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Abstract: Inspired by the natural photosynthetic system in which proteins control the electron transfer
from electron donors to acceptors, in this research, artificial polymers were tried to achieve this control
effect. Polyvinylpyrrolidone (PVP) was found to form complex with pigments 5,10,15,20-tetrakis-(4-
sulfonatophenyl) porphyrin (TPPS) and its zinc complex (ZnTPPS) quantitatively through different
interactions (hydrogen bonds and coordination bonds, respectively). These complex formations
hinder the interaction between ground-state TPPS or ZnTPPS and an electron acceptor (methyl
viologen, MV2+) and could control the photoinduced electron transfer from TPPS or ZnTPPS to MV2+,
giving more electron transfer products methyl viologen cationic radical (MV+•). Other polymers
such as PEG did not show similar results, indicating that PVP plays an important role in controlling
the photoinduced electron transfer.

Keywords: photoinduced electron transfer; water-soluble porphyrin; polyvinylpyrrolidone; com-
plex formation

1. Introduction

With the depletion of fossil fuel resources and the increasingly severe environmental
problems, the development and utilization of green energy such as solar energy, wind
energy, water energy, and biomass energy have become more and more critical [1,2].
Among them, solar energy is the most abundant and continuously supplied energy on
earth [3]. The best use of solar energy exists in nature. Natural photosynthetic systems
can transform solar energy into chemical energy with high efficiency [4]. The pigments in
natural photosynthetic reaction centers are fixed by the protein around them, making the
distance and relative position of the electron donors and electron acceptors noncovalently
fixed at the optimum conditions for electron transfer [4–9].

Extensive effort has been devoted to mimicking the natural photosynthetic systems to
study the initial process of photosynthesis and to realize highly efficient electron transfer in
artificial photosynthetic systems [10–27]. Numerous studies of electron transfer systems
using covalently linked electron donor and acceptor molecules have been reported [10–13].
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Recent covalently linked donor-acceptor systems are reported and used as polymeriza-
tion photoinitiators [14,15]. Systems with noncovalently assembled electron donor and
acceptor molecules have also been constructed via hydrogen bonding [16–18], metal coordi-
nation [18–20], electrostatic interaction [21–23], and host–guest interaction [24–27]. Among
these studies, those using polymer matrix have attracted widespread interest because the
polymer matrix can fix the electron donors, which is similar to a natural photosynthetic
system. Takuzo Aida reported the use of porphyrin dendrimer to control the distance and
electron transfer between porphyrin and methyl viologen [21]. Recently, Linqi Shi reported
controlled electron transfer between porphyrin and water-soluble fullerene in poly(ethylene
glycol)-block-poly(L-lysine) micelles [23]. However, the molecular design and synthesis are
still complex. A convenient and generalized method is yet to be developed.

In the present work, polyvinylpyrrolidone (PVP, Figure 1, PVP refers to PVP K-30
(Mη = 40,000, Mη represents for the viscosity-average molecular weight) unless otherwise
noted) as a synthetic polymer was found to form complexes with 5,10,15,20-tetrakis-(4-
sulfonatophenyl) porphyrin (TPPS, Figure 1) and its zinc complex (ZnTPPS, Figure 1)
through different interactions. We report here for the first time that the interaction between
porphyrins and the electron acceptor, methyl viologen (MV2+) can be regulated in the
presence of PVP, resulting in an increase in the concentration of electron-transfer products.
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dipotassium hydrogenphosphate and ethylenediamine-N,N,N′,N′-tetraacetic acid tetraso-
dium salt (EDTA) were purchased from Nacalai Tesque, Kyoto, Japan. All the reagents 
and solvents were used as received without further purification. Zinc meso-5,10,15,20-
tetrakis-(4-sulfonatophenyl)porphyrin (ZnTPPS) was prepared according to the method 
reported by Flamigni et al. [28]. 

2.2. Methods 
The 1H NMR spectra were obtained using a JEOL (Tokyo, Japan) JNM-ECA 500 MHz 

NMR spectrometer. Chemical shifts were referenced to sodium 3-(trimethylsilyl)-1-pro-
panesulfonate (δ = 0.00 ppm) and the solvent value (δ = 4.79 ppm for D2O). UV–vis spectra 
were recorded on a SHIMADZU (Kyoto, Japan) UV-2500PC spectrophotometer at 25 °C 
using a cell with a 1 cm path length. Fluorescence spectra were recorded on a HITACHI 
F-2500 fluorescence spectrophotometer (Tokyo, Japan). Resonance Raman scattering of 
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pulses of 425 nm generated using the second harmonic of a Ti:sapphire laser pumped by 
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Figure 1. Chemical structures of 5,10,15,20-tetrakis-(4-sulfonatophenyl) porphyrin (TPPS), its zinc
complex (ZnTPPS), and polyvinylpyrrolidone (PVP).

2. Materials and Methods
2.1. Materials

Tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) and polyethylene glycol 6000
(PEG 6000) were purchased from TCI Co., Ltd., Tokyo, Japan. Polyvinylpyrrolidone (PVP
25, K-30 and K-90), methyl viologen hydrate, potassium dihydrogenphosphate, dipotas-
sium hydrogenphosphate and ethylenediamine-N,N,N′,N′-tetraacetic acid tetrasodium
salt (EDTA) were purchased from Nacalai Tesque, Kyoto, Japan. All the reagents and
solvents were used as received without further purification. Zinc meso-5,10,15,20-tetrakis-
(4-sulfonatophenyl)porphyrin (ZnTPPS) was prepared according to the method reported
by Flamigni et al. [28].

2.2. Methods

The 1H NMR spectra were obtained using a JEOL (Tokyo, Japan) JNM-ECA 500 MHz
NMR spectrometer. Chemical shifts were referenced to sodium 3-(trimethylsilyl)-1-propan-
esulfonate (δ = 0.00 ppm) and the solvent value (δ = 4.79 ppm for D2O). UV–vis spectra
were recorded on a SHIMADZU (Kyoto, Japan) UV-2500PC spectrophotometer at 25 ◦C
using a cell with a 1 cm path length. Fluorescence spectra were recorded on a HITACHI
F-2500 fluorescence spectrophotometer (Tokyo, Japan). Resonance Raman scattering of
the ZnTPPS in the absence and presence of PVP or pyridine was excited by ~20 ns laser
pulses of 425 nm generated using the second harmonic of a Ti:sapphire laser pumped by
a Q-switched diode-pumped Nd-doped yttrium lithium fluoride (Nd:YLF) laser (TU-L,
Photonics Industries, Ronkonkoma, NY, USA) at 1 kHz. The pulse energy at the sample
was 0.5 µJ. The sample solution was placed in a glass tube used as a spinning cell, and the
scattered Raman light was collected and focused onto the entrance slit of a spectrograph
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(iHR550, HORIBA Jobin Ybon, Kyoto, Japan) equipped with a charge-coupled-device (CCD)
camera (SPEC-10:400B/LN-SN-U, Roper Scientific, Sarasota, FL, USA). The accumulation
times for obtaining each spectrum were 5 min. The Raman shifts were calibrated using
the Raman bands of cyclohexane. The calibration error was within 1 cm−1 for prominent
bands. Irradiation experiments were carried out using a UV irradiation unit (SP-11, USHIO,
Tokyo, Japan) equipped with a ND10 filter (HOYA, Tokyo, Japan).

3. Results and Discussion
3.1. Complex Formations

We investigated the interaction between ZnTPPS and PVP by studying the absorption
spectra of ZnTPPS in the absence and presence of PVP in 0.01 M phosphate buffer (pH = 8.0).
Redshifts in the regions of the Soret band (Figures 2a and S1) and the Q-bands (Figure S2)
of ZnTPPS were observed upon the addition of PVP. These shifts suggest the formation of
a complex between ZnTPPS and PVP.
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Benesi–Hildebrand (BH) plots [29] were constructed, referring to the absorbance at
430 nm (Figure 2b), to determine the complex formation ratio and association constant
of the ZnTPPS–PVP complex. BH plots corresponding to complex formation ratios of 1:1
and 1:2 in low and high PVP concentration regions are shown in Figure 2c,d, respectively.
Both plots were linear in each PVP concentration region, suggesting that the ZnTPPS–PVP
complex formed at a ratio of 1:1 (ZnTPPS:PVPmonomer unit) and 1:2 in the lower and higher
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PVP concentration regions, respectively. The association constants were calculated from
the slopes and were found to be K1,Z = 5.0 × 104 M−1 and K1,Z × K2,Z = 5.0 × 109 M−2.

The absorption spectra of TPPS in the presence and absence of PVP were also recorded
in 0.01 M phosphate buffer (pH = 8.0). Redshifts in the Soret band and Q-bands were
observed (Figures 3a,b, S6 and S7), suggesting the formation of a complex between TPPS
and PVP (TPPS–PVP complex). The corresponding BH plots were constructed in the same
manner as those for the ZnTPPS–PVP complex (Figure 3c,d).The BH plots indicate that the
TPPS–PVP complex formed at ratios of 1:1 (TPPS:PVPmonomer unit) and 1:2 in the lower and
higher PVP concentration regions, respectively. The association constants were calculated
to be K1,T = 5.0 × 104 M−1 and K1,T × K2,T = 5.0 × 109 M−2.
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Figure 3. (a) Absorption spectra of 0.6 µM TPPS upon the successive addition of 0, 7.2 µM, 12.0 µM,
24.0 µM and 2.9 mM PVP in 0.01 M phosphate buffer (pH = 8.0); (b) absorption spectra of 12.0 µM
TPPS upon the successive addition of 0, 0.14 mM, 0.24 mM, 0.48 mM and 0.06 M PVP in 0.01 M
phosphate buffer (pH = 8.0); (c) Benesi–Hildebrand plots for the formation of a TPPS–PVP complex
under the assumption of the formation of a 1:1 complex in the lower PVP concentration region;
(d) Benesi–Hildebrand plots for the formation of a TPPS–PVP complex under the assumption of
the formation of a 1:2 complex in the higher PVP concentration region. (e) Absorption spectra of
0.6 µM H2TPPS2+ upon the successive addition of 0, 7.2 µM, 12.0 µM, 24.0 µM and 2.9 mM PVP in
0.01 M phosphate buffer (pH = 4.0); (f) absorption spectra of 12.0 µM H2TPPS2+ upon the successive
addition of 0, 0.14 mM, 0.24 mM or 0.48 mM and 0.06 M PVP in 0.01 M phosphate buffer (pH = 4.0).
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In addition to redshifts in the absorption spectra of ZnTPPS (12.0 µM), a color change
(from purple to green) was also observed (Figure S3), both of which are phenomena
observed when an agent interacts with zinc porphyrin via a coordination bond [30–32]. We
speculated that a ZnTPPS–PVP complex forms through a coordination bond between the
carbonyl group of PVP and the central Zn atom of ZnTPPS (Figure 4a); this interpretation
is also supported by 1H NMR spectra (Figure S4) and Raman spectra (Figure S5).
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Protonated TPPS (H2TPPS2+) was also examined at pH = 4.0. A Soret band of H2TPPS2+

appeared at 434 nm (Figures 3e and S8), whereas the Q-bands appeared at 516 nm, 553 nm,
590 nm, and 645 nm (Figures 3f and S9). The Qy absorption bands became more intense
than the Qx bands. New bands at 490 nm and 708 nm, which corresponded to the formation
of J-aggregates of TPPS [33], were also observed (Figure S9). Upon the addition of PVP, the
Soret band H2TPPS2+ shifted to 430 nm. With a reversal of the absorption, the Qy bands
and Qx bands shifted slightly, resulting in the Q-bands eventually assuming the same shape
as that in the spectra corresponding to TPPS. We speculated that a TPPS–PVP complex
formed via hydrogen bonding between the carbonyl group of PVP and the central amino
group of TPPS (Figure 4b) and that the same complex formed under acidic pH conditions.

The fluorescence intensity of both TPPS and ZnTPPS (Figure S10) increased upon
the addition of PVP, which suggests that the PVP inhibits the thermal fluctuation of por-
phyrins [25,27].

The absorption spectra of ZnTPPS or TPPS in the presence of N-methyl-2-pyrrolidone
(NMP) (Figure S11) or N-vinyl-2-pyrrolidone (NVP) (Figure S11) indicate weak interactions
between NMP or NVP and ZnTPPS or TPPS, suggesting that the polymer structure of
PVP plays a critical role in the formation of the ZnTPPS–PVP and TPPS–PVP complexes.
The interaction between ZnTPPS and PVP with different molecular weights (PVP 25
(Mη = 24,500), PVP K-90 (Mη = 360,000)) were also studied (Figure S12), and it showed no
molecular weight dependence. Polyethylene glycol (PEG) was also used for testing, but
PEG cannot form a complex with ZnTPPS (Figure S12).

3.2. Photoinduced Electron Transfer

In the presence of MV2+, ZnTPPS and TPPS can both form donor–acceptor pairs [34].
When MV2+ was added to TPPS or ZnTPPS, redshifts were observed in their absorption
spectra (Figure 5a,b). After PVP was added to a TPPS or ZnTPPS solution, negligible
peak shifts were observed upon the addition of MV2+ (Figure 5c,d). These results suggest
that the ground-state interactions between the porphyrin and MV2+ were restrained. We
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observed the fluorescence quenching of ZnTPPS (Figure S13) and TPPS (Figure S14) by
MV2+ in the presence and absence of PVP, excited at the isosbestic point, to investigate
the electron transfer between the porphyrins and MV2+. Referring to the fluorescence
intensity of spectra vertices Stern–Volmer (SV) plots for the quenching of the emission of
the porphyrins were constructed (Figure 5e,f). Although the SV constant (Ksv) decreased
after the addition of PVP (KSV, ZnTPPS–MV: 7.1 to 1.6, KSV, TPPS–MV: 1.6 to 0.2), fluorescence
quenching phenomena were actually observed.
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Figure 5. (a) Absorption spectra of 0.6 µM ZnTPPS with MV2+ added in 0.07 mM intervals up to
0.44 mM; (b) absorption spectra of 0.6 µM TPPS with MV2+ added in 0.07 mM intervals up to 0.44 mM;
(c) absorption spectra of 0.6 µM ZnTPPS with MV2+ added in 0.07 mM intervals up to 0.44 mM in
the presence of 24.0 µM PVP; (d) absorption spectra of 0.6 µM TPPS with MV2+ added in 0.07 mM
intervals up to 0.44 mM in the presence of 24.0 µM PVP; (e) Stern–Volmer plots of the quenching of
ZnTPPS by MV2+ in the absence (solid circles) and presence (solid triangles) of PVP; (f) Stern–Volmer
plots of the quenching of TPPS by MV2+ in the absence (solid circles) and presence (solid triangles)
of PVP.

No overlap exists in the emission spectra of porphyrin and absorption spectra of
MV2+, so there is no Förster energy transfer. The fluorescence quenching experiments were
carried out in the presence of oxygen, which could consume the triplet state porphyrin, and
direct interaction between MV2+ and porphyrins was disturbed by PVP, making molecular
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collisions not likely to occur, so Dexter energy transfer could not be considered, which was
also supported by the similar fluorescence quenching behavior in the presence and absence
of oxygen (Figures S13b and S15a). The decrease in fluorescence intensity is attributed to
photoinduced electron transfer at long distances.

PVP 25 and K-90 can also control the interaction and photoinduced electron transfer
between ZnTPPS and MV2+, and the control effect of PVP showed no molecular weight de-
pendence (Figures S16–S18). PEG can neither control the interaction nor the photoinduced
electron transfer between ZnTPPS and MV2+ (Figures S16–S18).

The quantum yield of ZnTPPS is greater than that of TPPS [35] and the energy level of
ZnTPPS is higher than TPPS [36], so electron transfer from ZnTPPS to MV2+ is easier to take
place than that from TPPS, and ZnTPPS was used in subsequent experiments. Degassed
solutions of ZnTPPS, PVP, MV2+, and a sacrificial agent (ethylenediamine-N,N,N′,N′-
tetraacetic acid tetrasodium salt, EDTA) were irradiated with UV light at ~20 cm for 30 min,
which changed the absorbance at 605 nm from a cationic radical of MV2+ (MV+•) [37]
(∆Abs) (Figure S19). The ratio of the generated amount of MV+• compared with that in the
polymer-free case (∆Abs/∆Abs0 at 605 nm) increased with increasing PVP concentration
(Figure 6b) and saturated at high PVP concentrations. Even though the environment for
electron transfer from ZnTPPS to MV2+ became burdened (i.e., the value of Ksv becomes
much lower) after the addition of PVP, the ratio of the generated amount of MV+• reached
a maximum value of ~2.3. This result indicated that PVP plays a critical role in restricting
the reverse electron transfer in this photoinduced electron-transfer process [24,26].
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Figure 6. (a) Scheme showing the generation of MV+• from MV2+ via electron transfer from photoex-
cited ZnTPPS (*ZnTPPS) with ethylenediamine-N,N,N′,N′-tetraacetic acid tetrasodium salt (EDTA)
as a sacrificial agent; (b) Increase in the ratio of generated MV+• in the presence of PVP compared
with that in the polymer-free case.

PVP 25 and K-90 can also give rise to the generated amount of MV+• (Figures S20 and S21),
and the generated amount of MV+• showed little molecular weight dependence. PEG has
no effects on the amount of MV+• (Figures S20 and S21).

4. Conclusions

In the present work, PVP was found to form complexes with ZnTPPS and TPPS
quantitatively. The interaction between PVP and ZnTPPS or TPPS was considered to be a
coordination bond and hydrogen bond, respectively. The formation of ZnTPPS–PVP and
TPPS–PVP complexes could control the interaction between ground-state porphyrins and
MV2+ and the photoinduced electron transfer from porphyrins to MV2+. In the presence of
PVP, more electron transfer products (MV+•) were generated through the photoinduced
electron transfer from ZnTPPS to MV2+. The further transformation of the generated MV+•

to storable energy (e.g., hydrogen [27] or formic acid [38]) using catalysts to realize the
conversion of solar energy to chemical energy is currently under investigation.

This study provides a convenient and generalized method to control photoinduced
electron transfer between electron donor and acceptor. By using suitable polymers, we
believe that this method can be applied to a wide range of electron donor and acceptor pairs.
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