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Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial
College London, London, United Kingdom

Obesity and Type 2 diabetes represent global health challenges, and there is an unmet
need for long-lasting and effective pharmacotherapies. Although long-acting glucagon-
like peptide-1 (GLP-1) analogues are now in routine use for diabetes and are now being
utilised for obesity per se, the need for ever better treatments has driven the development
of co-agonists, with the theoretical advantages of improved efficacy by targeting multiple
pathways and reduced adverse effects. In this review, we highlight the past and present
progress in our understanding and development of treatments based on GLP-1/glucagon
co-agonism. We also reflect on the divergent effects of varying the GLP-1:glucagon
activity and ratio in the context of pre-clinical and human clinical trial findings. In particular,
the multiple metabolic actions of glucagon highlight the importance of understanding the
contributions of individual hormone action to inform the safe, effective and tailored use of
GLP-1/glucagon co-agonists to target weight loss and metabolic disease in the future.
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INTRODUCTION – GLUCAGON AS AN ANTI-OBESITY AGENT

Obesity is a leading cause of global morbidity and death. It is a driver of multiple co-morbidities
such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), hypertension,
hypercholesterolaemia, cardiovascular disease and cancer (1). In 2016, 1.9 billion adults were
classified as overweight and 650 million as obese according to the World Health Organisation in
2016. The current COVID-19 pandemic has also highlighted the strong link between obesity and
poorer outcomes (2, 3). There is a growing health and socioeconomic burden of obesity, with an
increasing demand for effective anti-obesity drugs ideally comparable to bariatric surgery, the
current gold-standard for obesity treatment which offers highly effective, long-lasting and life-
extending results (4). The gut hormone glucagon-like peptide-1 (GLP-1) and its analogues, which
have been in clinical use for diabetes for over a decade, have useful appetite-suppressive effects and
are now licensed for obesity. Despite the undeniable success of the GLP-1 analogues, there remains a
‘gap’ between the efficacy of GLP-1 analogues and that of bariatric surgery. To plug this gap,
researchers have pursued the ‘co-agonist’ strategy by combining GLP-1 with related hormones from
the proglucagon family and related peptides, including GIP and glucagon itself (5). By combining
hormones in this way, the dose of individual hormones can be reduced, widening the therapeutic
window and avoiding toxicity. In this mini-review, we highlight past and present progress in the
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translational research of GLP-1 and glucagon co-agonism. We
also highlight the importance of striking a balance between
GLP-1 and glucagon agonism, to allow for maximal drug
efficacy whilst minimising potential risks.
OXYNTOMODULIN, A NATURAL GLP-1
AND GLUCAGON CO-AGONIST

The journey to discovery of the glucagon family of peptides and
an endogenous GLP-1/glucagon co-agonist, oxyntomodulin
(OXM) is an example of a concerted effort from many
dedicated research groups. A pivotal point early on in this
research was the use of the known peptide sequence of
glucagon to facilitate the discovery of other ‘glucagon-like
peptides’ in the gastrointestinal tract with the help of the
radioimmunoassay method (6, 7). The search for ‘glucagon-
like reactivity (GLI)’ in the gut revealed a partial peptide
sequence for a peptide named ‘Glicentin’, later to be fully
characterised as a 69-amino acid peptide containing a 30-
amino acid ‘Glicentin-related pancreatic polypeptide’ (GRPP),
the full sequence of glucagon, and an 8-amino acid c-terminal
extension (8–10). The 8-amino acid extended glucagon
fragment, ‘Glucagon-37’ was isolated from porcine jejuno-
ileum, characterised and shown to be the bioactive
‘enteroglucagon’ due to its ability to bind to and stimulate
glucagon receptors in liver membrane extracts (11–13). Due to
the potent effect on oxyntic cell signalling, bioactive
enteroglucagon/Glucagon-37 was named oxyntomodulin (14).
As the primary structure of glicentin was discovered, evidence
also emerged for post-translational processing of proglucagon to
form glucagon and glicentin related pancreatic peptide, secreted
‘synchronously’ from the pancreatic alpha cell (10). Beyond the
protein-based methodologies used to characterise glicentin,
GRPP and oxyntomodulin, the increased capability to
sequence genes at the time led to the first sequence of
mammalian preproglucagon (15). This revealed two further
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glucagon-like polypeptides, now known as GLP-1 and GLP-2,
and confirmed earlier reports suggesting that the MW of
proglucagon is much larger than that of glicentin alone (16).
The post-translational processing of pro-glucagon is now known
to be differentially regulated in pancreas and gut (17, 18).
Alternative processing of proglucagon leads to the formation of
glucagon, GRPP and major pro-glucagon fragment (MPGF) in
the pancreas, whereas in the gut and brain glicentin, GRPP,
oxyntomodulin, GLP-1 and GLP-2 are formed (Figure 1). The
endogenous gut hormone oxyntomodulin is therefore formed
through specific splicing of the proglucagon gene and includes
the full sequence of glucagon along with the 8-amino acid
sequence named IP-1. This process occurs in the intestinal L
cells of the gastrointestinal tract leading to the co-secretion of
GLP-1 and oxyntomodulin in response to nutrient sensing
(19, 20).

Whilst much attention was focused on GLP-1 in the 1980s
and 90s, following the discovery of its incretin effect in humans
(21), little was known about the physiological role of
oxyntomodulin in humans at the time (21, 22). Infusion
studies in humans demonstrated a potent effect of high levels
of OXM infusion on gastric emptying (23). Furthermore,
changes in OXM were observed following intestinal bypass
surgery suggesting anatomical changes influenced intestinal
secretion of the peptide (24, 25). In the early 2000s, its
potential role in weight loss was investigated following research
showing that GLP-1 and glucagon inhibit food intake when
administered intracerebroventricularly (ICV) in rodents (26, 27).
ICV injection of OXM led to a significant food intake reduction
up to 4 hours after injection, comparable to GLP-1 infusion (28).
This effect was inhibited by the GLP-1 antagonist exendin (9–
39), suggesting that OXM may act through the GLP-1 receptor
(GLP-1R) to regulate food intake. Daily ICV injections of OXM
over 7 days led to food intake reduction and increased weight loss
compared with saline treated controls (29). Importantly, OXM-
treated rats had increased weight loss compared to pair-fed
controls and this was associated with a 0.5°C increase in core
body temperature during the seven-day treatment period,
FIGURE 1 | Tissue-specific processing of proglucagon. Proteolytic cleavage is tissue specific and regulated by prohormone convertases (PC) 1 and 2. In the
pancreas, PC2 results in the formation of glucagon, glicentin-related pancreatic peptide (GRPP) and the inactive fusion protein major proglucagon fragment (MPGF).
In the gut and brain, PC1/3 results in the formation of glicentin, GLP-1 and GLP-2. Glicentin is further processed to form GRPP and oxyntomodulin (OXM). Numerical
annotations represent amino acid positions within the 160 amino acid proglucagon peptide.
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suggesting for the first time an energy expenditure effect of OXM
that is independent of its anorectic effects. Peripherally
administered OXM led to a dose-dependent food intake
reduction and increased weight loss in rats, and these animals
lost significantly more body weight and white adipose tissue than
pair-fed controls. ICV injection of exendin-9-39 attenuated the
anorectic effect of peripheral OXM, further suggesting that
OXM-mediated anorexia is produced through a central GLP-
1R-dependent mechanism (30).

Concurrent to the pre-clinical studies, the first human study
of oxyntomodulin was carried out in a small double-blind
placebo-controlled crossover study (31). Thirteen healthy
participants were given intravenous infusions of OXM at a
dose of 3 pmol/kg/min for 90 minutes, with matched controls
being given saline. During this infusion period, the ad-libitum
food intake was significantly reduced in participants receiving
OXM compared to saline control and a cumulative caloric intake
reduction was observed up to 12 hours later. Later, a 28-day
randomized controlled trial examined the effect of prolonged
OXM injections on body weight loss and energy intake. Healthy
overweight volunteers were randomised to receive pre-prandial
subcutaneous injections with either saline or 400 nmol OXM
three times daily, coincident with meals, for 4 weeks. OXM-
treated subjects were found to have decreased energy intake on
Days 2 (660 vs 508 kJ) and 29 (711 vs 428 kJ). At the end of the
28-day period, study subjects experienced significant weight loss
(2.3 kg vs 0.5 kg) compared to saline treated controls in addition
to concurrent changes in leptin and adiponectin suggesting
reduction in adiposity (32).
OXYNTOMODULIN ACTIVATES BOTH
GLP-1 AND GLUCAGON RECEPTORS
CONTROLLING ENERGY BALANCE
AND GLYCAEMIA

Given OXM contains the entire glucagon sequence, it is no
surprise that this peptide activates the glucagon receptor (13, 33).
However, the potent effect on reducing weight gain in pre-
clinical studies led to research efforts to determine the CNS
binding site of OXM. OXM was shown to increase cAMP
production in Baby Hamster Kidney (BHK) cells transfected
with rodent GLP-1R and GCGR, suggesting meaningful
signalling through both receptors but was less potent than
Exendin-4 at the GLP-1R (34). The anorectic effects of
centrally administered OXM were also abolished in Glp-1r-/-

knock-out mice and not in Gcgr-/- mice, suggesting that the
anorectic effects of OXM are mediated through GLP-1R.
Consistent with these findings, previous in vitro studies
showed that OXM is a full agonist at the GCGR and GLP-1R
but is 3-fold less potent at the GCGR than native glucagon and
100-fold less potent at the GLP-1R than native GLP-1, in terms
of activating cAMP accumulation (13).

Despite convincing data suggesting the central role of GLP-
1R signalling in the food intake reduction effects of OXM, there
were still some unexplained effects of the gut hormone including
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increased energy expenditure, suggesting a GLP-1R independent
mechanism of action (35). The stimulatory effect of glucagon on
thermogenesis in brown adipose tissue in vitro in addition to
enhanced metabolic rate in humans had been previously shown
(36, 37). Kosinski and colleagues constructed a variant of OXM,
OXMQ3E, that was unable to activate the GCGR by changing the
third amino acid residue from neutral glutamine to acidic
glutamate (38). OXMQ3E produced less weight loss compared
with OXM in diet-induced obese (DIO) mice despite similar food
intake reduction. GCGR antagonism also reduced the weight loss
effect of OXM, suggesting a role for GCGR mediated energy
expenditure (38). Moreover, the OXMQ3E peptide was unable to
produce any weight loss in Glp1r-/- mice, suggesting that both
GLP-1R and GCGR are required for weight loss to occur.
Importantly, OXM treatment led to several beneficial
metabolic effects not seen in OXMQ3E treated mice including
a decrease in plasma triglycerides and plasma cholesterol in
addition to an increase in adiponectin. More recently, metabolic
cage studies have confirmed that the increased oxygen
consumption and energy expenditure effect of OXM is
mediated through glucagon receptor signalling (29, 39, 40).

To characterise the effects of OXM on glucose metabolism,
Du and colleagues performed hyperglycaemic clamp studies in
mice treated with OXM and OXMQ3E (41). Both OXM and
OXMQ3E improved glucose tolerance when given to DIO mice.
The authors found the glucose infusion rate (GIR) during the
clamp study decreased with OXM compared with OXMQ3E in
wild-type mice, likely due to increased hepatic glucose output
from GCGR agonism with OXM. Therefore, concurrent agonism
at the GLP-1R and GCGR is important for the glucose-lowering
effect of OXM: GLP-1R activation offsets the hyperglycaemia
associated with GCGR activation. As we will discuss later, this
further justified the development of synthetic GLP-1/glucagon
co-agonists as promising weight loss therapeutics, particularly in
the context of avoiding unwanted hyperglycaemia in obesity-
associated type 2 diabetes.
RATIONALE FOR GLP-1/GLUCAGON
COMBINATION THERAPY FOR
WEIGHT LOSS

Although significant progress was made in understanding the
potential use of the endogenous GLP-1/glucagon co-agonist
OXM as a weight loss therapeutic in the early 2000s, evidence
from various pre-clinical and human studies prior to this
demonstrated the distinct mechanisms of weight loss afforded
by these hormones. GLP-1, secreted from the intestinal L cells
postprandially, acts both centrally and peripherally to exert its
anorectic and metabolic effects. ICV GLP-1 reduces food intake
in rodents, and this effect is blocked with Exendin (9–39). It is
now known that GLP-1 receptors are widely expressed in the
hypothalamus, hindbrain and amygdala with a neuronal link
between the periphery and CNS to regulate GLP-1 action (42). In
addition to the effect on food intake reduction and glucose-
stimulated insulin secretion, GLP-1 also acts to delay gastric
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emptying therefore aiding satiety and glycaemic control (42).
Given at higher doses than in diabetes treatment, GLP-1
analogues are now routinely licensed for the treatment of
obesity, for example high-dose Liraglutide 3 mg daily (43) and
Semaglutide 2.4 mg weekly (44). However, despite the progress
in the development of GLP-1 analogues, the overall efficacy of
GLP-1 analogues for weight loss is still limited by gastrointestinal
side effects, in particular nausea at higher doses (45).

Glucagon is typically stimulated by the fall in insulin during
fasting in concert with low glucose levels, and responds to
hypoglycaemia by mobilising hepatic glucose through the
stimulation of glycogenolysis and gluconeogenesis (46). In
T2D, loss of the suppressive effects of glucagon and insulin is
associated with hyperglucagonaemia and this is thought to
contribute to hyperglycaemia (47–50). Based on evidence for
the contribution of hyperglucagonemia to hyperglycaemia in
T2D, research demonstrated the use of glucagon antagonism to
improve glycaemic control. In their seminal study, Peterson and
Sullivan utilised a novel non-peptide glucagon receptor
antagonist (Bay 27-9955) in healthy, lean males to investigate
effects on glycaemia (51). Following oral administration of Bay
27-9955 at two doses, a significant blunting of acute
hyperglycaemia was observed following a glucagon infusion, in
the absence of clinical side effects. Following the promising
results of Bay 27-9955, several glucagon receptor antagonists
have been developed however when administered over a longer
period, have been met with several adverse effects including
increased plasma alanine aminotransferase (ALT), LDL-
cholesterol in addition to increased blood pressure and body
weight (52). Furthermore, treatment with the glucagon
antagonist, LY2409021 over 6 months led to a significant
increase in both ALT and hepatic fat fraction (HFF) compared
to sitagliptin and placebo groups (53). The development of
hepatic steatosis is likely due to blockade of glucagon’s lipolytic
properties in the liver, therefore making GCGR antagonism an
untenable strategy. Despite its glucose mobilising effect, the
broad catabolic and thermogenic nature of glucagon receptor
agonism adds to its attractive portfolio as a weight loss
therapeutic. The enhanced metabolic rate observed with
glucagon administration was shown early on in rodents and
humans (36, 40). Glucagon-induced brown adipose tissue (BAT)
thermogenesis has been demonstrated in rodents (37, 54).
However this seems to be species specific: BAT activation is
not observed in humans with a glucagon infusion (55). Futile
cycling of glucose has also been suggested to confer glucagon’s
energy expenditure effects, whereby glucagon stimulates opposing
pathways of hepatic glucose production and consumption (56).
Circulating FGF-21 has also been implicated in energy expenditure
effects with chronic glucagon agonism, as Fgf21-/- knock-out mice
are protected from these effects (57). Despite several postulated
theories of glucagon induced energy expenditure, the mechanism is
likely multi-faceted and the precise contribution to these facets
remains uncertain (58). Glucagon is also known to act peripherally
to enhance lipolysis in white adipose tissue and improve whole
body lipid metabolism (59, 60). In particular, glucagon has firmly
been demonstrated to enhance hepatic lipid metabolism,
Frontiers in Endocrinology | www.frontiersin.org 4
Hepatic GCGR agonism leads to upregulation of lipid catabolism
pathways in the hepatocyte where a number of key regulatory
transporters and enzymes facilitate beta oxidation of fatty acids
(61). Furthermore, exogenous administration of glucagon was
shown early on to inhibit food intake in humans and rodents
(62, 63). Interestingly, this effect seems to be mediated through
hepatic glucagon signalling, as infusion into the portal vein induced
a satiating response whereas infusion into the inferior vena cava did
not (64). The combination of GLP-1 and glucagon administration
in rodents has been shown to increase c-Fos expression in appetite
regulating centres and polypharmacy with these hormones leads to
a synergistic effect on food intake reduction over single hormone
administration (65).

Given the pre-existing data on GLP-1 and glucagon, we
designed a double-blinded randomised cross-over study, in
which we gave volunteers who were overweight short-term
intravenous infusions of glucagon (50 ng/kg/min or 14 pmol/
kg/min), GLP-1 (0.8 pmol/kg/min), combination of glucagon +
GLP-1 at the same doses, or placebo over 45 minutes, and
demonstrated that there was a significant increase in resting
energy expenditure with glucagon alone which was preserved
with the combination of glucagon + GLP-1, whereas GLP-1 did
not affect energy expenditure (66). As expected, glucagon
infusion caused an increase in glucose which was largely
neutralised by co-infusion with GLP-1. In a follow up study
with lower, sub-anorectic doses of GLP-1 (0.4 pmol/kg/min),
glucagon (2.8 pmol/kg/min), GLP-1 + glucagon combination at
the same doses, or placebo for 120 minutes we showed that there
was a 13% decrease in food intake after the combination, with the
individual infusions having no significant effect (67), further
supporting the concept of co-agonism with these hormones.
Another study did not show any differences with the hormone
combination on glucose and food intake reduction or enhanced
energy expenditure but used far lower doses of GLP-1 (1 pmol/
kg/min) and glucagon (0.86 pmol/kg/min) (68). Overall, these
physiological studies support the notion that GLP-1 and
glucagon possess dose-dependent synergism, leading to
enhanced suppression of food intake, plus increased resting
energy expenditure.
PRE-CLINICAL STUDIES OF
SYNTHETIC GLP-1/GLUCAGON
CO-AGONISTS

Concurrent to research investigating combination treatments with
individual GLP-1 and glucagon infusions, efforts were also focused
on optimising the peptide chemistry of native oxyntomodulin,
glucagon or GLP-1 in view of designing receptor potent and
long-acting synthetic GLP-1/GCG co-agonists. While the results
from studies using native OXM in rodents and humans were
promising, the short half-life in vivo and the large amount of
peptide required to produce an effect made it a poor choice as a
treatment in humans. As such, synthetic GLP-1/GCG co-agonists
resistant to dipeptidyl peptidase-4 (DPP-4) proteolysis became an
September 2021 | Volume 12 | Article 735019
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attractive target for anti-obesity treatments. Due to the uncertainty
regarding the optimum balance of GLP-1R and GCGR agonism in a
unimolecular co-agonist, development of novel peptides varied
from sequence modification and enhancing stability of native
OXM, sequence modification of the glucagon peptide to confer
increased GLP-1R potency or modification of GLP-1 peptide to
confer increased GCGR potency; the natural advantage of this
concept was due to the sequence similarity across the glucagon
family of peptides.

By modifying the OXM peptide sequence with an amino acid-
peptide substitution at position 2 to prevent DPP-4 action, in
addition to a cholesterol-peptide conjugate, Pocai and colleagues
were the first group to show that synthetic dual-agonists were an
effective treatment strategy in an animal model. They showed that
administration of their modified long-acting OXM peptide led to a
decrease in food intake and increased weight loss in addition to
improvedmetabolic profile, superior to GLP-1 alone over 14 days in
diet-induced obese (DIO) mice (69). Further studies by a variety of
groups demonstrated structural modifications of OXM to enhance
the longevity of the native peptide through modification with
polyethylene glycol (PEGylation), fatty acid conjugation and
amino acid substitutions (70–73). By modifying the primary
sequence of OXM and linking to the constant region of human
IgG4, Jung and colleagues demonstrated their peptide HM12525A
had a potent and balanced activity at both GLP-1 and glucagon
receptors in vitro and led to body weight loss of 30% in DIO mice
over 14 days compared to liraglutide treated mice (74). Enhanced
energy expenditure was also observed with HM12525A in addition
to reduced adiposity and improved liver function in a NASHmodel
in db/dbmice. HM12525A has been variously re-designated as JNJ-
64565111 and now efinopegdutide, and this drug has been taken
forward into Phase 2 trials (see below).

Day and colleagues were the first group to use a series of
modifications to the C-terminal portion of the glucagon sequence
to increase GLP-1R potency, combined with PEGylation to generate
two PEGylated peptides with adequate co-agonist properties, one
unbalanced towards GLP-1R, and the other a ‘near-balanced’
agonist at both GLP-1R and GCGR. The near-balanced peptide
was shown to be ~2-fold less potent at GLP-1R and ~10 fold less
potent at GCGR than native ligands in cAMP synthesis (75). When
given to DIOmice, both peptides led to significant weight reduction,
improved glucose tolerance, increased energy expenditure, and
reductions in plasma cholesterol and liver steatosis. These effects
were more dramatic with the balanced agonist and interestingly the
beneficial metabolic effects occurred with no change in oral nutrient
intake in peptide vs control groups. This study demonstrated the
importance of combined GLP-1R and GCGR signalling, as
administration of the balanced co-agonist to Glp1r-/- mice led to
hyperglycaemia, further demonstrating the necessity of GLP-1R and
GCGR co-agonism to minimise this predicted side-effect. The same
group further assessed various ratios of GCGR to GLP-1R potency
of their peptides, on the extent of weight loss while minimising
hyperglycaemia (76). Importantly, the authors demonstrated that
the peptides which were most able to produce weight loss without
hyperglycaemia demonstrated balanced potency at the GLP-1 and
glucagon receptors.
Frontiers in Endocrinology | www.frontiersin.org 5
Other groups have also modified the primary sequence of
glucagon to confer increased GLP-1R potency. MEDI0832 (now
known as cotadutide) is a balanced co-agonist based on the
peptide sequence of glucagon, modified at specific amino acid
positions in addition to a palmitic fatty acid side chain to prolong
activity. The novel peptide is biased towards GLP-1R agonism
versus GCGR with a 3-4 fold reduced potency at the GLP-1R
compared to native GLP-1 and around an 8-fold reduced
potency at the GCGR compared to native glucagon. Chronic
daily administration of cotadutide over 27 days in obese mice
was associated with food intake reduction, decreased adiposity,
improved fasting glucose, and increased energy expenditure.
Consistent with previous studies, cotadutide outperformed
GLP-1 alone (40 nmol/kg/day liraglutide) in achieving
maximal weight loss in obese mice, and this was attributed to
the increased energy expenditure (77). Cotadutide has been
taken forward in clinical trial development (see below).

An alternative approach in the design of effective synthetic
co-agonists has been to modify GLP-1 analogues to confer
increased GCG activity. By engineering the C-terminal portion
of Exendin-4 to include amino acid sequences from glucagon in
addition to a fatty acid side chain, Evers and colleagues
developed a potent balanced co-agonist ‘peptide 14’. This was
shown to be around 10 times less potent at the human GLP-1R
and approximately equivalent potency at GCGR in comparison
to the native peptides at eliciting cAMP response in vitro. Daily
administration of peptide 14 in DIO mice over 32 days led to a
30% body weight loss above that seen for liraglutide alone at 15%
body weight loss. In db/db mice, peptide 14 prevented a 1.5%
increase in HbA1C over 32 days seen in the vehicle control
treated group (78). Based on these pre-clinical findings, a lead
candidate, SAR425899 with similar receptor potencies was taken
forward in Phase 1 and Phase 2 trials (see below).

Novel strategies have also been employed to enhance the
pharmacokinetic profile of GLP-1/glucagon analogues in view of
prolongation of drug effect. Recently, a surfactant conjugated co-
agonist peptide ‘17’ was shown to have a half-life of 52 hours in
vivo and at a higher dose led to 40% body weight loss in obese
rats over 27 days (79). This has subsequently been taken forward
into Phase 1 clinical trials as ALT-801 (Table 1).
LESSONS FROM GLP-1/GLUCAGON CO-
AGONISTS IN CLINICAL DEVELOPMENT

The first GLP-1/glucagon co-agonist to advance to human
clinical trials was cotadutide (MEDI0832). In a randomised,
placebo-controlled double blinded phase 1 study of ascending
single doses in healthy overweight humans, cotadutide was
shown to be safe and, in common with the GLP-1 analogues,
to be associated with dose-dependent gastrointestinal adverse
events especially nausea and vomiting. As an exploratory
outcome, single doses of cotadutide led to dose-dependent
improvement in glucose excursions post meals within 24 hours
and food intake reduction from a single dose of 100 mg. Doses as
low as 10 mg had a beneficial effect on post meal glucose
September 2021 | Volume 12 | Article 735019
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excursions and there was no evidence of glucagon-induced
hyperglycaemia (82). In a combined multiple ascending dose
(MAD) and Phase 2a study in people with type 2 diabetes over 41
days, the safety of cotadutide was confirmed (83). Over 41 days,
daily doses of cotadutide of up to 200 mg led to improved glucose
AUC0-4h after a mixed meal in comparison to placebo as well as
fasting and post prandial glucose levels. Cotadutide also led to 2.1
kg body weight loss relative to placebo. In a separate follow up
Phase 2a study over 49 days, the mechanism of improved
glycaemia was shown to be a combination of enhanced insulin
secretion and delayed gastric emptying (84).

An important exploratory outcome measured in the initial
41-day Phase 2a study was the effect of cotadutide treatment on
liver fat reduction as measured by MRI, with a 39.12% reduction
was observed in the treatment group compared to 19.51% in
placebo group (83). This significant reduction in liver fat content
with cotadutide is likely to be due to hepatic glucagon signalling
and subsequent upregulation of fatty acid oxidation. In a Phase
2b study in people with type 2 diabetes and obesity over 54
weeks, treatment with cotadutide at doses of 100-300 mg daily
improved some non-invasive markers of NAFLD such as
transaminase levels, the FIB-4 index, fatty liver disease fibrosis
score (NFS) and fatty liver index (FLI) but fatty liver disease was
Frontiers in Endocrinology | www.frontiersin.org 6
not assessed directly with liver biopsy. This study also included
an open-label comparator arm where participants took
liraglutide 1.8 mg. Improvements in HbA1c were shown to be
similar with reductions of 1.03-1.19% with cotadutide vs 1.17%
with liraglutide.With respect to body weight, cotadutide at 200 mg led
to weight loss of 3.22 kg on average versus 3.33 kg with liraglutide, but
the 300 mg dose led to weight loss of 5.02 kg albeit with far higher
gastrointestinal adverse event rates than liraglutide (85).

Although cotadutide has progressed well through clinical trials,
other GLP-1/glucagon co-agonists have shown mixed results. A
recent Phase 2 randomised placebo-controlled trial tested
efinopegdutide in people with obesity over a 26-week period,
where participants were randomly assigned weekly treatment with
either placebo, 5 mg, 7.4 mg, 10 mg efinopegdutide, or 3 mg
liraglutide daily. Participants given efinopegdutide showed a dose-
dependent increase in body weight loss of 6.7 to 10.0% (placebo
subtracted). Participants taking liraglutide achieved a placebo
subtracted weight loss of 5.8% in line with clinical experience.
Although there was no significant improvement in glycaemia with
efinopegdutide, this was explicable given that the participants had
normal glycaemia at baseline. However, up to 89% of participants
taking efinopegdutide experienced gastrointestinal adverse events
(mostly nausea, vomiting and diarrhoea) relative to 28% taking
TABLE 1 | Current glucagon containing anti-obesity drugs in development.

Drug Receptor target Administration Sequence
modified

Receptor potency at
human GLP1R and

GCGR compared with
native hormones. (Based
on in vitro cAMP EC50

data)

GLP-1/GCGR
ratio

Status Ref

GLP1R GCGR

Cotadutide GLP-1/glucagon sc daily Glucagon 3-4 fold
lower

~8 fold
lower

5:1 In Phase 2 for kidney
disease

NCT04515849
(77)

SAR425899 GLP-1/glucagon sc daily GLP-1 ~1:1 ~13 fold
lower

5:1 Discontinued (80)

MOD-6031 GLP-1/glucagon sc weekly OXM ? ? ? Discontinued NCT02692781
G3215 GLP-1/glucagon sc continuous OXM ~1:1 fold

lower
~1:1 fold
lower

1:1 Phase 1 NCT02692040

NNC9204-1177 GLP-1/glucagon sc weekly ? ? ? ? Discontinued NCT03308721
Efinopegdutide GLP-1/glucagon sc weekly OXM ~3 fold

lower
~3 fold
lower

1:1 Phase 2 for NAFLD NCT03486392
(81)

BI 456906 GLP-1/glucagon sc weekly Glucagon ? ? ? Phase 2 NCT04153929
OPK-88003/
TT401

GLP-1/glucagon sc weekly OXM ? ? ? Discontinued NCT03406377

MK-8521 GLP-1/glucagon sc daily ? ? ? ? Discontinued NCT02492763
LY3305677 GLP-1/glucagon sc weekly OXM ? ? ? Phase 1 NCT03928379
ALT-801 GLP-1/glucagon sc weekly GLP-1 and

glucagon
? ? ? Phase 1 NCT04561245

(79)
JNJ-54728518 GLP-1/glucagon sc daily OXM ? ? ? Phase 2 NCT03486392
HM15211 GLP-1/GIP/

Glucagon
sc weekly Glucagon ? ? ? Phase 2 NCT04505436

NN9204-1706 GLP-1/GIP/
Glucagon

sc daily ? ? ? ? Phase 1 NCT03661879

SAR441255 GLP-1/GIP/
Glucagon

sc daily ? ? ? ? Discontinued NCT04521738

LY3437943 GLP-1/GIP/
Glucagon

sc weekly ? ? ? ? Phase 1 NCT04143802
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placebo and 60% taking liraglutide (86). This may be because the
efinopegdutide arms did not have a dose titration phase unlike the
liraglutide arm (86). The original development partner, Janssen
Pharmaceuticals, has handed back the license for efinopegdutide to
the original developer, Hanmi Pharmaceutical, but the license has
been taken up byMerck to be developed as a once weekly treatment
for NAFLD.

SAR425899 (Sanofi) is another example of a GLP-1/glucagon
co-agonist which has been tested in Phase 1 trials. When tested as
a once-daily injection in single and multiple doses varying up to
0.18 mg in healthy normal to overweight volunteers,
gastrointestinal adverse events (nausea, diarrhoea, constipation,
vomiting) were encountered, but the drug was described as well
tolerated. The multiple-dose regimen, given for up to 4 weeks, led
to a dose-dependent weight loss between 2.87 and 5.46 kg,
compared to 2.37 kg for placebo. In a small group with T2D,
SAR425899 improved fasting glucose and glucose tolerance after
a mixed meal (80). Results from Phase 2 trials were subsequently
halted due to excessive rates of gastrointestinal adverse events
leading to participant withdrawals. It is unlikely therefore this
drug will proceed further in development.

Several other multi-agonists capable of co-agonism of the
GLP-1 and glucagon receptors are currently in development
including BI 456906 (Boehringer Ingelheim), LY3305677 (Lilly)
LY4347943 (Lilly), JNJ-54729518 (J&J), HM15211 (Hanmi),
NNC9204-1706 (Novo), Alt-801 (Altimmune) and G3215
(Imperial College/Zihipp Ltd.) – see Table 1. Led by the results
of cotadutide, GLP-1/glucagon co-agonists have been shown to
have promising weight loss and glycaemic effects in these early
phase clinical results however data from later phase clinical trials
are expected later this year/early next year. Data from longer-
term treatment will therefore be eagerly awaited to determine the
extent of body weight loss and metabolic outcomes and whether
this is comparable to the latest GLP-1 mono-agonist therapies.
STRIKING THE BALANCE OF GLP-1 AND
GLUCAGON AGONISM TO MINIMISE
POTENTIAL RISKS

Based on outcomes from safety and pharmacokinetic studies with
GLP-1 analogues, themost common side effect observedwithGLP-1
agonism is dose-dependent nausea and vomiting (45). A theoretical
advantage of a co-agonist approach is the ability to reduce the dose of
GLP-1 whilst also enhancing glucagon’s weight loss effects. As the
current development leader, cotadutide has still not been able to
escape the spectre of dose-dependent gastrointestinal adverse events
(82). Fortunately, a tolerated treatment dose window of 150 mg daily
or less of cotadutidewas associatedwith fewer adverse effects and this
facilitated its progress to Phase 2 where its marked beneficial
metabolic effects were observed.

Even with careful engineering of receptor balance, potency
and pharmacokinetics, problems may still crop up, as illustrated
by SAR425899’s unexpected development failure due to
excessive gastrointestinal adverse events during its Phase 2
Frontiers in Endocrinology | www.frontiersin.org 7
trials. A follow up study using radio-ligand PET technology to
measure receptor occupancy demonstrated a high degree of
GLP-1R occupancy but no detectable GCGR occupancy
suggesting that in vivo SAR425899 may be acting in effect as a
GLP-1 analogue and not a co-agonist (87). The higher frequency
of gastrointestinal side effects also observed with efinopegutide in
Phase 2 trials may also be explained by a relatively high receptor
potency of at GCGR and GLP-1R, within 3-fold of the native
ligands (81). Further data from other drug candidates (Table 1)
in early phase trials is awaited to determine any divergent effects
on gastrointestinal side effects.

A key initial concern of using glucagon within a co-agonist was
unwanted hyperglycaemia. So far, the co-agonist drugs which have
reached phase 2 trials have demonstrated an improved glycaemic
profile with chronic administration. There is recent evidence that
hepatic glucagon receptor stimulation may improve insulin
stimulated glucose disposal. In a series of acute studies using
euglycemic clamps, Kim and colleagues demonstrated that a
glucagon agonist IUB288 leads to improved glucose tolerance by
augmenting insulin action with evidence of increased hepatic AKT
phosphorylation (88). Low dose glucagon agonism may therefore
enhance insulin sensitivity which is in keeping with pre-prandial
physiology in the fasted setting where the body is prepared to
metabolise essential nutrients.

With chronic administration of glucagon-containing co-
agonists, the catabolism of lean mass (i.e. protein and amino
acids) becomes an important consideration. Direct evidence for
the effect of glucagon on lean mass is seen from clinical situations
of glucagon excess, in the glucagonoma syndrome (89). Despite
the demonstrable importance of surveillance of lean mass during
testing of obesity drug candidates, it is common for only fat mass
loss or total body weight loss to be measured or presented in pre-
clinical and early clinical trials. Furthermore, plasma amino acid
levels are not routinely measured or reported. Exceptionally, in a
Phase 2a study of cotadutide, individual plasma amino acid
profiles were reported; after 49 days of treatment a significant
reduction in plasma alanine was observed (84). However, with
stronger glucagon receptor stimulation, it would be important
for further pre-clinical studies to characterise the effects of lead
drug candidates, on plasma amino acids and lean mass.
Furthermore, with the increasing prominence of sarcopenic
obesity, preserving lean mass in any weight loss strategy is
important and this will be an area of increasing clinical and
research interest.
FUTURE PERSPECTIVES/CONCLUSIONS

In the search for an anti-obesity pharmacotherapeutic which can
rival the weight loss effects of bariatric surgery, research and
development of gut hormone co-agonists is gaining momentum.
GLP-1/glucagon co-agonists such as cotadutide and efinopegdutide
offer the promise of increased efficacy whilst minimising side effects.
Furthermore, with enhanced glucagon action the GLP-1/glucagon
co-agonist has the advantage of being tailored to treat
NAFLD directly.
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However, the field is not staying still, and recently published
data from the high-dose semaglutide STEP Phase 3 trials (44) and
the SURPASS Phase 3 trials of the GLP-1/glucose-dependent
insulinotropic peptide (GIP) co-agonist tirzepatide (90) have set
the efficacy bar high in terms of weight loss and glycaemic
improvement. We therefore conclude that before the place
of GLP-1/glucagon co-agonists within the therapeutic
armamentarium can be defined, future research efforts need to
address the following outstanding questions:

1. What is the optimal balance and receptor potency of GLP-1
and glucagon in a long-acting co-agonist, to minimise
adverse effects and to optimise efficacy (Figure 2)?

2. Does GLP-1/glucagon co-agonism offer long-lasting and
enhanced efficacy for lowering blood glucose over that of
GLP-1 analogues alone?

3. What are the optimal drug characteristics of a GLP-1/
glucagon co-agonist for the treatment of NAFLD via
hepatic GCGR agonism?
Frontiers in Endocrinology | www.frontiersin.org 8
4. Are there long-term effects on lean mass with the co-agonists,
and if so, can this be prevented?

5. Will the co-agonists inherit the favourable effects of GLP-1
analogues on prevention of cardiovascular events and
progression of kidney disease?
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