, is not by itself evidence
for a fully coherent three-dimensional (3D) FS (ref. 17).

Temperature dependence of the interlayer coherence peak. We
turn now to the most dominant feature of the ADMR data,
namely the sharp peak observed when the field is applied exactly
parallel to the conducting planes (y¼ 90). This peak is unam-
biguously resolved at fields as low as 10 T (see Supplementary
Fig. 2b), with the variation in field having no effect on the width
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Figure 1 | Magnetic ordering in PdCrO2. (a) Crystal structure of PdCrO2, with lattice parameters a¼ b¼ 2.930 Å and c¼ 18.087 Å (ref. 7). The green, blue

and red spheres represent the Pd, O and Cr atoms, respectively. The red-shaded planes represent the sides of the edge-shared CrO6 octahedra. (b) One

of the possible solutions for magnetic structure of the antiferromagnetically ordered phase below TN¼ 37.5 K, showing a non-coplanar spin structure9.

The arrows represent the Cr spins, with arrows of the same color representing spins in the same spin sublattice group (see ref. 9 for details). For clarity only

the Cr atoms are shown. (c) The temperature dependence of the interlayer c-axis resistivity rc, which shows a sub-linear temperature dependence in

the paramagnetic regime with a sharp cusp at TN, resulting in a rc(T) that rises faster than T2 in the FS reconstructed phase. Inset: The derivative drc/dT

of the same resistivity curve, highlighting the sharp peak at the transition temperature. The shaded and unshaded regions indicate the coherent and

incoherent regimes, respectively. Crystallographic drawings produced using VESTA37.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15001

2 NATURE COMMUNICATIONS | 8:15001 | DOI: 10.1038/ncomms15001 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


of the peak, only its amplitude. First discussed in depth by
Hanasaki et al.16, the peak arises due to formation of closed orbits
parallel to the conducting planes in a warped FS column, as
shown schematically in the inset of Fig. 2b (Note that although
open orbits can also contribute to the interlayer conductivity for
in-plane fields, they do not lead to a peak in the resistance19).
Thus, in contrast to polar AMRO, the Hanasaki peak is a direct
signature of interlayer coherence and implies the existence of a FS
that extends in all three dimensions16–21,24.

Figure 2c shows the evolution of the Hanasaki peak as the
temperature is raised through the magnetic transition. (It should
be stressed that the magnetic field has a negligible effect on the
value of TN, at least at the field strengths employed in this study8).
With increasing temperature, the amplitude of the coherence
peak gradually diminishes, until eventually, only the broad
sinusoidal background is visible. In order to follow its evolution
more closely, we plot in Fig. 3a the temperature dependence of
drK(y)/dy, where rK(y) is the Kohler-scaled resistivity rc(y)/rc,0

with rc,0 being the zero-field c-axis resistivity for that particular
temperature. In this plot, a change in gradient from positive to
negative at 90� indicates the presence of the coherence peak (as
explained in the Supplementary Note 2, a near-sinusoidal

background has been subtracted first from the raw data before
differentiation). A change in gradient is indeed seen for all
temperatures below TN, but not at 40, 42 or 44 K. The sharpness
of the peak can be quantified by looking at the magnitude of the
second-derivative of rK(y). This quantity, plotted in Fig. 3b, is
found to decrease almost linearly with increasing temperature,
reaching zero just above TN¼ 37.5 K. In other words, the
coherence peak is found to be fully suppressed above the
magnetic ordering temperature, implying that the c-axis FS
warping becomes ill-defined and the original 3D FS is
transformed into a stack of 2D sheets (see insets of Fig. 3b).

Discussion
The near-coincidence of the loss of the Hanasaki peak and TN

raises the intriguing conundrum of whether it is the change in
electronic coherence which determines the value of TN in
PdCrO2, or conversely, if it is the loss of long-range order at
TN that causes the interlayer hopping to become incoherent. In
quasi-1D PrBa2Cu4O8, a field-induced reduction in the dimen-
sionality of the chain carriers drives a spin–flop transition of the
local moments on the Pr sites25. There, the persistence of the
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Figure 2 | ADMR at high fields. (a) Schematic diagram of the four-contact setup used to measure c-axis resistivity, showing the definition of the polar (y)

and azimuthal (f) angles. (b) Evolution of rc during a polar rotation at 15 T (red line) and 30 T (blue line), at 4.2 K. The direction of the applied field at 0�
and 90� are given. The top right inset shows tan y for the peaks indicated by the arrows, forming a straight line as expected for Yamaji oscillations. Fits

(dashed line in the inset) to this give kf¼0.57(3) Å� 1, consistent with that found for the g orbits from quantum oscillation measurements13. The left inset

is a schematic showing the coherent FS orbits that are formed when the field is applied parallel to the crystal planes. (c,d) The reduction in the amplitude of

the c-axis coherence peak at y¼ 90� as a function of temperature for PdCrO2 (m0H¼ 30 T) and for its non-magnetic isostructural analogue PdCoO2

(m0H¼ 35 T)28. For clarity, the PdCrO2 data is plotted as drc¼rc(y)�rc(y¼0). The 4.2 K data for PdCrO2 have been scaled by 0.43. The PdCoO2 data

are reproduced with kind permission from Kikugawa et al.28
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dimensional crossover beyond TN (ref. 26) confirms its key role in
the spin–flop transition, the latter being attributed to a change in
the effective RKKY interaction JRKKY induced by the
corresponding reduction in t? of the mediating chain carriers.
In PdCrO2, a similar renormalization of JRKKY (via t?) could also
act to destabilize the long-range order and thereby renormalize
TN to a value far below the Curie–Weiss temperature YW.

To determine which is the dominant effect in PdCrO2, we need
to compare first the energy scales that define the interlayer

coherence. Interlayer conductivity is assumed to become
incoherent once the interlayer hopping integral t? becomes less
than other relevant energy scales, such as temperature kBT (in
which case, the c-axis warping becomes ill-defined) or the
intraplanar scattering rate :/t (in which case, the individual
carriers are scattered many times within the plane before
tunnelling to an adjacent plane)17,27. The interlayer transfer
integral can be obtained from the ADMR via the relation

t? ¼
‘ 2kF

4dm�
Dy; ð1Þ

where m* is the effective mass and Dy is the full width of the
coherence peak as measured from its base16. Before comparing
the various energy scales in PdCrO2, we first consider the case of
isostructural PdCoO2, which has an identical crystal structure and
Fermiology to PdCrO2 (above TN) but has a non-magnetic
ground state. The temperature evolution of the Hanasaki
coherence peak in PdCoO2 is shown in Fig. 2d (ref. 28). From
its width, we obtain t?E17 meV¼ 200 K, in good agreement with
the value (¼ 21 meV) obtained from a recent quantum oscillation
study15. The coherence peak in PdCoO2 persists to temperatures
of order 90 K, consistent with these estimates for t?. For PdCrO2,
we find Dy¼ 8.0(5)�, and assuming that the coherence peak is
dominated by the largest non-breakdown orbital (g) for which
kF¼ 0.57(3) Å� 1 and m*¼ 1.37(2)me (ref. 13), we obtain
t?E18(1) meV¼ 210(20) K, that is, a very similar magnitude to
that found in PdCoO2, as reflected in their comparable resistive
anisotropies. Thus, despite the similarity in the t? magnitudes,
the coherence peak in PdCrO2 vanishes at a significantly lower
temperature.

We can also estimate :/t just below TN from the magnitude
of the in-plane resistivity and find :/t(TN)E0.8(1) meV
(see Supplementary Note 3). Correspondingly, octE3 at 30 T
and 37.5 K. In the quasi-2D organic superconductor
k-(ET)2Cu(NCS)2, the coherence peak itself was found to survive
down to oct values of order 1 (ref. 24), while in the high-Tc

cuprate Tl2Ba2CuO6þ d, polar AMRO have been observed down
to oct� 0:15 (ref. 29). More concretely, it is instructive to
compare directly the absolute magnitude of the resistivity in
PdCrO2 and in PdCoO2 at the corresponding temperatures where
the Hanasaki peak is found to vanish. Given that the carrier
densities (and their effective masses B1.5me) are essentially
identical above 37.5 K (refs 13,15), the ratio of their resistivities
should correspond to the ratio of their scattering rates. According
to Hicks et al.13, the resistivity in PdCrO2 at TN is a factor of two
larger than that of PdCoO2 at 90 K, implying that the oct value in
PdCrO2 when the Hanasaki peak vanishes is only half the
corresponding value in PdCoO2. Consequently, the suppression
of the Hanasaki peak does not appear to be correlated with the
carrier lifetime reaching a certain threshold. Moreover, given that
both kBT and :/t are almost one order of magnitude smaller than
t? at T¼TN, there is no obvious reason a priori why the
coherence peak in PdCrO2 should vanish beyond TN. Therefore
we conclude that it is not the change in electronic coherence
which determines the value of TN in PdCrO2, but that conversely,
it is the loss of long-range magnetic order that induces the
dimensional crossover of the conduction electrons and causes the
interlayer hopping to become incoherent.

PdCrO2 is an anisotropic-layered antiferromagnet with an
interlayer exchange interaction J0 that is much smaller than the
in-plane interaction J. This leads to the existence of a broad
temperature range above TN, TNoToYWE500 K within which
short-range antiferromagnetic fluctuations persist7,9,11. Such a
state can be described via self-consistent spin-wave theory30.
Analysis of the corresponding equations (see equations (20–23) of
ref. 30) shows that whereas the in-plane correlation length
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Supplementary Note 2. Inset: representation of a 3D FS in the coherent

regime (c), and a Fermi surface that is only defined in two-dimensions in

the incoherent regime (d).
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remains much larger than interatomic distance up to T¼YW, the
interplane correlation length xc becomes comparable to the c-axis
lattice spacing d at a much reduced temperature within TN/YW of
the Néel ordering temperature,

T
TN
� 1 � TN

YW
� 1

ln J=J 0
: ð2Þ

Once xcod, the magnetic coupling becomes strongly fluctuating.
For PdCrO2 the estimate of the right-hand side is o0.1.
A relatively compact explicit expression can be found in the
limit of classical spins (which only effects numerical factors of the
order of one):

T
TN
� 1 ¼ 1

ln J=J 0
ln 1þk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

4

r
þ k2

2

 !
; ð3Þ

where k¼ d/xc. Note that this expression is meaningful only for
ko1, that is, very close to TN. The motion of electrons in an in-
plane magnetic field becomes incoherent at an even smaller
k� d=rc oo 1 where rc is the cyclotron radius along the c axis.
This implies that enhanced scattering of electrons off the spin
fluctuations makes the interlayer electron motion incoherent even
very close to the Néel temperature, that is, it is the magnetism
that suppresses the electronic coherence at TETN and not vice
versa. Importantly, short-range magnetic order within the plane
survives until T �YW.

Our analysis follows from the Heisenberg model where
exchange interactions are considered as fixed parameters. By
including an RKKY-type interaction in the calculation, one might
expect that the incoherence of electron motion along the c-axis
should in turn lead to a reduction in the effective RKKY coupling
and a decrease in J0, thereby amplifying the effect discussed above.
However, the RKKY interaction itself does not appear to be the
driving force for setting TN.

It will be interesting to explore whether a similar relationship
between interlayer coherence and long-range order exists in other
metallic antiferromagnets, such as AgNiO2 or NaxCoO2, where a
highly anisotropic electronic state co-exists with frustrated local
moment magnetism31,32. More generally, the present finding may
also have important implications for our understanding of
interlayer decoherence in a host of other low-dimensional
systems such as underdoped cuprates, ruthenates, iridates or
Fe-based superconductors where short-range spin and/or charge
fluctuations proliferate over a wide range of their respective phase
diagrams. Looking further ahead, it also raises the prospect of
bespoke electronic dimensionally control via tuning of the
magnetism, for example through a combination of conduction
metal layers and coordination polymer magnets, whose J and J0

are highly tunable33,34.

Methods
Crystal synthesis and selection. Single crystals of PdCrO2 were grown using a
flux method, as described in ref. 7. A number of samples were contacted for
standard four-contact transport measurements along the c axis. To ensure optimal
quality of the electrical contacts, DuPont 6838 conductive silver paste was used to
contact the gold wires to the sample. The contacts were then cured in an Oxygen
atmosphere. The evolution of the c-axis resistance rc(T) upon cooling from 300 to
2 K was measured using a Cryogen Free Measurement System, see Supplementary
Fig. 1. The highest quality sample, with a residual resistivity ratio rc(300 K)/rc(2 K)
of 108 and dimensions of B0.6� 0.6� 0.2 mm3, was chosen for the ADMR
measurements.

Angle-dependent magnetoresistance measurements. All measurements were
carried out at the High Field Magnet Laboratory (HFML) in Nijmegen, NL, using a
custom-built two-axis rotator which allows the sample to be rotated in-situ around
the polar angle y or the azimuthal axis f individually. The two-axis rotator was
used in one of the He4 flow-cryostats available at the HFML. The temperature is
stabilized using the capacitance of a dielectric capacitor, which is known to have
negligible field dependence above 4 K (refs 35,36).

The sample was cooled in zero field at a rate of 0.5 K per min to prevent thermal
shocks, and the c-axis resistivity was measured as the sample was rotated around
the polar axis, from y¼ 0� (field normal to crystal planes) to y¼ 90� (field parallel
to the the conduction planes) in a fixed field of 30 T. This measurement was
repeated at a range of temperatures above and below the long-range magnetic
ordering temperature TN¼ 37.5 K, from 4.2 to 44 K. In addition, the field
dependence was explored by performing polar rotations at fixed fields of 10–30 T in
5 T increments and at a temperature of 4.2 K.

Please see the Supplementary Note 1 for further details.

Data availability. All relevant data are available from S.G. and N.E.H.
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