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Morroniside is the main ingredient of Cornus officinalis and has a variety of biological activities including antioxidative
effects. Ovarian granulosa cells (GCs) are responsible for regulating the development and atresia of follicles, which are
susceptible to oxidative stress. In this study, we determined whether morroniside can inhibit the oxidative stress of GCs
induced by hydrogen peroxide (H2O2), leading to improved oocyte quality. &e oxidative damage and apoptosis of ovarian
GCs cultured in vitro were induced by the addition of H2O2. After pretreatment with morroniside, the levels of ROS, MDA,
and 8-OHdG in ovarian GCs were significantly decreased. Morroniside significantly upregulated p-Nrf2 and promoted the
nuclear translocation of Nrf2, which transcriptionally activated antioxidant SOD and NQO1. In addition, morroniside
significantly regulated the levels of apoptosis-related proteins Bax, Bcl-2, cleaved caspase-9, and cleaved caspase-3 via the
p38 and JNK pathways. &ese results suggest that morroniside can reduce the oxidative damage and apoptosis of ovarian
GCs induced by H2O2.

1. Introduction

Ovarian granulosa cells (GCs) are located in the follicles and
around the oocytes. &ey produce steroids, which are re-
sponsible for regulating the development and atresia of
follicles. GCs are very important for oocyte maturation,
oocyte quality, and embryo development [1, 2]. Adenosine
triphosphate in ovarian GCs can be directly transferred to
oocytes through the gap of cumulus GCs [3]. GCs can also
convert glucose into pyruvate, the energy substrate of oo-
cytes, and transfer it to oocytes [4]. &e dysfunction of GCs
is related to ovarian senescence, the fewer oocytes retrieved,
poor oocyte and embryo quality, and low pregnancy rate of

in vitro fertilization-embryo transfer (IVF-ET) [5, 6]. Ad-
ditionally, women with polycystic ovary syndrome (PCOS)
and endometriosis have a higher rate of GC apoptosis, thus
reduced fertility and pregnancy rates [5, 7]. &erefore,
normal ovarian GCs are necessary to maintain reproductive
function.

Physiological levels of reactive oxygen species (ROS) are
necessary for follicular growth, oocyte maturation, normal
ovulation, and ovarian hormone synthesis [8]. Oxidative
stress occurs with the generation of excessive ROS or when
antioxidant defense mechanisms are weakened [9]. Oxida-
tive stress is the basic pathogenesis of a variety of repro-
ductive system diseases, which can damage fertility, decrease
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pregnancy and delivery rate, and result in recurrent abortion
[10]. Eight-hydroxy-2′-deoxyguanosine (8-OHdG) is a
sensitive indicator of DNA damage as the result of oxi-
dative stress. &e increase of 8-OHdG content in ovarian
GCs is related to the low fertilization rate of oocytes and
poor embryo quality during IVF-ET [11]. Nuclear factor
erythroid 2-related factor 2 (Nrf2) is a key antioxidant
transcription factors in response to ROS. It binds to the
antioxidant response element (ARE) and induces the ex-
pression of numerous antioxidant enzymes including su-
peroxide dismutase (SOD) [12, 13]. A high level of SOD is
positively correlated with IVF pregnancy rate [14]. In
addition, excessive ROS generation can trigger GCs apo-
ptosis through mitogen-activated protein kinase (MAPK),
protein kinase B (AKT), and mammalian target of rapa-
mycin (mTOR) pathways and increased the expression of
apoptosis-related genes expressions, including caspase-9
and caspase-3. &ese effects cause GC cycle arrest and
reduce its supporting effect on oocytes, thereby affecting
oocyte development, ovarian reserve, and reproductive
potential [15, 16]. &erefore, there is an urgent need to
identify drugs that can reduce oxidative stress in GCs, to
improve female reproductive function.

Cornus officinalis is among the most commonly used
Chinese medical herbs, and morroniside (Figure 1(a)) is the
most abundant iridoid glycoside in C. officinalis [17]. It has a
variety of biological activities, such as antioxidant, anti-
apoptotic, and anti-inflammatory effects [18–20], which can
relieve nerve pain and improve cardiovascular and liver
functions [21, 22]. Deng et al. [23] showed that morroniside
inhibited autophagy in rat ovarian GCs by regulating the
phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway.
However, the effects of morroniside on the oxidative stress of
GCs induced by hydrogen peroxide (H2O2) is largely
unclear.

&erefore, the aim of this study was to investigate the
effect of morroniside on the oxidative stress of GCs in-
duced by H2O2 and elucidated the molecular mechanisms
by which morroniside protects human GCs against H2O2-
induced oxidative damage which could improve oocyte
development.

2. Materials and Methods

2.1. Cell Culture and Treatment. Ovarian GCs were obtained
from patients undergoing a long-term gonadotropin-re-
leasing hormone downregulation due to fallopian tube
factors at the Reproductive Department of the Second
Hospital of Hebei Medical University (Shijiazhuang, China).
&e study was approved by the ethics committee of the
hospital, and patients provided written informed consent.
Follicular fluid-containing GCs were centrifuged at 4°C
(433 × g, 10min). &en, the upper follicular fluid was re-
moved, and 5mL phosphate-buffered saline (PBS) was
added to the lower sediment and mixed. Next, 5mL
human lymphocyte separation fluid (Lympholyte-H;
Cedarlane Laboratories, Ontario, Canada) was added to
another 10mL centrifuge tube and inclined at an angle of
45°. PBS suspension was slowly added to the surface of the

human lymphocyte separation solution and then centrifuged
at 4°C (680 × g, 10min). &e white floc in the middle layer
was the GCs. To avoid intergroup differences due to indi-
vidual patient differences, we mixed GCs collected from all
patients on that day, made a cell suspension, cultured the
cells in a plate, and administered different intervention
drugs.

GCs were cultured in DMEM/F12 medium (Gibco,
&ermo Fisher Scientific, Waltham, MA, USA), supple-
mented with 10% (v/v) fetal bovine serum (Gibco, &ermo
Fisher Scientific) and 1% (v/v) penicillin/streptomycin
(Solarbio, Beijing, China) at 37°C in a 5%CO2 incubator.&e
medium was replaced after 24 hours. H2O2 (Sigma, St. Louis,
MO, USA) and N-acetyl-cysteine (NAC, purity ≥98%;
Solarbio) were diluted in PBS, and morroniside
(purity� 98.55%; MedChemExpress (MCE), Shanghai,
China) was dissolved in dimethyl sulfoxide to suitable
concentrations. &e GCs were pretreated for 24 h with
different morroniside concentrations of 1, 5, 10, 20, and
50 μM or NAC of 1mM and 5mM and then incubated with
H2O2 for 24 h.

2.2. LentivirusVector. Nrf2 shRNA (GeneChem, China) was
generated with GCTCGCATTGATCCGAGATAT (sh-
Nrf2). A control vector was generated with the control ol-
igonucleotide TTCTCCGAACGTGTCACGT.

2.3. Cell Counting Kit-8 Assay. GCs were pretreated with
different concentrations of morroniside or H2O2, and the
effects on cell viability were determined by the Cell Counting
Kit-8 (CCK-8) assay (MCE). Briefly, 10 μL CCK-8 reagent
was added to cells in a 96-well plate and incubated at 37°C for
2 h. &e optical density value of each well was measured at
450 nm with a microplate reader (VesarMax; Molecular
Devices, Sunnyvale, CA, USA).

2.4. Intracellular ROS Detection. Intracellular ROS levels in
each group were detected with the ROS Assay Kit (Beyotime,
Shanghai, China). &e culture medium containing serum
was removed, and the cells were incubated with diluted
DCFH-DA (1 :1000) for 20min at 37°C in a 5% CO2 in-
cubator, followed by three washes with serum-free medium.
ROS content was detected by fluorescence microscopy
(EVOS® FL Cell Imaging System, &ermo Fisher Scientific),
and fluorescence intensity was analyzed with ImageJ
software.

2.5. ELISA Assay. &e ovarian GC sample lysis fluid was
diluted to the optimal concentration. &e biomarkers
content related to oxidative stress and apoptosis, including
ROS, malondialdehyde (MDA), 8-OHdG, total antioxidant
capacity (T-AOC), SOD, NAD(P)H quinone oxidoreductase
1 (NQO1), and caspase-3, were detected with an ELISA kit
(Jianglai Biological Co., Ltd., Shanghai, China; Jiancheng
Bioengineering Institute, Nanjing, China; Abcam, Cam-
bridge, MA, USA; Tongwei Industrial Co., Ltd., Shanghai,
China) according to the manufacturers’ instructions. &e
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absorbance values were measured with a microplate reader
(VersaMax; Molecular Devices).

2.6. Western Blot Analysis. &e collected GCs were lysed,
and total and nuclear protein was extracted according to
the instructions of a nuclear and cytoplasmic protein
extraction kit (Beyotime). Total protein (10–15 μg/well)
was separated by 10% sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis and electrotransferred to
a polyvinylidene difluoride (PVDF) membrane (Milli-
pore, Darmstadt, Germany). &e PVDF membrane was
blocked in 5% milk for 2 h and incubated overnight at
4°C with the following primary antibodies: SOD (1 : 1000,
ab68155; Abcam, Cambridge, MA, USA), NQO1(1 : 1000,
ab80588; Abcam), B-cell lymphoma 2 (Bcl-2) (1 : 1000,
26593-1-AP; Proteintech, Rosemont, IL, USA), Bcl-2-
associated X protein (Bax) (1 : 1000, ab32503; Abcam),
cleaved caspase-3 (1 : 1000, YM3431; ImmunoWay,
Plano, TX, USA), cleaved caspase-9 (1 : 1000, YC0013;
ImmunowWay), phosphorylated Nrf2 (p-Nrf2) (1 : 500,
ab76026; Abcam), Nrf2 (1 : 500, ab62352; Abcam),
phosphorylated extracellular signal-regulated kinase
(p-ERK) (1 : 500, YP0101, ImmunoWay), ERK (1 : 500,

16443-1-AP; Proteintech), c-Jun N-terminal kinase (JNK)
(1 : 500, 66210-1-lg; Proteintech), phosphorylated JNK
(p-JNK) (1 : 500, YP0156; ImmunoWay), p38 (1 : 500,
ab31828; Abcam), and phosphorylated p38 (p-p38) (1 :
500, ab4822; Abcam). &e PVDF membrane was washed
three times with Tris-buffered saline with 0.1% Tween 20
(TBST) and then incubated with the secondary antibody
(SA00001-2; Proteintech) at room temperature for 1 h.
After another three washes with TBST, antibody-antigen
complexes were visualized using the Chemiluminescence
Plus Western Immunoblot Analysis Kit (Millipore).
&e images were collected by a chemiluminescence
imager (ImageQuant LAS 4000; GE Healthcare, Chicago,
IL, USA) and quantitatively analyzed with ImageJ
software.

2.7. Immunofluorescence Staining. &e treated GCs were
fixed in 4% paraformaldehyde for 20min, permeabilized
with 1% Triton, blocked in 10% goat serum for 30min, and
incubated overnight with Nrf2 antibody (1 : 200) at 4°C.
&en, the cells were incubated with fluorescence-labeled
secondary antibodies at room temperature for 2 h, followed
by staining with DAPI for 10min. Finally, cells were
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Figure 1: &e effect of morroniside on GCs viability decreased by H2O2. (a) Structure of morroniside. (b) Ovarian GCs were treated
with morroniside at different concentrations (including 1, 5, 10, 20, 50 μM) for 24 h. (c) GCs were treated with H2O2 at different
concentrations (including 200, 400, 600, 800, 1000, 1500 μM) for 24 h. (d) GCs were pretreated with morroniside at different
concentrations (including 5, 10, and 20 μM) for 24 h and then treated with 600 μM H2O2 for 24 h. &e survival rates of GCs were
determined by CCK-8 assay kit. Data represent mean ± SD, n � 6. #P< 0.05 versus the control group, ##P< 0.01 versus the control
group, ∗P< 0.05 versus the H2O2 group.
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Figure 2: Continued.
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observed under a laser scanning confocal microscope (Leica,
Wetzlar, Germany).

2.8. Statistical Analyses. All data are expressed as the
mean± standard deviation. Statistical analyses were per-
formed using SPSS 21.0 software (SPSS Inc., Chicago, IL,
USA). Comparisons were performed by one-way analysis of
variance followed by post-hoc analysis. P< 0.05 was con-
sidered statistically significant.

3. Results

3.1. Morroniside Increases GC Viability. &e CCK-8 assay
was used to determine the viability of cells treated with
different concentrations of morroniside or H2O2. Com-
pared with the control group, there was no significant
change in GC viability after pretreatment with 1, 5, 10, or
20 μM morroniside (Figure 1(b)). With an increase in
H2O2 concentration, the viability of GCs treated with
H2O2 gradually decreased in a concentration-dependent
manner; 600 μM H2O2 (57.9 ± 2.7% of the control group)
was chosen for subsequent experiments (Figure 1(c)).
After preincubation with different concentrations of
morroniside, the viability of H2O2-treated GCs was sig-
nificantly increased compared to cells treated with H2O2
alone (Figure 1(d)).

3.2. Morroniside Inhibits GC Oxidative Stress. To assess the
effect of morroniside on GC ROS levels induced by H2O2,
we performed ROS fluorescence detection and ELISA. As
shown in Figures 2(a) and 2(b), compared with the control
group, ROS levels in GCs treated with 600 μMH2O2 for
24 h were significantly increased (P< 0.05). Compared
with the H2O2 group, ROS levels in morroniside-pre-
treated GCs were significantly decreased in a concen-
tration-dependent manner, with peak effects at 20 μM
(P< 0.05). NAC is a potent antioxidant that can reduce the
oxidative stress of GCs [24]. As shown in Figure 2(a), the
ROS level in 1mM NAC group was lower than that in

5 μM morroniside group and higher than that in 20 μM
morroniside group (P< 0.05), but there was no significant
difference from that in 10 μM morroniside group
(P> 0.05). &e ROS level in 5mM NAC group was sig-
nificantly lower than that in 5, 10, and 20 μMmorroniside
groups (P< 0.05).

MDA, 8-OHdG, and T-AOC levels were detected by
ELISA to evaluate the degree of oxidative stress. &e
oxidative damage products content of MDA and 8-OHdG
in the morroniside group was significantly reduced
compared with the H2O2 group (P< 0.05), consistent with
the ROS level in GCs (Figures 2(c) and 2(d)). &e activity
of T-AOC was detected to evaluate the antioxidant level of
morroniside. &e levels of T-AOC in GCs were signifi-
cantly reduced after H2O2 treatment, whereas morroni-
side significantly increased the activities of T-AOC
(P< 0.05) (Figure 2(e)). &ese results demonstrate that
morroniside protects GCs by reducing oxidative damage
induced by H2O2.

3.3. Morroniside Increases the Expression of SOD and NQO1
in GCs Inhibited by H2O2. NQO1 is believed to partly
reduce the free radical load in cells and the detoxifi-
cation of xenobiotics. SOD is one of the most important
antioxidant enzymes, enabling organisms to survive
in an oxygen-containing atmosphere [25]. &e levels
of SOD and NQO1 in GCs were detected; H2O2 sig-
nificantly reduced their contents, whereas morroniside
significantly increased their contents (P< 0.05)
(Figures 3(a) and 3(b)). &e protein expression of SOD
and NQO1 was also detected by Western blot analysis.
&e results showed that H2O2 reduced the protein levels
of SOD and NQO1, while different concentrations
of morroniside significantly increased the protein
levels in a dose-dependent manner (Figures 3(c)–3(e)).
&ese results demonstrate that morroniside upregulates
the protein levels and contents of antioxidant enzymes
to protect GCs against oxidative damage induced by
H2O2.
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Figure 2: Morroniside inhibited GCs oxidative stress induced by H2O2. (a) Intracellular ROS level and quantitative analysis of ROS. Data
represent mean± SD, n� 3. &e oxidative stress biomarkers of (b) ROS, (c) MDA, (d) 8-OHdG and (e) T-AOC content levels were test with
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morroniside 5 μM group, □P< 0.05 versus the morroniside 10 μM group, and &P< 0.05 versus the morroniside 20 μM group. Scale
bar� 200 μm.
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3.4. Morroniside Inhibits GC Apoptosis Induced by Oxidative
Stress. High concentrations of ROS can damage the mi-
tochondrial structure, causing the polar pores in the inner
mitochondrial membrane to expand, which leads to an
outflow of calcium ions and cytochrome C, finally causing
the membrane potential to disappear and initiating apo-
ptosis [26].&e expression of apoptosis-related proteins was
detected by Western blot analysis. &e results showed that
the protein expressions of Bax, cleaved caspase-9, and

cleaved caspase-3 in the H2O2 group were significantly
increased, whereas Bcl-2 expression was significantly de-
creased (P< 0.05). However, compared with the H2O2
group, the protein expression levels of Bax, cleaved caspase-
9, and cleaved caspase-3 were significantly decreased,
whereas Bcl-2 levels were significantly increased after
pretreatment with morroniside (Figures 4(a)–4(e))
(P< 0.05). H2O2 increased caspase-3 activity, whereas
morroniside at different concentrations decreased its
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Figure 3: Effect of morroniside on the activity and protein expression of SOD and NQO1 in GCs inhibited by H2O2. &e activity levels of
antioxidant enzymes (a) SOD and (b) NQO1 were detected with ELISA. (c) &e protein expression levels of SOD and NQO1 were detected
by western blot analysis. (d) and (e) Densitometric analyses for western blots in (c). Data represent mean± SD, n� 3. #P< 0.05 versus the
control group, ∗P< 0.05 versus the H2O2 group.
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activity (Figure 4(f )) (P< 0.05). &ese results suggest that
morroniside can attenuate the oxidative stress-induced
apoptosis of GCs.

3.5. Morroniside Activates Nrf2 Signaling Pathways to Ame-
liorate Oxidative Stress in GCs. Nrf2 normally remains in a
low transcriptional state in the cytoplasm. When the cell is
stimulated by ROS, Nrf2 is activated to p-Nrf2, which
translocated to the nucleus where it combines with the
ARE to activate the expression of antioxidant enzymes,

thus having an important antioxidative effect [27]. To
further study the mechanism underlying the antioxidant
activity of morroniside, we assessed the effect of mor-
roniside on the nuclear translocation of Nrf2 in GCs
cultured in vitro. In the control and H2O2 group, Nrf2 was
almost located in the cytoplasm. When GCs were pre-
treated with different concentrations morroniside, Nrf2
translocated to the nucleus, and cells treated with 20 μM
morroniside group were almost located in the nucleus
(Figure 5(a)). Western blot analysis also showed that the
level of Nrf2 in the nucleus in the morroniside group was
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Figure 4: Effect of morroniside on GCs apoptosis induced by oxidative stress. (a) &e protein expression levels of Bax, Bcl-2, cleaved
caspase-9 and cleaved caspase-3, which were related to apoptosis, were detected by western blot analysis. (b–e) Densitometric analyses for
Western blots in (a). (f ) &e casepase-3 activity level. Data represent mean± SD, n� 3. #P< 0.05 versus the control group, ∗P< 0.05 versus
the H2O2 group.
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Figure 5: Continued.
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significantly higher than that in the H2O2 group (P< 0.05)
(Figure 5(b)), consistent with Figure 5(a). &e levels of
p-Nrf2 were detected by Western blot analysis. Compared
with the H2O2 group, p-Nrf2 levels were increased in the
different morroniside groups (P< 0.05) (Figure 5(c)). &e
results showed that morroniside induced p-Nrf2 ex-
pression and activated Nrf2 translocated into the nucleus
to regulate the expression of antioxidant enzymes and
thus exert antioxidant effects.

&en, we treated GCs with sh-Nrf2 virus to knock down
Nrf2 expression and detected the SOD and NQO1 protein
levels by Western blot analysis. &e results showed that
morroniside could induce SOD and NQO1 expression in
GCs inhibited by H2O2. After the Nrf2 knockdown, the
levels of SOD and NQO1 were significantly reduced even
given morroniside (Figure 5(d)), which suggested that Nrf2
signaling pathway was an important way for morroniside to
exert its antioxidant effect.

3.6. Morroniside Downregulates the p38 and JNK Signaling
Pathways to Inhibit Apoptosis in GCs. MAPKs are activated
in response to oxidative stress. Several studies have dem-
onstrated that ROS production and activation of MAPKs
play a vital role in β-amyloid-induced apoptosis [28]. To
further elucidate the signaling pathway involved in the
protective effects of morroniside against H2O2-induced
apoptosis, we determined the effect of morroniside on
MAPK activation in GCs. Our results showed that H2O2
upregulated p-JNK and p-p38 MAPK expression, but not
p-ERK1/2 (Figure 6). Furthermore, morroniside signifi-
cantly suppressed the H2O2-induced upregulation of p-JNK
and p-p38 MAPK in GCs. &ese results suggested that
morroniside can inhibit the JNK and p38 signaling
pathways.

We also detected the effects of morroniside-inhibited
p38MAPK and JNK pathway on apoptosis-related pro-
teins by Western blot analysis. &e results showed that
compared with the H2O2 group, the protein expression
levels of Bax, cleaved caspase-9, and cleaved caspase-3

were decreased, and Bcl-2 protein level was increased
significantly in morroniside group (P< 0.05) (Figure 7).
Similarly to the morroniside group, the addition of p38
(Figures7(a)–7(e)) and JNK (Figures 7(f )–7(j)) inhibitors
also significantly decreased the protein expression of Bax,
cleaved caspase-9, and cleaved caspase-3, and increased
Bcl-2 protein expression in GCs treated with H2O2. In
addition, morroniside combined with p38 or JNK in-
hibitors further induced more significant changes in the
expression levels of apoptosis-related proteins. &ese
results again confirmed that morroniside exerts an anti-
apoptotic effect by inhibiting the activation of p38 and
JNK pathways.

4. Discussion

In this study, we first investigated the protective effects of
morroniside on ovarian GCs from the perspective of oxi-
dative stress. We showed that morroniside increased the
expression level of p-Nrf2, promoted the nuclear translo-
cation of Nrf2, upregulated the expression of antioxidant
enzymes such as SOD and NQO1, and reduced the oxidative
damage induced by H2O2. In addition, morroniside ame-
liorated p38 and JNK pathway-induced apoptosis by re-
ducing ROS levels. &us, morroniside can be used as a
potential drug to improve the quality of follicles by pro-
tecting GCs.

Oxidative stress is closely related to the injury of female
reproductive function. With increasing age, the antioxidant
capacity of the ovary decreases, and the imbalance between
oxidation and antioxidant in the ovary leads to the apoptosis
of oocytes and ovarian GCs [29]. &e level of ROS and
expression of apoptotic proteins induced by ROS in the
ovarian GCs of patients with PCOS were significantly higher
than those of non-PCOS women [30]. Prieto et al. [31]
confirmed that the levels of ROS in the follicular fluid of
infertility patients with endometriosis are increased, while
the levels of T-AOC and SOD are generally decreased.
Morroniside suppresses autophagy and apoptosis in rat
ovarian GCs through the PI3K/AKT/mTOR pathway [23].
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Figure 5: Effect of morroniside on the protein expression and nuclear translocation of Nrf2. (a)&e green fluorescence represents Nrf2, and
the nucleus is blue DAPI. &e white arrows represent Nrf2 in the cytoplasm and the red arrows represent Nrf2 in the nucleus. Scale
bars� 50 μm. &e protein expression levels of (b) nuclear Nrf2, (c) p-Nrf2, Nrf2 were detected by western blot analysis, and the protein
expression levels of p-Nrf2 in nucleus, p-Nrf2/Nrf2 were quantitatively analyzed. (d) GCs were infected with sh-Nrf2, then treated with
morroniside and H2O2. SOD and NQO1 expression were detected by western blot analysis. &e concentration of morroniside in (d) was
10 μM. Densitometry analysis of the western blots were shown at the right. Data represent mean± SD, n� 3. ∗P< 0.05 versus the H2O2
group, and &P< 0.05 versus the morroniside group.
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Our study showed that morroniside inhibited the levels of
ROS, 8-OHdG, and MDA and increased the expression of
SOD and NQO1 in human ovarian GCs (Figures 2 and 3).
&e oxidative damage of GCs caused by various reasons such
as aging directly affects female reproduction. &e results of
this study suggest that morroniside protects GCs from
oxidative damage.

Nrf2 is important for antioxidant stress. When cells are
subject to a variety of stimuli including antioxidants and
xenobiotics, Nrf2 is activated and translocates into the
nucleus, forms a complex with the MAF protein and binds
to the ARE, and regulates ARE-mediated antioxidant en-
zyme gene expression such as SOD and NQO1 [12, 13]. &e
expression of Nrf2 detected in cumulus cells might be re-
lated to oocyte quality [32], whereas the upregulation of
Nrf2 in oocytes and cumulus cells might affect the gluta-
thione level in mature cumulus oocyte complexes [33].
Under the stimulation of harmful conditions (such as heat
stress and heavy metals), the activation of the Nrf2 pathway
can affect the activity and proliferation of ovarian GCs
[34, 35]. However, Nrf2 activators such as quercetin and
dimethyl fumarate [36] can upregulate the expression of

Nrf2 and its downstream SOD and catalase in ovarian
GCs to reduce the level of ROS, thus playing an antioxidant
role [37]. Similar to these studies, our results showed that
morroniside promoted the nuclear translocation of Nrf2,
thereby regulating the expression of downstream antioxi-
dant genes such as SOD and NQO1, thereby playing a
protective role in GCs.

Endogenic ROS as a second messenger is involved in
multiple signaling pathways of cascading effect [38] and is
an upstream activator of p38 and JNK, which are the
members of the MAPK family and are involved in the
activation of apoptotic factors such as caspase-3
[30, 39, 40]. &e release of cytochrome C is the key to the
mitochondria-mediated activation of apoptosis protein,
which activates caspase-3 together with its cofactor cas-
pase-9 [41], and then activates the apoptotic signaling
pathway. Bcl-2 and Bax are involved in this process. Bcl-2
inhibits the release of cyt C, while Bax promotes its release
[42]. We obtained the same results showing that the
morroniside reduced the phosphorylation levels of p38
and JNK; decreased the expression of Bax, cleaved cas-
pase-9, and cleaved caspase-3; and increased the level of
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Figure 6: Effect of morroniside on the protein expression of MAPK signaling pathway. (a) &e protein expression levels of p-p38, p38, p-
JNK, JNK, p-ERK, and ERK were detected by western blot analysis. (b-d) Densitometric analyses for western blots in (a). Data represent
mean± SD, n� 3. #P< 0.05 versus the control group, ∗P< 0.05 versus the H2O2 group.
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Figure 7: Continued.
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Bcl-2 in ovarian GCs. ERK also belongs to the MAPK
family and is widely expressed in the GCs. Different from
the apoptotic effects of p38 and JNK, ERK is very nec-
essary for oocyte maturation and embryo development
[43]. Han et al.[44] found that the p-ERK level in the GCs
of women with low ovarian function was lower than that
of women with normal ovarian function and confirmed
that activation of ERK pathway could inhibit apoptosis
and reduce the expression level of cleaved caspase-3. Our
results showed that morroniside reduced H2O2-induced

GCs apoptosis by regulating the p38 and JNK pathway but
not the ERK pathway.

5. Conclusions

In summary, the results of our study suggested that the
morroniside has a protective effect onGCs stimulated byH2O2.
Morroniside increased the expression level of p-Nrf2, pro-
moted the nuclear translocation of Nrf2, and upregulated the
expression of antioxidant enzymes such as SOD and NQO1,
which reduced the oxidative damage induced by H2O2. In
addition, morroniside ameliorated p38 and JNK pathway-in-
duced apoptosis by reducing ROS levels (Figure 8). &is study
also provides a new idea for the clinical treatment of repro-
ductive diseases caused by oxidative stress.
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Figure 7: Morroniside downregulates the p38 and JNK signaling pathways to inhibit apoptosis in GCs. (a) GCs were incubated with p38
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