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Background: Ischemia-reperfusion injury (I/R) strongly affects the prognosis of children
with complicated congenital heart diseases (CHDs) who undergo long-term cardiac
surgical processes. Recently, the α2-adrenergic receptor agonist Dexmedetomidine
(Dex) has been reported to protect cardiomyocytes (CMs) from I/R in cellular models
and adult rodent models. However, whether and how Dex may protect human CMs in
young children remains largely unknown.

Methods and Results: Human ventricular tissue from tetralogy of Fallot (TOF) patients
and CMs derived from human-induced pluripotent stem cells (iPSC-CMs) were used to
assess whether and how Dex protects human CMs from I/R. The results showed that
when pretreated with Dex, the apoptosis marker-TUNEL and cleaved caspase 3 in the
ventricular tissue were significantly reduced. In addition, the autophagy marker LC3II was
significantly increased compared with that of the control group. When exposed to the
hypoxia/reoxygenation process, iPSC-CMs pretreated with Dex also showed reduced
TUNEL and cleaved caspase 3 and increased LC3II. When the autophagy inhibitor (3-
methyladenine, 3-MA) was applied to the iPSC-CMs, the protective effect of Dex on the
CMswas largely blocked. In addition, when the fusion of autophagosomes with lysosomes
was blocked by Bafilomycin A1, the degradation of p62 induced by Dex during the
autophagy process was suspended. Moreover, when pretreated with Dex, both the
human ventricle and the iPSC-CMs expressed more AMP-activated protein kinase
(AMPK) and phospho AMPK (pAMPK) during the I/R process. After AMPK knockout
or the use of an α2-adrenergic receptor antagonist-yohimbine, the protection of Dex and
its enhancement of autophagy were inhibited.

Conclusion:Dex protects young human CMs from I/R injury, and α2-adrenergic receptor/
AMPK-dependent autophagy plays an important role during this process. Dex may have a
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therapeutic effect for children with CHD who undergo long-term cardiac surgical
processes.

Keywords: dexmedetomidine, cardiomyocyte, ischemia-reperfusion injury, congenital heart disease, autophagy

INTRODUCTION

Normal heart function requires sufficient blood flow to carry the
oxygen and nutrients that support the electrophysiological
activity of cardiomyocytes (CMs). Typically, surgeons must
utilize cardiopulmonary bypass (CPB) to operate on children
with complicated congenital heart diseases (CHDs). During CPB,
CMs will experience ischemia. When the operation has
concluded, CMs undergo a reperfusion process (Hascoet et al.,
2020). The ischemia/ reperfusion (I/R) process can induce CM
death, which is called I/R injury (Wang et al., 2020). CM damage
and postoperative heart failure after surgery are the primary
causes of postoperative death in complicated CHD cases
(Nieminen et al., 2007; Spector et al., 2018; Wang et al., 2020).
As such, there is a critical need to protect cardiomyocytes from
I/R injury in cases of complicated CHDs (Nieminen et al., 2007;
Spector et al., 2018; Wang et al., 2020).

Dexmedetomidine (Dex) is a highly selective α2-adrenergic
receptor agonist that is primarily used for sedation and analgesia
after anesthesia (Bailey, 2020). There is increasing evidence that
Dex has protective effects on I/R injury for several important
organs (Torregroza et al., 2020). Additionally, Dex has also been
widely used in perioperative anesthesia maintenance for cardiac
surgery in infants and young children (Dex 0.2–0.8 ug·kg−1·h−1)
(Zimmerman et al., 2019) and has achieved good clinical results
(Bush et al., 2018; Zhou et al., 2019; Zimmerman et al., 2019).
Recently, several studies have also demonstrated that Dex is
effective for I/R injury protection in the adult rodent heart
(Du et al., 2019; Yuan et al., 2019; Chang et al., 2020).
However, because the response of infant CMs to hypoxia and
the stimulation of the surrounding environment are quite
different from those of adult CMs (Sun et al., 2019; Ye et al.,
2020), whether Dex is effective in I/R protection for human infant
CM requires intensive investigation.

Autophagy is a critical process for the maintenance of
intracellular homeostasis in CMs (Bravo-San Pedro et al.,
2017). During autophagy, autophagosomes fuse with
lysosomes to degrade the engulfed contents that include
damaged proteins and cytoplasmic organelles (Laker et al.,
2017). Autophagosome formation is regulated by unc-51,
similar to autophagy activating kinase 1 (Ulk1). A previous
report demonstrated that the AMP-activated protein kinase
(AMPK) phosphorylation of Ulk1 was required for the
mitochondrial autophagy process in skeletal muscle (Laker
et al., 2017). Damaged mitochondria are a source of reactive
oxygen species (ROS), which cause severe damage to CM
function (Li et al., 2020; Pei et al., 2020). Our previous study
indicated that Dex increased the expression of AMPK and
reduced the ROS production in a mouse I/R model (Sun et al.,
2017). Thus, in the current study, it is investigated whether Dex
will enhance autophagy via the AMPK signaling pathway in

human I/R samples and in CMs derived from human-induced
pluripotent stem cells (iPSC-CMs).

The Simple Western™ system (Wes) uses capillary
electrophoresis to identify and quantitate proteins of interest
(only 3 μg protein required for one experiment), avoiding the
protein separation and transference that occur when using the
traditional Western blot method (Harris, 2015). Wes is becoming
increasingly popular and has achieved good results (Bezzerides
et al., 2019; Reyes-Serratos et al., 2020; Wiswell et al., 2020).
Because human atria samples and iPSC-CMs are limited and
valuable, Wes is used in this study to detect small amounts of
proteins.

MATERIALS AND METHODS

All of the reagents and antibodies used in this study are detailed in
Supplementaary Tables S1, S2.

Human Sample Collection
Twelve right-ventricular-outflow myocardial tissue specimens
were collected from resections required to relieve obstructions
in tetralogy of Fallot (TOF) patients admitted to the Shanghai
Children’s Medical Center, Shanghai, China between May 2020
and July 2020. Six were pretreated with Dex [0.8 ug·kg−1·h−1, a
concentration in regular use in the hospital (Keating, 2015)] prior
to CPB, while the other six were not treated with Dex. In addition
to the Dex treatment, the other treatments were the same for both
groups. Each specimen was quickly placed in ice-cold
cardioplegia (KH2PO4 50, MgSO4 8, Adenosine 5, hepes 10,
mannitol 100, taurine 10, and glucose 140 mM, pH 7.4) and
transferred to a cell culture room. The tissues were then cultured
with pre-oxygenated DMEM/F12 for 1 h using 100% O2

bubbling. Next, the tissues were washed and divided into two
parts for immunostaining and Wes. All of the procedures
conformed to the principles outlined in the Declaration of
Helsinki and were approved by the Animal Welfare and
Human Studies Committee at Shanghai Children’s Medical
Center. Written informed consent was obtained from the
parents of each patient prior to study initiation.

Induced Pluripotent Stem Cell
Differentiation, Maintenance, and O2

Treatment
The human-induced pluripotent stem cell (iPSC) line (del-
AR1034ZIMA 00), derived from healthy male dermal
fibroblasts, was purchased from Allele Biotechnology (Kadari
et al., 2014 Apr 8). The iPSC cell line (HEBHMUi002-A) was
stored in our lab, generated from peripheral blood mononuclear
cells of a healthy 39-year-old female (Ma et al., 2020 Jan). The
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cells were differentiated under normal O2 (21%) conditions and
maintained using the STEMdiff Cardiomyocyte Differentiation
Kit according to the manufacturer’s instructions. After 15 days
of induction, approximately 90% of the cells were beating and
positive for both cardiac troponin T (cTnT) and sarcomeric
α-actinin (SAA). The cells were reseeded and cultured in an
environment using a 1% O2 concentration in incubators for
12 h, after which they were returned to 21% O2 for 24 h. To
evaluate the effect of Dex, 5 uM Dex was added into the culture
media 1 h before the media was transferred into a 1% O2

incubator, according to the methods found in previous
publications (Liu et al., 2018; Li et al., 2019; Peng et al.,
2020). To evaluate the effect of autophagy, the autophagy
inhibitor, 3-MA (5 mM), was added into the culture media
2 h before it was transferred into a 1% O2 incubator. To evaluate
the autophagy flux induced by Dex, the autophagosomal
maturation inhibitor-bafilomycin A1 (BafA1, 1 μM) was
added into the culture media 2 h before it was transferred
into a 1% O2 incubator. To evaluate whether the autophagy
flux induced by Dex was dependent on α2-adrenergic receptors,
the α2-adrenergic receptor antagonist yohimbine (100 μM) was
added into the culture media 2 h before it was transferred into a
1% O2 incubator. The cells were then subjected to Wes and
immunofluorescence.

siRNA transfection
The commercial human AMPK siRNA and scramble siRNA
were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, United States). The iPSC-CMs were separately plated on
24-well plates at 5 x 104 cells per well in 2 ml of antibiotic-free
normal growth medium supplemented with fetal bovine serum
(FBS). The cells reached 60–70% confluence. They were
transfected with scrambled siRNA or the AMPK siRNA
duplex (100 pmol/L) using Lipofectamine 2000 (Invitrogen).
The cells were harvested after 48 h of transfection for further
experiments.

Immunofluorescence
After fixation with 4% paraformaldehyde, the slides or cells were
permeated with 0.5% Triton X-100 for 15 min, blocked using a
10% donkey serum for 30 min, and stained with a TdT-mediated
dUTP Nick-End Labeling (TUNEL) Kit according to the
manufacturer’s instructions. In brief, the slides or cells were
incubated with the TUNEL cocktail for 1 h. After washing
with phosphate-buffered saline (PBS) three times, the slides or
cells were incubated with SAA antibodies overnight at 4°C. On the
next day, the slides or cells were incubated with secondary
antibodies and 4’,6-diamidino-2-phenylindole (DAPI) for
30 min. Three researchers, who were blind to the sample
identities, quantified TUNEL by either manual counting or
digital thresholding. This included image segmentation and
the creation of a binary image from the grayscale. The
converted binary images were analyzed using ImageJ software
(NIH, Bethesda, MA, United States; Laboratory for Optical and
Computational Instrumentation, University of Wisconsin,
Madison, WI, United States).

Capillary of the Western Blot Analysis
Proteins were extracted using the RIPA Lysis Buffer according to
the manufacturer’s instructions (P0013B, Beyotime, Shanghai,
China). In brief, the tissues were homogenized and extracted
using the RIPA buffer for 5 min on ice, and centrifuged using
14,000 g for 5 min. The supernatant was then collected. The
quantification of proteins was achieved using the Wes
(ProteinSimple, CA, United States) according to the
manufacturer’s instructions (Reyes-Serratos et al., 2020). In
brief, protein (3 μg), primary antibodies, second antibodies,
and the HRP conjunction were loaded into the Wes simple
plates. The plates were loaded into the detection machine after
centrifugation (2,500 g for 5 min).

Statistical Analysis
Continuous data, including the mRNA expression, protein
expression, and the number of TUNEL-positive cells, were
expressed as the means ± standard deviations. The differences
were evaluated using a Student’s t-test, ANOVA, or [the
Student–Newman–Keuls (SNK) test for the post hoc tests] if
the data were normally distributed. Otherwise, they were tested
using the rank sum test. p-values <0.05 were considered to be
statistically significant. The statistical analyses were performed
using SAS software version 9.2 (SAS Institute Inc., Cary, NC,
United States).

RESULTS

Patient Clinical Information
Due to the patient age, the pressure load and SaO2 contribute to
the oxidative DNA damage of CMs (Huang et al., 2017; Ye et al.,
2020; Ye et al., 2020). Therefore, patients were selected to ensure
that there were no significant differences in age, SaO2, or
pulmonary arterial pressure (increasing the right ventricular
pressure load) between the two groups (Table 1).

Dex protects human ventricular tissue from I/R injury and is
associated with autophagy upregulation

As shown in Figure 1A, the Dex pretreatment occurred 2 h
before the CBP, the duration of the CBP was 1 h, and the
reperfusion duration (exposure to the pre-oxygenated culture
media) was 1 h. The immunofluorescence results showed that the
number of TUNEL- positive cells was dramatically lower in the
Dex-pretreated tissues than in the control group (Figures 1B,C).
To further confirm the results, the Wes simple protein detection
system, which can detect small amounts of protein, was applied.
The results showed that the protein levels of cleaved caspase 3 in
the Dex-pretreated group were significantly reduced compared
with levels in the control group (Figures 1D–F). These results
suggested that Dex protected the human ventricle from I/R
injury.

The autophagy marker, LC3II, was significantly increased in
the Dex-pretreated group compared with the control group
(Figures 1G,H). Consistent with an increase in autophagy,
p62/SQSTM1, a polyubiquitin-binding protein, was degraded
during autophagy. In addition, it displayed a reverse change in
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TABLE 1 | Patient clinical information

Group Sample number Age(months) Disease Sex SaO2(%) PAH(mmHg)

I/R 1 18 TOF Female 88 76.7
2 17 TOF Female 87 88
3 21 TOF Male 88 84
4 18 TOF Male 90 92
5 15 TOF Male 80 80
6 24 TOF Male 88 84

Average 18.83 / / 86.8 84.1
SD 3.2 / / 3.5 5.5

I/R+Dex 7 17 TOF Male 80 96
8 17 TOF Male 88 73
9 14 TOF Male 86 88
10 19 TOF Male 81 102
11 24 TOF Female 84 88
12 24 TOF Female 87 86

— Average 19.2 / / 84.3 88.8
— SD 4.1 / / 3.3 9.9
P — 0.8776 / / 0.2289 0.3291

FIGURE 1 | Dex protected human ventricular tissue from apoptosis and was associated with autophagy. (A) Timelines of the Dex, cardiopulmonary bypass (CBP),
and reperfusion treatments. (B) Representative immunofluorescence images of the ventricular tissues pretreated with Dex and the control tissues. Blue (DAPI), red
(TUNEL), and white (cTnT). (C) Quantification of the TUNEL positive cells. N � 6 patients, ten slides/patient. (D) Representative pro-cleaved caspase 3 Wes blot of atrial
tissues pretreated with Dex. (E) Quantification of the cleaved caspase 3 relative expression. N � 6 patients. (F) Quantification of the pro-caspase 3 relative
expression. N � 6 patients. (G) Representative LC3/p62 Wes blot of the atrial tissues pretreated with Dex. (H) Quantification of the LC3II relative expression. N � 6
patients. (I) Quantification of the p62 relative expression. N � 6 patients.
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LC3II (Figures 1G,I). These results indicated that the protection
of Dex may be associated with autophagy.

Dex protected human iPSC-CMs from the hypoxia/
reoxygenation (H/R) process and was associated with
autophagy upregulation

To confirm the in vivo results, human iPSC-CMs were used to
confirm the protective effect of Dex in vitro. As shown in
Figure 2A, Dex was pretreated prior to hypoxia (1% O2) for
2 h, the duration of hypoxia was 12 h, and the reoxygenation
duration before CM collection was 12 h. The results
demonstrated that Dex significantly reduced the number of
TUNEL-positive CMs in vitro (Figures 2B,C; Supplementary
Figures S1A,B), and the Wes results were consistent with the
immunostaining results (Figures 2D–F; Supplementary Figures
S1C–E). These results indicated that Dex protected human iPSC-
CM from H/R injury in vitro.

The autophagy marker, LC3II, was significantly increased in
the Dex-pretreatment group compared with the control group
(Figures 2G,H; Supplementary Figures S1F,G), and p62/

SQSTM1 showed a reverse change in LC3II (Figures 2G,I;
Supplementary Figures S1F,H). These results indicated that
the protection of Dex in vitro may be associated with autophagy.

The autophagy inhibitor, 3-MA, blocked the protective effect
of Dex

The results from the in vivo and in vitro studies indicated that
autophagy may be associated with the protective effect of Dex. To
verify the role of autophagy in Dex’s I/R protection, the
autophagy inhibitor-3-MA, a PI3-Kinase (PI3K) inhibitor, was
introduced (Petiot et al., 2000). The inhibition of PI3K impedes
the recruitment of LC3I to the autophagosomal membrane
(Petiot et al., 2000). The results demonstrated that the 3-MA
significantly reduced the expression of LC3II at the beginning of
the post-reoxygenation period (0 h) (Figures 3A,B). The
downregulation of LC3II lasted for 12 h (Figures 3A,B). The
increase in the LC3II expression by Dex was completely blocked
by 3-MA (Figures 3A,B). Consistent with the LC3II expression,
p62 showed a reverse pattern of expression (Figures 3C,D). As a
result, at the time of post-oxygenation (12 h), the number of

FIGURE 2 | Dex protected human iPSC-CMs from apoptosis and was associated with autophagy. (A) Timelines of the Dex, hypoxia (1% O2) and reoxygenation
(21% O2) treatments. (B) Representative immunofluorescence images of the iPSC-CM pretreated with Dex. Blue (DAPI), red (TUNEL), and green (sarcomeric α- actin,
SAA). (C)Quantification of the TUNEL-positive cells. N� 10 fields from three independent experiments. (D) Representative pro-cleaved caspase 3Wes blot of the iPSC-
CMs pretreated with Dex at the time of post-reoxygenation (12 h). (E)Quantification of the cleaved caspase 3 relative expression. N � 6 replicates. (F)Quantification
of the pro- caspase 3 relative expression. N � 6 replicates. (G) Representative LC3/p62Wes blot of the iPSC-CMs pretreated with Dex at the time of post-reoxygenation
(12 h). (H) Quantification of the LC3II relative expression. N � 6 replicates. (I) Quantification of the p62 relative expression. N � 6 replicates.
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TUNEL-positive CMs and the expression of cleaved caspase 3
were significantly increased (Figures 4A–E). These results
demonstrated that autophagy played a critical role in the
protective effect of Dex in I/R.

Dex Activated Autophagy but Did not Block
Autophagosomal Maturation
To confirm the upregulation of LC3II induced by the Dex
treatment represented the activation of autophagy rather than
a blockage in autophagosomal maturation, the iPSC-CMs were
treated with Bafilomycin A1(BafA1), an inhibitor that blocks the
fusion of autophagosomes with lysosomes (Bowman et al., 1988).
As shown in Figures 5A–D, BafA1 caused significant
accumulations of both LC3II and p62, indicating that the
increase in LC3II induced by Dex did not occur because of a
downstream inhibition in the autophagic flux.

The Autophagy Induced by Dex was
AMP-Activated Protein Kinase Dependent
As it was previously shown that Dex increased the expression of
AMPK in amouse I/Rmodel (Sun et al., 2017) and that AMPKwas
required for targeting mitochondria to lysosomes for autophagy
degradation (Laker et al., 2017), it was sought to determine whether
the autophagy induced by Dex in human atria, which causes I/R
protection, was AMPK dependent. As shown in Figures 6A–C, the
Dex pretreatment significantly increased the expression of AMPK
and p-AMPK in human atria samples after the I/R process.
Similarly, the expressions of AMPK and p-AMPK in iPSC-CMs

were increased at the time of post-oxygenation (12 h) after the Dex
pretreatment (Figures 6D–F).

To confirm the role of AMPK in Dex protection, AMPK was
knocked down (Figures 6G,H), and the iPSC-CMs were treated
with Dex again. The LC3II expression in the AMPK siRNA group
was downregulated at the beginning of reoxygenation and lasted
for 24 h after reoxygenation compared with the H/R group
(Figures 6I,J). The effect of Dex on the LC3II expression was
also blocked when AMPK was knocked down (Figures 6I,J). The
expression of p62 showed a reverse trend compared with LC3II
(Figures 6K,L). These results indicated that the autophagy
induced by Dex was AMPK dependent.

The protection of Dex on H/R injury was α2-adrenergic
receptor dependent

Since Dex is a highly selective α2-adrenergic receptor agonist,
it was then investigated whether the protection of Dex on H/R
injury was α2-adrenergic receptor dependent. The iPSC-CMs
were pretreated with yohimbine (a α2-adrenergic receptor
antagonist) 2 h before H/R. As shown in Figures 7A,B, Dex
significantly increased the expression of LC3II after 3 h of
reoxygenation and reached a peak at 12 h after reoxygenation.
Yohimbine blocked the effect of Dex (Figures 7A,B). The
expression of p62 showed a reverse trend compared with
LC3II (Figures 7C,D). As a result, the TUNEL-positive CMs
were significantly increased in the H/R + Dex + yohimbine group
as compared to the H/R + Dex group (Figures 7E,F). The Wes
results showed that the reduced expression of cleaved caspase 3
caused by Dex was reversed by the yohimbine (Figures 7G–I).
These results demonstrated that the protection of Dex for H/R
injury was α2-adrenergic receptor dependent.

FIGURE 3 | Autophagy inhibitor (3-methyladenine, 3-MA) blocked the autophagy flux induced by Dex. (A) Representative LC3II Wes blots of iPSC-CMs pretreated
with Dex and 3-MA. (B) Quantification of the LC3II relative expression. N � 6 replicates. (C) Representative p62 Wes blots of iPSC-CMs pretreated with Dex and 3-MA.
(D) Quantification of the p62 relative expression. N � 6 replicates. ** p <0.01. vs. H/R; ## p <0.01, vs. H/R + Dex.
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FIGURE 4 | The autophagy inhibitor (3-methyladenine, 3-MA) blocked the protection of Dex during I/R injury. (A) Representative TUNEL immunofluorescence
images of iPSC-CMs pretreated with 3-methyladenine (3-MA). Blue (DAPI), green (TUNEL), red (sarcometric α-actin, SAA). (B)Quantification of the TUNEL- positive cells.
N� 10 fields from three independent experiments. (C) Representative pro-cleaved caspase 3 Wes blot of iPSC-CM pretreated with Dex and 3-MA. (D) Quantification of
the pro-caspase 3 relative expression. N � 6 replicates. (E) Quantification of the cleaved caspase 3 relative expression. N� 6 replicates.

FIGURE 5 |Dex activated autophagy but did not block autophagosomal maturation. (A)Representative LC3II Wes blot of iPSC-CM pretreated with Dex and BafA1
(the inhibitors of autophagosomal maturation). (B) Quantification of the LC3II relative expression. N� 6 replicates. (C) Representative p62 Wes blot of the iPSC-CM
pretreated with Dex and BafA1. (D) Quantification of the p62 relative expression. N� 6 replicates. * p <0.05, ** p <0.01. vs. H/R; ## p <0.01, vs. H/R + Dex.
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DISCUSSION

The incidence of CHDs in China has reached 7 per 1,000, of
which complicated CHD cases account for 30–40%. CHD is the
leading cause of non-accidental death in children under 5 years of
age (Zhao et al., 2020). Most CHD cases require surgical
treatment. With the rapid development of medical technology,
the efficacy of surgical treatment for CHD has significantly
improved, but I/R injury during the surgical process still poses
a severe threat to child health (Senst et al., 2020). Therefore,
determining how to effectively control I/R injury after CPB in
infants and young children has become an important medical
problem. The current study first demonstrated that Dex was

effective for protecting young human CMs from I/R injury in vivo
and H/R injury in vitro. Thus, Dex and its mimics may provide
hope for improvements in postsurgical CHD treatment.

The current rodent I/R models have only been applied to adult
animals because the surgical process of neonatal myocardium
infarction (MI) is quite different from the process in adults
(Ponnusamy et al., 2019; Wang et al., 2019; Zlatanova et al.,
2019). During the neonatal MI process, pups need to be put on an
ice bed for the operation. It is impossible to place pups on an ice
bed for 4–6 h and then reopen the coronary left anterior
descending branch because the pups will die when placed on
an ice bed for more than 30 min. Due to the significant
differences between neonatal and adult cardiomyocytes, the

FIGURE 6 | The autophagy induced by Dex was AMPK dependent. (A) Representative AMPK/p-AMPK Wes blot of a human ventricle pretreated with Dex. (B)
Quantification of the AMPK relative expression of a human atria. N � 6 patients. (C)Quantification of the p-AMPK relative expression of a human ventricle. N � 6 patients.
(D) Representative AMPK/p-AMPK Wes blot of iPSC-CMs pretreated with Dex. (E) Quantification of the AMPK relative expression of iPSC-CMs. N � 6 replicates. (F)
Quantification of the p-AMPK relative expression of iPSC-CMs. N � 6 replicates. (G) The expression of AMPK and p-AMPK were reduced by AMPK siRNA, as
indicated by the Wes blot. (H) The expression of p-AMPK was reduced by AMPK siRNA, as indicated by immunostaining. (I) AMPK siRNA blocked the increased
expression of LC3II by Dex, as indicated by the Wes blot. (J) Quantification of the LC3II expression in Panel 6I. (K) AMPK siRNA blocked the reduced expression of p62
by Dex, as indicated by the Wes blot. (L) Quantification of the p62 expression in Panel 6K. ** p <0.01. vs. H/R; ## p <0.01, vs. H/R + Dex.
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results obtained from adult CMs cannot be applied directly to
the neonatal heart (Sun et al., 2019; Yokota et al., 2020). In
agreement with this, many drugs effective for adult human heart
failure therapy are ineffective for infant heart failure therapy
(Alabed et al., 2016; Rasool et al., 2016). In this study, surgically
removed tissues were utilized to mimic the I/R process. The CPB
phase mimicked the ischemia phase, and the oxygen-rich
environment culture phase mimicked the reperfusion phase.

This was the first time that a new and young human I/R model
has been introduced, and this model can be used for the initial
assessment of other drugs as well.

Autophagy has attracted much attention in recent years
(Zhang et al., 2017; Li et al., 2020; Mookherjee et al., 2020). Li
et al. showed that autophagy protected the heart from I/R injury
via apoptosis associated protein recruitment (Li et al., 2020). In
the current study, it was first demonstrated that the protection of

FIGURE 7 | The protection of Dex was α2-adrenergic receptor dependent. (A) Representative LC3II Wes blot of iPSC-CMs pretreated with Dex and
yohimbine (α2-adrenergic receptor antagonist). (B) Quantification of the LC3II relative expression. N � 3 independent experiments. (C) Representative p62 Wes
blot of iPSC-CMs pretreated with Dex and yohimbine. (D) Quantification of the p62 relative expression. N � 3 independent experiments. (E) Representative
TUNEL-positive CMs after treatment with Dex and yohimbine during the H/R process. (F) Quantification of the TUNEL-positive CMs. N � 10 fields. (G)
Representative pro-cleaved caspase 3 Wes blot of iPSC-CMs pretreated with Dex and yohimbine. (H) Quantification of the pro-caspase 3 relative expression.
N � 6 replicates. (I) Quantification of the cleaved caspase 3 relative expression. N � 6 replicates. ** p <0.01. vs. H/R; ## p <0.01, vs. H/R + Dex.
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Dex in human I/R was associated with autophagy, which was α2-
adrenergic receptor/AMPK dependent. However, it should be
noted that excessive autophagy is detrimental to CMs (Davidson
et al., 2020; Fernández et al., 2020). How Dex regulates autophagy
to protect CMs from I/R injury requires further investigation.
Another limitation of the study is that the original human sample
was under hypoxia (Table 1). Whether or not this precondition
interfered with the study’s results remains unclear.

Although the current study showed that the α2-adrenergic
receptor agonist, Dex, induced the expression of AMPK under the
condition of I/R (Figures 6A–F) and the effect of Dex on the
expression of AMPK was similar in a mouse I/R model (Sun et al.,
2017), how the α2-adrenergic receptor stimulation regulated the
AMPK activity requires more investigation. A possible
connection is oxidative stress, which is involved in both Dex
functions and AMPK activities (Riquelme et al., 2016; Ma et al.,
2020 Jan). In addition, it was shown that Dex protects mice
against I/R injury by activating the AMPK/PI3K/Akt/eNOS
pathway (Sun et al., 2017). PI3K/Akt is a primary core and
downstream point in the signaling pathway network (Sun
et al., 2017). Many signaling pathways are connected by PI3K/
Akt (Sun et al., 2017). PI3K/Akt may be the connection of AMPK
and the α2-adrenergic receptor (Supplementary Figure S2).

There remains the question of why no other α2-adrenergic
receptor agonists (e.g. norepinephrine) have been found to
protect the heart from I/R injury. It is possible that α2-
adrenergic receptor-dependence is a necessary condition but
not a sufficient condition. Previous publications showed that
the anti-inflammatory and anti-oxidative effects of Dex were α2-
adrenergic-receptor-dependent (Gao et al., 2019 Dec). There are
three a2-adrenergic receptor subtypes, all of which couple to
multiple effectors via Gi/Go proteins. They perform various
functions, including the mediation of decreases in adenylyl
cyclase activity, activation of receptor-mediated K+channels,
and inhibition of voltage-gated Ca2+channels. There are pairs
of Gi/Go proteins, distributed differently across different tissues
(Saunders and Limbird, 1999 Nov). Different combinations of
receptor subtypes and G proteins may be responsible for the
different effects of α2-adrenergic agonist.

Another concern is how the in vitro H/R process imitates the
in vivo I/R process. According to current publications, the H/R
models used for in vitro study have varied (Riquelme et al., 2016;
Wang et al., 2018; Chu et al., 2019; Fernández et al., 2020; Ma
et al., 2020 Jan). They can be divided into two categories. One is
physical hypoxia, which places the cells under a hypoxic
condition (Wang et al., 2018; Chu et al., 2019; Ma et al., 2020
Jan). The other is chemical hypoxia, in which oxygen scavengers
deplete oxygen (Li et al., 2018; Gao et al., 2020). The primary
purpose of the H/R process is to produce ROS, and all of the
above models produce ROS, although the degree may vary (Wang
et al., 2018; Chu et al., 2019; Ma et al., 2020 Jan). In the H/R
model, the degree of hypoxia is another factor that should be
considered. In previous work, it was shown that the degree of
hypoxia affected the responses of iPSC-CMs (Ye et al., 2020).
Other publications have assessed the effect of Dex on the I/R set
cardiomyocyte in vitro at 1% hypoxia (Chang et al., 2020), and in

order to be consistent with other publications, the iPSC-CMs
were established to be under 1% O2 hypoxia.

In summary, this was the first study to demonstrate that Dex is
effective in human heart I/R injury protection. The study also
provided a model for evaluating I/R injury in human samples.
Finally, it was demonstrated that α2-adrenergic receptor/AMPK-
dependent autophagy may be one of the mechanisms by which
Dex protects young human heart tissues from I/R injury.
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