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Abstract

Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any
central control, instead arising from local interactions among individuals. A well-studied example is the formation of
recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation
of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can
retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations.
Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated
in response to current food availability throughout the colony’s foraging area. Ants use the rate of brief antennal contacts
inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging
trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which
the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals
between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each
returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates
of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our
simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information,
describing a process at the level of individual ants that predicts the overall foraging activity of the colony.
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Introduction

The fundamental question about the collective behavior of

animals is how the actions of individuals add up to the dynamic

behavior we observe. In many systems, including animal groups,

distributed networks are regulated using feedback based on local

interactions. It is not yet clear how the analogies among diverse

complex systems reveal general underlying processes [1,2]. Here

we propose a simple stochastic model of collective behavior in

ants. Our first goal is to account for the details of a particular

system, as a step toward further insight on whether similar

processes are at work in othersystems. A second goal of our work is

to contribute to the study of collective behavior from the

perspective of evolutionary biology. If the outcome of collective

behavior is ecologically important, then natural selection can act

on variation in that behavior. Modeling the parameters that

produce collective behavior can provide the basis for detailed

measures of variation among ant colonies.

The best-studied algorithms for collective behavior in animals

are those that regulate spatial patterns [3], based on local

interactions that influence whether one animal stays close to

another [4]. Social insect colonies provide many fascinating

examples of collective behavior. There is no central control; no

insect directs the behavior of another. Like other social insects,

ants use local interactions to regulate colony behavior [5].

The most familiar example of feedback based on local

interaction in ants is recruitment to a food source using a

pheromone trail. In some ant species, an ant that finds food lays a

chemical trail on its way back to the nest. Studies of the

algorithms used by ants in forming recruitment trails show that a

slight tendency on the part of other ants to move toward the trail

leads to the formation of trail systems [6,7,8] that can channel

ants to the best food source [9] or trace the shortest path toward

the food [10]. Ants also use feedback from other forms of

interaction, such as brief antennal contact, in recruitment to food

[11] and in other spatial decisions. The perception of the local

density of digging ants generates branches in nest chambers [12].

The rate of brief antennal contact as a cue to local density [13] is

used in spatial decisions, in combination with other information

about location, such as the choice of new nest sites by acorn ants

[14,15].

The regulation of activity by a simple stochastic process is

characteristic of many biological systems. Local interactions in

social insects, like those in other dynamical networks, can regulate

the flow or intensity of activity as well as its location or spatial

pattern. For example, a social insect colony must adjust the

allocation of individuals to various tasks, in response to changing

conditions [16]. Various models have been proposed to explain

the dynamics of the intensity of activity, or numbers of workers,

devoted to colony tasks [e.g. 17,18,19].

PLOS Computational Biology | www.ploscompbiol.org 1 August 2012 | Volume 8 | Issue 8 | e1002670



Here we present a simple stochastic model that explains the

process underlying the regulation of foraging activity in harvester

ant (Pogonomyrmex barbatus) colonies. Foraging activity, the numbers

of ants currently foraging, changes from moment to moment

within a foraging period and from day to day. This species does

not use pheromone trails to recruit to localized food sources. The

ants forage for seeds that are scattered by wind and flooding [20],

not distributed in patches, and a single ant can retrieve a seed on

its own. The model uses an algorithm based on local interactions

among individuals in the form of brief antennal contacts, without

any spatial information such as pheromone trails.

Harvester ants searching for food in the desert undergo

desiccation, and the ants obtain water from metabolizing the fats

in the seeds they eat. Thus a colony must spend water to obtain

water, as well as food. The intensity of foraging is regulated from

moment to moment, and from day to day, to adjust foraging

activity to current food availability, while maintaining sufficient

numbers of ants foraging to compete with neighbors for foraging

area [21].

A long-term study of the foraging ecology of this species has

shown how the moment-to-moment regulation of foraging is

accomplished. Regulation depends on feedback from returning

foragers, who stimulate the outgoing foragers to leave on the next

trip. Forager return rate corresponds to food availability, because

foragers almost always continue to search until they find a seed,

then immediately bring it back to the nest [22,23]. The more food

is available, the less time foragers spend searching and the more

rapidly they return to the nest.

The crucial interactions between returning and outgong

foragers take place in a narrow entrance tunnel, 5–10 cm long,

that leads to a deeper entrance chamber. Observations with a

videoscope show that returning foragers drop their seeds in the

tunnel, and then other ants pick up the seeds and take them deeper

into the nest. Once the returning forager has dropped its seed, it

becomes an outgoing forager, available to go out on its next trip.

Experiments using artificial ant mimics coated with extracts of ant

cuticular hydrocarbons [24,25], and experiments manipulating the

rate of forager return [26,27,28,29] show that how quickly an

outgoing forager leaves on its next trip depends on its interactions

with returning foragers. Foraging activity is more closely regulated

when foraging rates are high, above a baseline rate at which

foragers leave independently of the rate of forager return [29].

We developed a model that takes into account previous work on

the regulation of foraging. We compared simulations using the

model with new data, from field experiments, that show how the

rate of at which outgoing foragers leave the nest changes in

response to changes in the rate at which returning foragers go back

to the nest.

Methods

Measures of harvester ant foraging activity
Experiments manipulating forager return rate were performed

in August 2009 and August–September 2010 at the site of a long-

term study since 1985 of a population of P. barbatus near Rodeo,

New Mexico, USA. In 2009 there were 33 trials in 9 colonies on 8

days, and in 2010 there were 29 trials in 8 colonies on 5 days, of

which 4 were the same colonies as in 2009, for a total of 62 trials.

All colonies were mature, more than 5 years old (ages determined

by yearly census; methods in [21]).

Returning foragers were prevented from returning from the nest

in minutes 4–7 of a 20-min observation; methods were the same as

in [28,29]. Rates of returning and outgoing foragers crossing an

imaginary line along the trail were measured from video film using

an image analysis system developed by Martin Stumpe (http://

www.antracks.org). This image analysis system made it possible to

measure foraging rates accurately on a shorter timescale than in

previous work.

Most colonies use more than one foraging direction on a given

day [21]. We filmed all trails and used the combined foraging rates

for all trails. Foraging rates were calculated separately for the

periods before (0–240 sec), during (240–430 sec), and after (500–

1100 sec) the removal of returning foragers, as in previous work

[28,29]. The small interval between 430 and 500 sec allows for the

time it takes ants passing the camera on the foraging trail to reach

the nest. To correct for differences among trails in the distance

between the camera and the nest, we found the average time, out

of 5 observations, for an ant to travel back to the nest from the

point where the foraging trail was filmed. To adjust for the

distance between the camera and the nest, we then subtracted this

travel time from the counts for outgoing foragers and added it to

counts for returning foragers.

The average error in the accuracy of the image analysis software

in counting foraging rate was 7.3%, estimated by comparing 66

counts made by observers from 500 frames (about 17 sec) of 44

video films with counts made by the image analysis software. Most

errors were due to an extraneous object or shadow in the film at

the point at which ants crossed the imaginary line where ants were

counted. There was no bias toward counting more or fewer ants

than actually crossed the line.

Results

Model of the regulation of foraging activity
We first tested whether the return of foragers to the nest could

be described as a Poisson process. To determine the distribution of

intervals between the arrival of foragers at the nest, we used the

data from the period before the removal of returning foragers (60–

240 sec) in 39 trials. We calculated the fit with an exponential

distribution of the empirical distribution of the interarrival times of

the returning foragers, and measured the error using the total

variation distance [30] between the two distributions. We found

that the return of foragers to the nest can be described as a Poisson

process: the distribution of intervals between returning foragers is

exponential (Fig. 1) and independent of the spacing between

foragers in the previous interval. We found the mean (SE) error for

the 39 trials to be 0.056 (0.009) with a better fit at high foraging

rates.

Author Summary

Social insect colonies operate without any central control.
Their collective behavior arises from local interactions
among individuals. Here we present a simple stochastic
model of the regulation of foraging by harvester ant
(Pogonomyrmex barbatus) colonies, which forage for
scattered seeds that one ant can retrieve on its own, so
there is no need for pheromone trails to specific locations.
Previous work shows that colony foraging activity is
regulated in response to current food availability, using
the rate of brief antennal contacts inside the nest between
foragers returning with food and outgoing foragers. Our
feedback-based algorithm estimates the effect of each
returning forager on the rate at which foragers leave the
nest. The model shows how the regulation of ant colony
foraging can operate without spatial information, describ-
ing a process at the level of individual ants that predicts
the overall foraging activity of the colony.

Regulation of Ant Colony Foraging Activity
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We began with a simple linear model in which the rate of

outgoing foragers x(t) depends on the the rate of returning foragers

plus a constant base rate:

(1) l(t) = lac f(t,t)

(2) x(t) = Poisson (lb)+Poisson (l (t))

where lb is a baseline rate of outgoing foragers, independent of

the rate at which other foragers return; lac sets the number of

outgoing foragers per returning forager; and f(t, t) is the number of

returning foragers between times t2t and t.

For this initial, linear model, the most important parameter in

predicting the rate of outgoing foragers is t. Because this model

integrates over all returns in time t, fitting the model requires us to

choose a value of t that gives an equally good fit to the observed

data over a range of foraging rates. This is difficult because

foraging rates vary greatly among colonies, days, and moment-to-

moment changes in the conditions that foragers encounter

[5,27,29]. We thus elaborated this model into a second one that

avoids the integration of instantaneous arrivals over a time interval

that is not uniform across different foraging conditions. Moreover,

the model below captures the effect of a single returning forager

and so explains the process at the level of individual ants, as for

example in other non-linear models that describe pheromone trail

foraging by ants [7].

The model operates in discrete time: returning foragers are

observed in successive and equal time slots. We denote the rate of

outgoing foragers as ‘a’, which increases by an amount c.0 for

each returning food-bearing forager. Alpha decreases by an

amount q.0 for each forager that leaves the nest, because the

departure of each outgoing forager decreases the number of

outgoing foragers in the queue at the nest entrance available to

meet returning foragers. Alpha decays by an amount d.0 during

each time slot, to reflect the lack of response to very low

interaction rate [22]. Finally, a has a lower bound, a., to reflect the

observation that outgoing foragers leave the nest at a fixed low rate

even when no foragers return for a while [28,29].

We assume that arrivals occur at the beginning of time slots and

departures occur at the end of time slots. For n = 1, 2, …, let An

denote the number of returning food-bearing foragers in the nth

time slot, and let Dn denote the number of outgoing foragers

leaving the nest. The rate at which ants leave the nest in the nth slot

is an, n = 1, 2, …. We assume that an$a.0 for n = 1, 2, …, where

a is a parameter. The number of departures at the end of the nth

time slot, Dn, was set equal to a Poisson random variable of mean

an. Given the an, the Dn are statistically independent of each other

and of An. The dynamics of an are described by:

(3) an = max (an212qDn21+cAn2d, a), a0 = 0

(4) Dn,Poisson (an)

In developing the model, we sought to facilitate its future use

to examine variation among colonies within this species, for

example in the baseline rate at which ants leave the nest even

when no ants return [29], and to take into account three features

of the observed behavior of the ants in response to experimental

manipulation of foraging rate [28,29]. First, there is a lag in the

recovery of the rate of outgoing foragers in response to recovery

of the rate of returning foragers after a decline [28,29] (Fig. 2).

Second, we introduced q, the extent to which each departing

forager empties the nest entrance of available foragers, because

observations with a videoscope inside the nest show that

outgoing ants are crowded in a small tunnel, so that once each

outgoing ant departs it takes some time for the next outgoing ant

to move to the top of the tunnel where it can meet returning

foragers. Third, we include the decay parameter d because

experimental results show that the response to returning ants is

weaker after some time has elapsed since the last ant returned

[24].

Comparison of model and data
We compared the simulated output of the model with the

data from field experiments on the response of outgoing foragers

to a range of rates of returning foragers (Fig. 2). Using as input

the data on the rate of returning foragers, we generated the

simulated rate of outgoing foragers, adjusting one parameter

and evaluating the resulting match with the observed rate of

outgoing foragers.

Figure 1. Poisson distribution of intervals between the arrival of successive returning foragers at the nest. The figure shows
representative data from one trial in which returning foragers were removed. Intervals are shown in video frames; each frame is 1/30 sec. The y-axis is
the probability that the interval i between successive returning foragers exceeds t frames. The solid blue line corresponds to the real data and the
dotted red line corresponds to the exponential fit y = e20.0326t with a mean separation time of 1/0.0326 or 30.67 frames, equal to 1.02 seconds.
doi:10.1371/journal.pcbi.1002670.g001

Regulation of Ant Colony Foraging Activity
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The model has four parameters: a, c, q and d. We examined the fit

between model and data for one parameter, c. We thus fixed a., q

and d and varied c. As with any birth-death process, the ratio of c to e

determines the distribution of {an}. We set q to 0.05 to keep the

range of values of an within the range of observed foraging rates

(0.15 to 1.2 ants per sec). We set d to 0 for the simulations reported

here; however, empirical studies show that d may be an important

parameter because it may vary by colony [29], or in response to

variation in environmental conditions that could affect the rate of

decay of chemical cues such as the cuticular hydrocarbons that ants

assess by antennal contact [24]. Similarly, a, the baserate of

foraging, was very small, equal to 0.01 ants per second [27].

Figure 2. Comparison of observed and simulated foraging rates. The rate of returning foragers was experimentally decreased by removing
the returning foragers, leading to a decrease in the rate at which outgoing foragers left the nest. Each figure shows data from one trial. Returning
foragers were removed from 240–420 sec, during the interval indicated by the horizontal black line, and then allowed to return to the nest
undisturbed for the remainder of the trial. The red line shows the observed rate of returning foragers, the blue line shows the observed rate of
outgoing foragers, and the green line shows the simulated rate of outgoing foragers. a, high foraging rate (mean rate returning foragers 0.807 ants/
sec); b, low foraging rate (mean rate returning foragers 0.169 ants/sec).
doi:10.1371/journal.pcbi.1002670.g002

Regulation of Ant Colony Foraging Activity
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To choose c for the given values of a, q, and d, we used for each

of the 62 experimental trials the data on returning foragers and

equations (3) and (4) to generate a simulated rate of outgoing

foragers. We swept across values of c from 0.01 to 0.25, and found

the relative root-mean-square error (RMSE) [31] between the

simulated and observed rates of outgoing foragers in each time

interval for each of 200 iterations. Each iteration produces a

different output trace because of the independent Poisson random

variable generated at equation (4). We chose the c with the lowest

average RMSE, over the 200 iterations, between simulated and

observed rates of outgoing foragers. The RMSE for the best c for

each trial ranged from 0.237 to 4.9, and the mean (SE) RMSE for

the 62 values chosen was 0.602 (0.077).

To evaluate how well our estimate of c captured, for a given

colony, the effect of each returning forager on the rate of outgoing

foragers, we compared the error among runs of the simulation,

due to randomness in the departures at equation (4), with the error

produced by varying c. To do this we compared the RMSE

between observed and simulated rates of outgoing foragers among

simulated runs with the RMSE for different values of c among

trials of the same colony. We first found for each trial the mean

range in RMSE, between observed and simulated rates of

outgoing foragers, among 200 iterations of the simulation using

the same value of c. To estimate the difference among runs of the

simulation, we used each trace of returning foragers to produce 3

different traces of simulated outgoing foragers (A,B,C). We found

the RMSE for A vs B and A vs C, and repeated this 200 times per

trial at foraging rates ranging, as did the observed rates, from low

(0.1 returning ants/sec) to high (1.2 returning ants/sec). We then

found the mean RMSE when varying values of the best c among

trials for the same colony. To do this we chose arbitrarily, for each

of the 13 colonies, 2 of the 3 or 4 trials. For those 2 trials we found

the average of the values of c, then found the RMSE as above [31]

for simulated values of rates of outgoing foragers for each of the 1

or 2 remaining trials for that colony in the same year. We deleted

one of the remaining trials in cases when foraging rates were much

lower than for other trials with the same colony.

The results of this comparison indicate that our estimate of best

c generates the observed outgoing forager rate within the same

range of error as the error generated by randomness in forager

departures. The mean (SE) change in RMSE among simulated

runs was 13% (0.0495) at low foraging rates and 2.6% (0.01) at

high foraging rates. The mean (SE) change in RMSE obtained by

varying u among trials of the same colony was 15.5% (0.019).

We examined whether the correlation between rates of

returning and outgoing foragers was at least as high in the

simulation as in the data. To do this we compared the correlation

between observed rates of returning and simulated rates of

outgoing foragers, using the best value of c, with those between

observed rates of returning and observed rates of outgoing

foragers. We calculated the correlation between the observed

rates of returning foragers and the simulated rate of outgoing

foragers, in all 62 trials, by applying a moving-average rect filter

[32] with a radius of 25 time slots, and then finding the empirical

correlation coefficent between the smoothed traces [31]. We

calculated in the same way the correlation between observed rates

of returning and outgoing foragers. The simulated rates of

outgoing foragers led to correlation coefficients higher than those

between observed rates of returning and outgoing foragers (t-test,

t = 8.98, p,0.001; Fig. 3).

Because previous work showed that the rate of outgoing foragers

tracks the rate of forager return more closely when foraging rates

are high, we examined how the correlation of rates of returning

and outgoing foragers varies with foraging rate. The magnitude of

the correlation coefficient between observed returning and

simulated outgoing foragers increased with the mean rate of

returning foragers (Spearmann’s rank correlation, n = 62,

z = 24.04, p = 0.0001, blue points in Fig. 3). The magnitude of

Figure 3. Correlation of rates of outgoing and returning foragers as a function of level of foraging activity. Each point shows, for one
trial, the coefficient of correlation between the smoothed rates of returning and outgoing foragers. The x-axis shows the mean rate of returning
foragers over the entire trial. Blue diamonds show the coefficients of correlation between observed rates of returning foragers and simulated rates of
outgoing foragers. Red squares show the coefficients of correlation between observed rates of returning foragers and observed rates of outgoing
foragers. The upper line shows the least-squares fit to the increase with foraging activity of the correlation between observed returning and
simulated outgoing foraging rates points (blue); the lower line shows the least-squares fit to the increase with foraging activity of the correlation
between observed returning and observed outgoing foraging rates(red).
doi:10.1371/journal.pcbi.1002670.g003

Regulation of Ant Colony Foraging Activity
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the correlation coefficient for the observed returning and outgoing

rates did not increase significantly with the mean rate of returning

foragers (Spearmann’s rank correlation, n = 62, z = 21.34,

p = 0.18, red points in Fig. 3).

Discussion

Our model provides a way to evaluate quantitatively the

response of individuals to local interactions. It explains how ant

colonies regulate foraging activity from moment to moment, in

response to current food availability, without any central control

or any spatial information on the location of food. Changes in a

colony’s foraging activity from moment to moment, and from day

to day, show a predictable response to changes in forager return

rate, despite considerable stochasticity (Fig. 2). Our results show

that much of these changes in colony foraging activity can be

explained by the effect of each returning forager on the probability

that outgoing foragers leave the nest to search for food.

The model is analyzable because the distribution of returning

foragers is well-approximated by a Poisson process at high foraging

rates. Like cars on highways, returning foragers travel at different

velocities and overtake each other; as [33] shows, this produces a

Poisson process.

The simulated data provided by our model capture many of the

features of a rich body of empirical results from a long-term study

of the foraging behavior of harvester ant colonies. The model

provides a simulated rate of outgoing foragers, in response to the

rate of returning foragers, that is reasonably similar to the

observed rate (Fig. 2), producing a close correlation between the

rates of returning and outgoing foragers.

Another similarity between the model and observation is in the

contrast between colony behavior when food availability is high, so

that foragers find food quickly and the rate of forager return is

high, and colony behavior when food availability is low, so that

foragers find food slowly and the rate of forager return is low.

Previous work on harvester ant foraging showed that rates of

outgoing foragers are more closely adjusted to rates of returning

foragers when foraging rates are high [29]. The same was true of

our model. For example, Fig. 2 shows the data for two

representative cases. When foraging rates are high (Fig. 2A), on

a day when food availability is high and foragers find it quickly, the

rate of returning and outgoing foragers is more closely matched

than when foraging rates are low (Fig. 2B), so that foragers find

food more slowly and return less frequently. The closer fit between

outgoing and returning foragers at high foraging rates occurs

because the range of values of an tends to be much smaller and

closer to a at low foraging rates than at high foraging rates, and

this causes Dn to be close to zero and, hence, less correlated with

An.

However, the simulation generally produces a closer correlation

between the rates of returning and outgoing foragers than is

observed in the data. The correlation coefficients for the observed

rate of returning foragers and the simulated rate of outgoing

foragers are higher than those for the observed rate of returning

foragers with the observed rate of outgoing foragers (Fig. 3). In

addition, the coefficient of correlation with the observed rate of

returning foragers increased significantly with foraging rate for the

simulated rate of outgoing foragers but does not increase

significantly for the observed rate of outgoing foragers (Fig. 3).

The higher correlation in the simulation than in the data occurs

because our model (equations 3 and 4) does not capture all of the

factors that produce the actual rate at which ants leave the nest.

For example, the structure of each nest probably affects the flow of

ants in and out of the nest entrance, which in turn may affect the

rate of interaction between outgoing and returning ants. A

question for future work is whether nonlinear effects of nest

structure influence the relation between overall foraging rate and

the correlation of the rates of returning and outgoing foragers. Our

model assumes the same relation between the rate of incoming and

rate of outgoing foragers for all nests, and thus does not take into

account the local influence of nest structure. Weather conditions

also influence foraging activity, leading to day-to-day fluctuations

in the foraging activity of a given colony [28].

The process described here is analogous to those operating in

many other distributed networks, from computer networks to

neural integrators, that regulate activity through the rate of

interaction [34,35]. Further work is needed to determine the

details of the correspondence among these analogous systems; for

example, in this system, the Poisson distribution of returning

foragers is crucial.

The model presented here contributes to the study of the

evolution of collective behavior in harvester ants, because it can be

used to guide empirical measurement of differences among

colonies in the regulation of foraging [29], by examining whether

colonies tend to show characteristic parameter values. Harvester

ant colonies differ in foraging behavior, and such differences

persist from year to year as the colony grows older [21,29].

Heritable variation among colonies in ecological relations, such as

the regulation of foraging, is the source of variation in fitness [36].

Future work will examine differences among colonies in the

response to interactions of returning and outgoing foragers. Small

differences in the ants’ response to local interactions may lead to

ecologically important differences among colonies that shape the

evolution of collective behavior.
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