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Abstract

The bacterial communities colonizing amphibian skin have been intensively studied due

to their interactions with pathogenic chytrid fungi that are causing drastic amphibian pop-

ulation declines. Bacteria of the family Alcaligenaceae, and more specifically of the

genus Pigmentiphaga, have been found to be associated specifically to arboreal frogs.

Here we analyze their occurrence in a previously assembled global skin microbiome

dataset from 205 amphibian species. Pigmentiphaga made up about 5% of the total num-

ber of reads in this global dataset. They were mostly found in unrelated arboreal frogs

from Madagascar (Mantellidae and Hyperoliidae), but also occurred at low abundances

on Neotropical frogs. Based on their 16S sequences, most of the sequences belong to a

clade within Pigmentiphaga not assignable to any type strains of the five described spe-

cies of the genus. One isolate from Madagascar clustered with Pigmentiphaga aceris

(>99% sequence similarity on 16S rRNA gene level). Here, we report the full genome

sequence of this bacterium which, based on 16S sequences of >97% similarity, has pre-

viously been found on human skin, floral nectar, tree sap, stream sediment and soil. Its

genome consists of a single circular chromosome with 6,165,255 bp, 5,300 predicted

coding sequences, 57 tRNA genes, and three rRNA operons. In comparison with other

known Pigmentiphaga genomes it encodes a higher number of genes associated with

environmental information processing and cellular processes. Furthermore, it has a bio-

synthetic gene cluster for a nonribosomal peptide syntethase, and bacteriocin biosyn-

thetic genes can be found, but clusters for β-lactones present in other comparative

Pigmentiphaga genomes are lacking.
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Introduction

The cutaneous microbiome of amphibians has become a well-studied system, triggered by the

rise of the pathogenic fungi, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans
(Bsal). These fungi colonize the amphibian skin and are causing drastic population declines

and extinctions in this class of animals [1,2]. The bacterial communities associated to amphibi-

ans interact with these fungi and some of these bacteria have the potential to inhibit the growth

of Bd and Bsal, thus providing protection to their hosts [3].

Recent research based on next-generation amplicon sequencing of the 16S rRNA gene show

that bacterial communities on the skin of amphibians are predominantly composed of common

bacteria recruited from environmental reservoirs [4], and their dominant members can be readily

cultured [5]. Unsurprisingly these communities are strongly controlled by environmental factors,

e.g., bioclimate [6] and microhabitat [7–9]. However, clear differences have also been found

between co-occurring hosts [7,10,11], suggesting that the skin mucosal differences among amphib-

ian species act as filters determining which bacterial species are recruited into the community.

Considering the strong environmental influences on the amphibian cutaneous micro-

biome, it is of particular interest to analyze in more depth those bacteria that regularly colonize

this habitat but are restricted to certain host taxa or host ecomorphs. An in-depth understand-

ing of the genomic background, variation, phylogenetic relationships, and distribution of these

bacteria may offer clues to understand which traits predispose them to successfully colonize

this particular habitat.

This study was triggered by the observation that operational taxonomic units (OTUs) of the

family Alcaligenaceae were strongly associated to arboreal ecomorphs in a study on Madagas-

can amphibians [12], and were also found to be a common member of the cutaneous micro-

biome of several Central American tree frogs, such as Agalychnis callidryas [13,14]. The family

was represented by a pure culture isolate identified as Pigmentiphaga by 16S sequences in our

bacterial culture collection from Madagascar frog skin [15], and also the sequences of Alcali-
genaceae OTUs identified by amplicon sequences from Madagascar frogs.

Pigmentiphaga is a genus of the family Alcaligenaceae, assigned to the order Burkholderiales

order within the Betaproteobacteria, and currently containing five species: the type species, P.

kullae, plus P. aceris, P. daeguensis, P. litoralis, and P. solis [16–20]. According to these descrip-

tions, the genus contains gram-negative, facultatively anaerobic, motile or nonmotile, catalase-

and oxidase-positive, rod-shaped bacteria, found in diverse environments: P. daeguensis from

dye wastewater, P. litoralis from tidal sediment, P. soli from soil, P, aceris from tree sap [17–

20], and an unidentified species from tree-associated nematodes [21]. Furthermore, Pigmenti-
phaga have also been isolated from human clinical material [22], and genome sequences are

available from these isolates [23]. Pigmentiphaga have been studied in the context of their abil-

ity to degrade azo dyes and aniline [16,24], and their role also has been discussed in the context

of biphenyl-degradation [25].

Here, we analyze the occurrence of OTUs assigned to Pigmentiphaga on the skin of

amphibians across taxa, geography and ecomorphs, assemble the full genome sequence of one

Pigmentiphaga isolate obtained from a Madagascan frog, and analyze the phylogenetic rela-

tionships and differentiation of this isolate.

Methods

Analysis of amplicon data

To explore the distribution of the focal bacterial groups on amphibian hosts we used a recently

published global dataset of amphibian skin microbiomes [6], and extracted all OTUs assigned

Genome of amphibian skin-associated Pigmentiphaga

PLOS ONE | https://doi.org/10.1371/journal.pone.0223747 October 11, 2019 2 / 14

German Academic Exchange Service (DAAD) to

MB, and a grant from the Deutsche

Forschungsgemeinschaft (DFG) to MV (VE247/9-

1). The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0223747


to the family Alcaligenaceae and genus Pigmentiphaga. This global dataset is a compilation of

targeted amplicon sequencing data of the 16S rRNA gene (V4 region) generated on Illumina

sequencing platforms. It contains skin microbiome samples from 2,349 post-metamorphic

amphibians, comprising 27 amphibian families (205 species) collected from 12 countries (5 con-

tinents) [6]. In this study, quality-filtered Illumina reads were classified into sub-operational

taxonomic units (sOTUs) using the deblur pipeline [26]. These data were subsequently rarified

and taxonomy was assigned using the Ribosomal Database Classifier [27] in QIIME [28] (see

[6] for detailed methods). We examined the distribution of the genus Pigmentiphaga across

locations (i.e. countries), host species, and host ecomorphological classes. To explore the distri-

bution of the focal bacteria across host phylogeny, a phylogenetic tree of arboreal and scansorial

host genera was built using timetree.org [29]. All plots were produced with ggplot2 [30].

Isolate sampling

The bacterium for which we here report the full genome sequence was isolated on 1% tryptone

agar from a skin swab of a single individual of the amphibian species, Mantella crocea at Toro-

torofotsy "Prolemur Camp" near Andasibe, Madagascar (-18.7709 S, 48.43222 E). This individ-

ual frog was captured by gloved hands and kept in a sterile Whirl-Pak bag for no longer than 1

hour before sampling. Frog skin microbiota were sampled by first rinsing the skin to remove

transient microbes and then swabbing the ventral skin with a sterile rayon tipped swab 10

times. Swabs were stored in Tryptic Soy Yeast Extract media with 20% Glycerol and frozen

until processing. The frog was immediately release at the site of capture after sampling.

DNA extraction and complete genome sequencing

DNA was isolated using Qiagen Genomic-tip 100/G (Qiagen, Hilden Germany) according to

manufacturer instructions. SMRTbell™ template library was prepared according to the instruc-

tions from PacificBiosciences, Menlo Park, CA, USA, following the Procedure & Checklist–

Greater Than 10 kb Template Preparation. Briefly, for preparation of 15kb libraries 8μg geno-

mic DNA was sheared using g-tubes™ from Covaris, Woburn, MA, USA according to the

instructions of the manufacturer. DNA was end-repaired and ligated overnight to hairpin

adapters applying components from the DNA/Polymerase Binding Kit P6 from Pacific Biosci-

ences, Menlo Park, CA, USA. Reactions were carried out according to the manufacturer

instructions. BluePippin™ Size-Selection to greater than 4 kb was performed according to the

manufacturer’s instructions (Sage Science, Beverly, MA, USA). Conditions for annealing of

sequencing primers and binding of polymerase to purified SMRTbell™ template were assessed

with the Calculator in RS Remote, PacificBiosciences, Menlo Park, CA, USA. 1 SMRT cell was

sequenced on the PacBio RSII (PacificBiosciences, Menlo Park, CA, USA) taking one 240-min-

utes movie. SMRT sequencing revealed a total number of 85,590 reads with a mean read length

of 12,138 bp and a N50 value of 16,449 bp. From the same batches of DNA, short insert librar-

ies were created using the Illumina Nextera XT DNA Library Prep Kit (Illumina, San Diego,

CA, USA) and sequenced on an Illumina MiSeq (Illumina, San Diego, CA, USA) resulting in

7,916,070 paired-end reads of 2x76 bp.

Genome assembly and annotation

Genome assembly was performed applying the RS_HGAP_Assembly.3 protocol included in

SMRT Portal version 2.3.0 using default parameters. The assembly revealed a single circular

chromosome with a coverage of 133x. The chromosome was circularized, artificial redundan-

cies at the ends of the contigs were removed and adjusted to dnaA as the first gene. Error-cor-

rection was performed by a mapping of Illumina short reads onto finished genome using
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Burrows-Wheeler Alignment bwa 0.6.2 in paired-end (sample) mode using default setting [31]

with subsequent variant and consensus calling using VarScan 2.3.6 (Parameters: mpileup2cns

—min-coverage 10—min-reads2 6—min-avg-qual 20—min-var-freq 0.8—min-freq-for-hom

0.75—p-value 0.01—strand-filter 1—variants 1—output-vcf 1) [32]. A consensus concordance

of QV60 could be reached. Automated genome annotation was carried out using Prokka [33]

and NCBI PGAP [34].

Genome comparisons

We used Mauve software [35] to compare gene arrangement of the newly sequenced genome

with those of other available Pigmentiphaga genomes. We compared the general gene functional

characterization (KEGG functional categories) of the newly sequenced genomes with all other

available Pigmentiphaga genomes using BlastKOALA [36]. On average, 50% of genomes’ pro-

tein coding sequences were annotated. Identification of natural product gene clusters was per-

formed with the antibiotics and Secondary Metabolite Analysis SHell (antiSMASH version

beta5; https://antismash.secondarymetabolites.org) [37] AntiSMASH is an online platform that

allows for a genome-wide identification and analysis of secondary metabolite BGCs in bacterial

genomes, by integrating and cross-linking with a large number of in silico secondary metabolite

analysis tools like CLUSEAN [38], BAGEL2 [39], ClustScan [40], and NORINE [41].

Phylogenetic analysis

We performed BLAST searches against the NCBI database, using the full 16S rRNA gene

sequence from the sequenced genome to understand the distribution of this bacterium outside

of amphibian hosts. We also used the MOLE-BLAST tool of NCBI to retrieve from GenBank

the sequences of bacterial taxa most closely related to the Alcaligenaceae sOTUs in our ampli-

con data set. MOLE-BLAST is an experimental tool to find closest database neighbors of sub-

mitted query sequences, by computing a multiple sequence alignment (MSA) between the

query sequences along with their top BLAST database hits.

The obtained sequences, along with sequences of our isolates and amplicon-derived sOTU

sequences, were aligned with the MAFFT 7.0 algorithm [42] and phylogenetically analyzed in

MEGA v. 7 [43]. We successively filtered the data set to remove highly deviant sequences

retrieved from the database (as well as sOTU sequences associated to them), as identified by

obvious alignment artefacts and excessively long branches in exploratory phylogenetic trees.

The final Maximum Likelihood (ML) tree was computed under the GTR+G model of

sequence evolution as determined under the Bayesian Information criterion in MEGA 7.

Volatile compound analysis

A bacterial culture of the target bacterial strain was incubated on 1% tryptone agar for seven

days at room temperature. Headspace extracts were obtained using a vacuum pump to draw

clean air (purification by active charcoal filter) through a 250 mL glass vessel containing the

culture plate. The air was then passed through a thermal desorption tube filled with an absor-

bent (Tenax TA Tube; GERSTEL, Mülheim an der Ruhr, Germany) for 5 h (three replicates).

Thermal desorption tubes were desorbed using a thermal desorption unit (TDU), cooled

injection system (CIS) and a MultiPurposeSampler (MPS) autosampler (GERSTEL, Mülheim

an der Ruhr, Germany) connected to an Agilent 7890B gas chromatograph. The gas chromato-

graph was equipped with a HP-5 MS fused silica capillary column (30 m, 0.25 i. d., 0.25 μm

film, Hewlett-Packard, Wilmington, USA) connected to an Agilent 5977A mass-selective

detector. Conditions: transfer line 300˚C, electron energy 70 eV. Thermal desorption: 30˚C,

increasing at 60˚C/min to 280˚C (10 min isothermal). Cooled injection: -150˚C, increasing at
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12˚C/min to 300˚C (3 min isothermal). Gas chromatographic method: 50˚C (5 min isother-

mal), increasing at 5˚C/min to 320˚C, and operated in splitless mode. Helium was used as car-

rier gas at 1.2 ml/min. GC retention indices (RI) were determined from a homologous series of

n-alkanes (C8-C30). Compounds were identified by comparison of mass spectra and retention

indices with those of authentic samples.

Results and discussion

Representation of Alcaligenaceae in amphibian cutaneous microbiomes

In the global dataset of amplicon sequences from 205 amphibian species [6] Alcaligenaceae
sOTUs made up 284,771 out of 5,872,500 total rarified reads in the final data set (4.8%). Alcali-
genaceae sOTUs (at a minimum threshold of 5 reads) were found in a total of 119 amphibian

species from eight countries, and Pigmentiphaga sOTUs in 95 amphibian species. In a culture

database of amphibian skin bacteria [22, Bletz & Woodhams unpublished data] 28 of 5938 iso-

lates were from the Alcaligenaceae, and our isolate was the sole member from the genus Pig-
mentiphaga. Therefore, apparently, Alcaligenaceae and more specifically Pigmentiphaga
appear to be underrepresented in culture databases of amphibian skin microbiota and thus

might be less readily culturable than other bacteria from this habitat [5].

The family Alcaligenaceae currently contains 27 genera (UniProt 2019); in the amphibian

microbiome data set, 338 out of a total of 124,348 sOTUs were assigned to this family, and of

these, 35 to the genus Pigmentiphaga (reads = 266,723). The remaining Alcaligenaceae reads

were assigned to the genera Achromobacter (n = 3,355), Alcaligenes (n = 666), Sutterella
(n = 20) Oligella (n = 16), Denitrobacter (n = 3), Candidimonas (n = 12) or were left unassigned

to a specific genus (n = 13,976).

Confirming previous findings [12–14], in our global skin microbiome dataset [6] Pigmenti-
phaga was predominantly found on arboreal species as well as scansorial hosts within the

amphibian clades Mantellidae (mean: 7.7% + 1.5%SD) and Hyperoliidae (mean: 7.9% + 4.7%

SD, which are distributed in Madagascar, and (Hyperoliidae only) in mainland Africa (Fig 1).

The genus also appears on amphibians from the genus Pseudacris (Fig 1). Overall, Pigmenti-
phaga was more common on amphibians from Madagascar; however, this could be associated

with extensive sampling of arboreal hosts within this country.

Phylogenetic diversity of Pigmentiphaga in amphibian cutaneous

microbiomes

We aligned short amplicon-based consensus sequences of Alcaligenaceae amplicons with the

longer 16S sequences of all Madagascan amphibian-derived isolates from a previous work [15]

belonging to this family. We then used a series of BLAST and MOLE-BLAST searches, allowing

for hits with and without environmental sequences, and restricting searches to type strains or

not, to retrieve a representative set of 273 homologous Alcaligenaceae sequences of the 16S

rRNA gene for analysis of phylogeny and environmental distribution of our focal bacterial taxa.

The exploratory analysis of these sequences along with our Alcaligenaceae sOTU and isolate

sequences placed 92 sOTUs, 8 isolates and 82 related sequences retrieved from GenBank in a

clade with the Pigmentiphaga type strains. A ML tree calculated on this restricted dataset (Fig 2)

reveals a large diversity of Pigmentiphaga, many of which are not assignable to any of the

described species. A large number of 61 additional sOTUs from the amphibian skin, as well as

one isolate from the skin of a fire salamander (DE946; accession number MH512662) and two

from Madagascar frogs (Mada281, Mada1835; accession numbers MF526411, MF523827), are

placed in a large subclade of putative Pigmentiphaga sequences that does not contain any type

Genome of amphibian skin-associated Pigmentiphaga
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strain sequences. This subclade also contains sOTU7503, the most widespread Alcaligenaceae
sOTU in our global amplicon-derived data set (45,697 reads). Various sequences retrieved from

GenBank and included in this subclade are named P. daguensis but are unlikely to belong to

this species, given that the type strain is placed in another, phylogenetically distant clade.

Whether this diverse subclade is to be assigned to Pigmentiphaga definitively, or to another,

possibly undescribed genus in the Alcaligenaceae, will require additional study.

Genome characteristics of Pigmentiphaga aceris isolated from amphibian

skin

One of our isolates (Mada1488) was placed close to P. aceris and had>99% sequence similarity

with the type strain of this species (Table 1). The sequence obtained by direct Sanger

Fig 1. Distribution of Pigmentiphaga spp. across amphibian hosts. relative abundance within amphibian skin microbiomes across host eco-morphology classes (A),

countries (B), and phylogeny of arboreal and scansorial amphibian hosts (C).

https://doi.org/10.1371/journal.pone.0223747.g001
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Fig 2. Maximum likelihood phylogenetic tree of selected Pigmentiphaga based on DNA sequences of up to 1478

bp of the bacterial 16S rRNA gene. Sequences of amphibian skin bacteria from an Illumina-based amplicon survey[6]

are colored purple; isolates from amphibian skin are colored blue. Red color highlights the sequences of the P. aceris
strain used for genome sequencing. Sequences from type or reference strains are boldfaced. Alcaligenes faecalis, the

type species of the type genus of Alcaligenaceae, was used as the outgroup. results of a bootstrap analysis (100

replicates) are marked by gray (bootstrap proportion >50%) and black circles (>70%). Note that due to the inclusion

of many short sequences from Illumina amplicon analysis, most nodes did not receive strong bootstrap support.

https://doi.org/10.1371/journal.pone.0223747.g002
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sequencing of DNA extracted from this isolate agreed fully with the sequence from both 16S

copies found in the assembled genome. One amplicon-derived sOTU also the sequence of this

isolate. In our global amphibian data set, 139 of these reads came from the sOTU matching the

Mada1488 isolate. This sOTU was found on frogs of the genera Anaxyrus, Boophis, Colos-
tethus, Craugastor, Gephyromantis, Eleutherodactylus, Lithobates, Mantidactylus, Mantella,

and Plethodontohyla. Thus, the bacterium represented by our culture (Mada1488) was not

Table 1. NCBI database matches (97–100% sequence identity) to the 16S rRNA gene of Pigmentiphaga aceris (strain Mada1488).

Accession # Description Query cover Percent match Isolation Source

HM276147.1 Uncultured bacterium clone ncd518h02c1 89% 99.4% Human skin

NR_157990.1 Pigmentiphaga aceris strain SAP-32 94% 99.3% tree sap

HM270483.1 Uncultured bacterium clone ncd266g01c1 89% 99.2% human skin

FJ849553.1 Uncultured bacterium clone SedUMA34 95% 99.2% arctic stream sediment; ultramafic lithology

JX067670.1 Alcaligenaceae bacterium SAP706.3 98% 99.1% floral nectar

FN421876.1 Uncultured bacterium, clone 2_F01 92% 99.1% phyllosphere of clover

HM316492.1 Uncultured bacterium clone ncd307b11c1 89% 99.0% human skin

JX067692.1 Alcaligenaceae bacterium SAP773.2 98% 99.0% floral nectar

HM316454.1 Uncultured bacterium clone ncd306e07c1 89% 99.0% human skin

FJ849534.1 Uncultured bacterium clone SedUMA17 1 95% 98.4% arctic stream sediment; ultramafic lithology

MH667611.1 Pigmentiphaga sp. strain IMT-318 94% 97.1% soil (USA)

https://doi.org/10.1371/journal.pone.0223747.t001

Fig 3. The circular genome of 6,165,255 bp of Pigmentiphaga aceris (strain Mada1488). In blue (circle 1) genes

lying on the forward strand are shown and in red (circle 2) those on the reverse strand. In circle 3 tRNA genes are

shown in brown, often clustered together with green rRNA genes. Circle 4 shows the GC content (G+C)/(A+T+G+C),

whereas in circle 5 a GC skew (G−C)/(G+C) is shown. This map has been created using DNAplotter [44].

https://doi.org/10.1371/journal.pone.0223747.g003
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very common in our Illumina dataset. As it was the only cultured Pigmentiphaga from

amphibian skin assignable to a known species we nevertheless chose this isolate for genome

sequencing, to obtain first data of the genomic background of these bacteria.

In culture, this bacterium forms white, glossy colonies with circular form; the elevation is

raised and the margins are entire. In a growth inhibition assay (see [15] for methods) the

metabolites produced by this bacterium reduced the growth of the amphibian skin pathogen

Batrachochytrium dendrobatidis by 60%. BLAST searches in the NCBI nucleotide database

revealed that bacterial strains with >97% 16S sequence identity to Mada1488 have been found

on human skin, in floral nectar, tree sap, artic stream sediment, and soil (Table 1). The highest

identity was found with an uncultured isolate from human skin (99.4% identity), directly fol-

lowed by the P. aceris type strain (SAP-32) with 99.3% identity.

The complete genome of Pigmentiphaga aceris (Mada1488) consists of a single circular

chromosome with 6,165,255 bp and a GC content of 62.1%. Prokka predicted 5,300 coding

sequences, 57 tRNA genes, and three rRNA operons (Fig 3). A multiple genome alignment

suggests that the new genome shows only limited similarities to the five congeneric

genomes available (S1 Fig); however, the five available genomes all belong to closely related

strains (all >98% 16S similarity to the type strains of P. kullae and P. daeguensis, which

themselves show 99.6% similarity, questioning the distinctness of these two taxa at the spe-

cies level).

The newly sequenced genome of P. aceris (Mada1488) differs in its gene functions com-

pared to other known Pigmentiphaga genomes; more specifically, genes associated with envi-

ronmental information processing and cellular processes were more abundant in Mada1488

(S2 Fig). Natural product biosynthetic gene clusters (BGCs) are moderately represented in the

newly sequenced genome, and the cluster content differs from that in the other available Pig-
mentiphaga genomes (S1 Table). Amongst others, P. aceris (Mada1488) contains a nonriboso-

mal peptide syntethase (NRPS) cluster most likely involved in the production of a peptide

siderophore similar to enterobactin [45], and a BGC coding for bacteriocin biosynthetic genes,

both missing in the other Pigmentiphaga. Bacteriocines are widely occurring, ribosomally pro-

duced antimicrobial peptides, presumably with an anti-competitor function [46] and an often

narrow activity range against Gram-positive as well as Gram-negative bacteria [47,48]. The

most noticeable feature in the comparative Pigmentiphaga genomes but absent in P. aceris
(Mada1488) are clusters for β-lactones, a class of protein-inhibiting natural products with a

wide range of activities [49]. Furthermore, P. aceris (Mada1488) lacks genes involved in ectoin

biosynthesis. Because ectoins are usually produced to protect the bacteria from environmental

extremes like hyperosmotic conditions [50], the lack of ectoins might support this strain being

adapted to rather stable environmental conditions.

Volatile compounds produced by Pigmentiphaga aceris
The ability to produce volatile organic compounds (VOCs) is widespread among bacteria [51]

and our data demonstrate this ability also in Pigmentiphaga aceris (Mada1488). GC/MS analy-

sis of headspace extracts from this bacterium revealed the release of 21 compounds (S1 Table),

among them sulfur-containing volatiles such as methanethiole, dimethyl disulfide (1),

dimethyl trisulfide (2), S-methyl ethanethioate (3), S-methyl propanethioate (4), S-methyl

2-methylpropanethioate (5), S-methyl 3-methylbutanethioate (6) and S-methyl phenyletha-

nethioate (7), as well as γ-decalactone (8) (S3 Fig). Some these compounds, for example,

dimethyl trisulfide and S-methyl 3-methylbutanethioate, have been associated with inhibition

of a variety of plant pathogens [52,53], suggesting they may play a role in suppression of

amphibian fungal pathogens, such as Bd and Bsal.
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Conclusions

To our knowledge, Pigmentiphaga aceris (Mada1488) is the first amphibian skin-derived bac-

terial isolate with a full genome sequenced. Overall, the genome does not present any out-

standing characteristics, in line with the hypothesis that the amphibian cutaneous microbiome

mainly consists of generalist species recruited from environmental reservoirs. It is remarkable

that bacterial strains most similar to Mada1488 have multiple times been found in plant-asso-

ciated microbiomes (tree sap, nectar, phyllosphere). The finding of a Pigmentiphaga similar to

the strain described herein on human skin may be explained by a bias of information in

genetic databases towards human-derived microbes, but also confirms that these bacteria are

not strictly associated to plants only. Yet, it is tempting to relate the apparent common occur-

rence of Pigmentiphaga on plants to its high abundance in treefrogs which may have acquired

it from plant-associated reservoirs. To test this hypothesis, in-depth analysis of additional bac-

teria differentially abundant on arboreal vs. terrestrial amphibians may be rewarding. A wider

sampling of genomes represented in amphibian cutaneous microbiomes will be a crucial step

to better understand functional properties of these bacterial communities and their potential

role in defense against pathogens.

Data availability

The complete genome sequence of Pigmentiphaga aceris Mada1488 has been deposited at

NCBI GenBank under the accession no. CP043046. The version described in this paper is the

first version. (BioProject no. PRJNA561098). The 16S sequence of this isolate is archived

under accession no. MF525803.1. Accession numbers of sequences used in the phylogenetic

analysis are given in the respective tree. Accession numbers for the raw data of amplicon analy-

ses are summarized in a previous study [6].
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phaga sp. H8, (B) P. sp. NML030171, (C) P. sp. NML080357, (D) P. kullae K24, (E) P. sp. IMT-

318. The figure shows a multiple genome alignment calculated with Mauve (Darling et al.

2004), using A as reference. Colinear blocks are indicated by identical colors and indicate

homologous DNA regions shared by two or more genomes without sequence rearrangements,
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