
Estimating Air Temperature and Its Influence on Malaria
Transmission across Africa
Tini Garske*, Neil M. Ferguson, Azra C. Ghani

MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom

Abstract

Malaria transmission is strongly influenced by climatic conditions which determine the abundance and seasonal dynamics
of the Anopheles vector. In particular, water temperature influences larval development rates whereas air temperature
determines adult longevity as well as the rate of parasite development within the adult mosquito. Although data on land
surface temperature exist at a spatial resolution of approximately 1 km globally with four time steps per day, comparable
data are not currently available for air temperature. In order to address this gap and demonstrate the importance of using
the right type of temperature data, we fitted simple models of the relationship between land-surface and air temperature at
lower resolution to obtain a high resolution estimate of air temperature across Africa. We then used these estimates to
calculate some crucial malaria transmission parameters that strongly depend on air temperatures. Our results demonstrate
substantial differences between air and surface temperatures that impact temperature-based maps of areas suitable for
transmission. We present high resolution maps of the malaria transmission parameters driven by air temperature and their
seasonal variation. The fitted air temperature datasets are made publicly available alongside this publication.
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Introduction

Malaria is one of the major health threats globally, causing an

estimated 220 million cases and 660 thousand deaths annually,

with 80% of the burden occurring in Africa alone [1]. The parasite

is transmitted by the Anopheles mosquito, with over 70 Anopheles

species able to act as efficient vectors [2]. Substantial improve-

ments in control of the disease have been achieved in the past

decade, primarily through distribution of long-lasting insecticide-

treated nets (LLINs) and use of indoor residual spraying with

insecticides (IRS) [1]. These interventions reduce mosquito

abundance by directly killing adult females and through their

repellent effect which results in an increase in the duration of the

gonotrophic cycle [3]. However, if such controls are relaxed

without underlying changes in the environment, vector abundance

can be expected to return to pre-intervention levels unless the

mosquito population is entirely removed. Thus understanding the

environmental factors influencing the intrinsic potential for

malaria transmission in the absence of control (i.e. the basic

reproduction number, R0) is important to determine appropriate

strategies to further reduce transmission and move towards local

elimination of the parasite.

Climate is one critical determinant of the suitability of

geographical locations to support Anopheles habitats. Mosquito

abundance is largely driven by rainfall patterns [4,5], but is also

dependent on temperature via complex influences on mosquito

population dynamics, as well as on parasite development within

the mosquito [6]. The duration of the aquatic stages of mosquito

development has been shown to depend strongly on water

temperatures in controlled laboratory experiments [7,8], whereas

the adult mosquito stages are dependent on ambient air

temperatures via temperature-dependent survival and biting rates.

Furthermore, parasite development within the mosquito is strongly

temperature dependent, thereby influencing malaria transmission

potential [6].

Two approaches have been employed in the literature to

incorporate the temperature dependence of malaria transmission

into models of climate suitability for malaria. Firstly, with

regression modelling techniques using temperature (among other

environmental data) as a covariate, empirical correlations can be

established [9,10,11,12,13,14,15,16,17,18]. Secondly, by using

mechanistic equations of the temperature dependencies of the

various stages, temperature can be incorporated into malaria

transmission models [6,19,20,21,22,23,24,25,26]. The latter

approach has the strength that it incorporates pre-existing

understanding of the temperature dependencies, taking into

account their highly non-linear nature. However, care should be

taken in choosing the appropriate temperature variable as there

are important differences between air and water temperatures

[27,28], indoor and outdoor air temperatures [29], as well as

diurnal fluctuations in temperature that have been shown to

influence disease dynamics [30,31]. In earlier work, these subtleties

were often ignored, with mean monthly air temperatures typically

being used [22,24,26], sometimes even to model the influence of

temperature on both aquatic and adult mosquito stages [6,19,25].

In more recent work, diurnal temperature variations have been
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incorporated by superimposing daily fluctuations between mini-

mum and maximum temperatures [20,31].

In recent years there have been substantial advances in mapping

the geographic distribution of malaria and its vector species,

driven by the availability of increasing amounts of computing

power required for geostatistical modelling and analysis and by the

availability of remotely-sensed climatic datasets

[11,15,20,32,33,34,35,36]. In particular the MODIS (MODerate

resolution Imaging Spectroradiometer) project has been a rich

source of climatic data, providing daily measurements of land

surface temperatures at a spatial resolution of approximately 1 km

globally since the year 2000 [37]. However, for the adult mosquito

life cycle, ambient air temperature is more relevant. Another

source of spatial data is the ERA project, which assimilates and

reanalyses global climate data in order to produce estimates of a

large number of atmospheric quantities, among them air

temperatures. However, whilst these are provided at high

temporal resolution, the spatial resolution is fairly low (0.75u, or

approximately 75 km) [38]. To our knowledge there are no higher

resolution data sources for air temperatures that have a shorter

than monthly timestep.

The aim of this study was to fill this data gap and generate

estimates of air temperatures for the African continent at a spatial

resolution of 1 km, and to use this dataset to calculate the several

crucial malaria transmission parameters that depend on air

temperatures. To this end, we fitted a linear multilevel regression

model to the air temperatures provided in the ERA dataset, using

datasets such as surface temperatures, vegetation indices and land

cover classifications as potential covariates, which we then

extrapolated to the higher spatial resolution at which these data

are available. We then defined the temperature suitability index

taking into account the mechanistic understanding of the

temperature dependence of several processes governing the adult

mosquito life cycle and, using the estimated air temperature

dataset, calculated these quantities across Africa throughout the

year accounting for diurnal [31] and seasonal temperature

variation.

Methods

Datasets and Data Preparation
Air temperature. The ERA Interim analysis [38] of the data

of the air temperature 2 m above ground level for Africa was

downloaded on a spatial grid of 1.5u by 1.5u resolution [39]. The

1113 grid locations which fall on the land mass of the African

continent were selected for inclusion in our model. 2 m air

temperature estimates were available at 0, 6, 12 and 18 UCT

(coordinated universal time) each day, and the lowest and highest

value for each day were selected to represent the minimum and

maximum daily temperatures for each location. Note that while

the dataset was also available at a higher resolution 0.75u, we

would not have been able to perform the model fitting with the

size of this dataset due to computational constraints.

Covariates. The MODIS instruments on the Terra and

Aqua satellites view the entire earth’s surface every 1 or 2 days and

take measurements in 36 spectral bands which are processed to

produce a range of products. We obtained data on land surface

temperature for day and night time [40], enhanced vegetation

index (EVI), middle infrared reflectance (MIR) [41] and land

cover classifications [42], all on a sinusoidal projection at

approximately 1 km spatial resolution.

Eight-day aggregate time series of land surface temperature,

containing measurements of both day and night time temperature,

are produced by both Terra and Aqua, which cross any given

location at different times of the day (products MOD11A2 and

MYD11A2). To approximate the minimum and maximum daily

temperatures, we combined the time series from Terra and Aqua

by selecting the maximum day time and the minimum night time

measurement for each time point and location. Measurements of

EVI and MIR are available as 16-day time series from both Terra

and Aqua (products MOD13A2 and MYD13A2), but are offset

against each other by 8 days, such that they can be combined to

yield 8-day time series. The IGBP global vegetation classification

scheme from Terra (MOD12Q1) was obtained for the year 2004,

which identifies 17 land cover classes [43].

Daily time series of estimated precipitation were obtained from

the RFE2 dataset produced by the US National Oceanic and

Atmospheric Administration [44]. These data are available on a

0.1u (,10 km) spatial resolution.

Altitude data at 300 ( = 1/120u, or approximately 1 km)

resolution (albeit on a different grid than the MODIS data) were

obtained from WorldClim [45,46].

Temporal and spatial smoothing. We obtained time series

of the day and night time air and surface temperatures, EVI, MIR

and rainfall datasets for the years 2003 to 2006. To achieve the

same temporal resolution for all datasets and to prepare data for

the Fourier transforms, we aggregated the daily time series of air

temperature and rainfall to a time step of 5.71 days, yielding 256

time points over the 4 years, whereas we interpolated the surface

temperatures, EVI and MIR, which were obtained at 8 day

resolution, to the same resolution of 5.71 days. This re-sampling

avoids problems with recovering exact annual frequencies in the

Fourier transforms [47]. For further details about the Fourier

transforms and the impact of missing data see Text S1.

Data from all datasets at approximately 1 km spatial resolution

(all MODIS datasets and altitude) were averaged within a radius of

5 km around each location to provide a spatially smooth surface.

A sensitivity analysis for the choice of radius is presented in Text

S1. For interpolation to a higher resolution than the 0.1u
resolution on which the rainfall data were available, we used

rainfall data from the closest grid point of the 0.1u grid for each

location.

Estimation of Air Temperature from Land-surface
Temperature

To estimate air temperatures we fitted a hierarchical linear

regression model [48] to the air temperature estimates from the

ERA dataset, where the observations for individual time points

(level one) are nested within locations (level two), i.e., for each

location there are several observations at different time points.

In the model fitting, we employed a fairly exhaustive variable

selection procedure to select the best model. With the size of the

dataset fitted to and the large number of potential covariates fitting

all possible model structures in the full hierarchical model

framework was not computationally feasible. Instead, we broke

the procedure down into several steps, each of which less

computationally demanding [48].

Let yjt denote the air temperature at location j at time t. To

predict this we utilise both time-varying and non-time-varying

covariates (see Tables 1 and 2). Let xjtk denote covariates that vary

over time, where k indexes the covariates, and zj‘ denote the

covariates that do not vary by time where l is an index for the

covariates.

Firstly we fitted a model only including the time-series variables

and their random slopes,

Air Temperature and Malaria Transmission in Africa
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yjt~c�00z
X

k

c�k0xkjtzu0j �z
X

k

u�kjxkjtzRjt, ð1Þ

where c�
00

andc�
k0

are the fixed effect parameters, u�0j are random

intercepts, u�kj are random slopes associated with the time-series

variables xkjt and Rjt is the error term.

We fitted models that include all possible combinations of the

time series variables with and without allowing for a random slope

for each of the included variables. Let K be the number of time

series variables available (here, K~5), and n the number of time

series variables included in a model. There are
K

n

� �
different

variable combinations in which nƒK variables can be included,

and 2n models for each of these combinations, as for each variable

a random slope can be included or not. This gives 243 different

models for K~5 time series variables. Note that all of these

models included a random intercept. Of these models, the best was

selected based on the Bayesian Information Criterion (BIC) [49].

For the random intercept and each random slope included in the

best model, we obtained estimates of the random effects u�kj ,

k~0, . . . K at each location.

Next, in order to explain the random effects, we fitted ordinary

linear models to the estimates of each of the random effects, using

all the fixed effect covariates as potential explanatory variables:

u�kj~~cck0z
X
‘

ck‘zj‘zukj , ð2Þ

where k~0 . . . K . Here ~cck0 is the intercept, ckl are the slope

Table 1. Coefficients (95% CIs) of time series and location based variables, interactions between these as well as variances of the
random effects for the model fitted to night time air temperatures.

regression
coefficients Interaction terms with time series variables

night surface
temperature

day surface
temperature EVI MIR rainfall

Intercept 60.5 (56–65.1) x x x x x

night surface temperature 27.2 (27.9–26.5) x x x x x

day surface temperature 3.51 (3.16–3.86) x x x x x

EVI 24.4 (25.6–23.1) x x x x x

MIR 28.4 (210–26.9) x x x x x

rainfall 20.5 (20.85–20.15) x x x x x

lat 1.41 (1.01–1.81) – 20.19 (20.25–20.13) 20.42 (20.57–
20.27)

0.54 (0.38–0.7) –

lon 20.15 (20.49–0.19) 20.37 (20.43–20.32) 0.244 (0.195–0.292) 0.29 (0.17–0.41) 20.3 (20.43–
20.17)

–

abs(lat) 27.4 (28–26.8) 1.26 (1.15–1.36) – 0.7 (0.51–0.89) 0.91 (0.67–1.15) 0.243 (0.2–0.286)

mean night surface temperature 23.4 (24–22.7) 0.7 (0.57–0.83) 20.53 (20.59–20.47) 0.32 (0.18–0.45) 1.36 (1.09–1.62) 0.106 (0.06–0.152)

mean day surface temperature 22.95 (23.42–22.48) 0.7 (0.6–0.79) – – 0.51 (0.32–0.69) –

mean EVI 21.7 (22.3–21.2) – – 0.56 (0.33–0.8) – –

mean MIR 24.6 (25.06–24.14) 0.56 (0.47–0.65) – 1.63 (1.36–1.9) – 20.21 (20.26–20.15)

mean rainfall 0.32 (0.04–0.59) – – – – 20.098 (20.138–
20.057)

altitude 23.5 (23.92–23.08) 0.69 (0.6–0.78) 20.34 (20.4–20.28) – 0.88 (0.7–1.07) 0.124 (0.089–0.158)

evergreen broadleaf forest 20.19 (20.5–0.11) 0.08 (0.02–0.15) – – 20.4 (20.54–
20.26)

0.048 (0.026–0.07)

deciduous broadleaf forest 20.24 (20.41–20.06) 0.134 (0.087–0.182) – – – 20.034 (20.052–
20.017)

closed shrubland – – – – – –

open shrublands 2.34 (1.95–2.72) 20.08 (20.13–20.03) 20.165 (20.208–
20.123)

20.69 (20.82–
20.55)

20.63 (20.76–
20.49)

–

woody savannas – – – – – –

savannas – – – – – –

grasslands 20.36 (20.51–20.22) – – – – 0.038 (0.017–0.059)

croplands 0.13 (20.03–0.3) – 20.099 (20.138–20.06) – – –

barren or sparsely vegetated 3 (2.3–3.6) – 20.26 (20.33–20.2) 22.03 (22.31–
21.75)

20.75 (20.97–
20.53)

0.399 (0.35–0.449)

variance of random effects 17 0.57 0.36 1.6 2 0.045

x indicates interaction terms not considered.
– indicates variables not included in the final model.
doi:10.1371/journal.pone.0056487.t001
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parameters and ukj is the component of the random intercept and

slopes that cannot be explained by the static covariates zj‘. While

ukj is technically an error term in equation (2), this very parameter

is the random slope in the full model after inserting this back into

equation (1) to obtain the final model. For variable selection, we

fitted all 2m possible combination of variables (where m is the

number of potential static covariates z‘j , ‘~1 . . . m) and selected

the best model based on the BIC for each u�kj . Inserting equation

(2) into equation (1) returns the final model:

yjt~c00z
X
‘

c0‘z‘jz
X

k

ck0xkjtz

X
k‘

ck‘z‘jxkjtzu0jz
X

k

ukjxkjtzRjt

ð3Þ

where

c00~c�00z~cc00, k~0 . . . K : ð4Þ

While this 2 step approach yields the same model structure as

could be obtained using the full hierarchical model from the start,

estimating the parameters in the 2 step approach is not statistically

Table 2. Coefficients of time series and location based variables, interactions between these as well as variances of the random
effects for the model fitted to day time air temperatures.

regression
coefficients Interaction terms with time series variables

night surface
temperature

day surface
temperature EVI MIR rainfall

Intercept 41.1 (36.6–45.7) x x x x x

night surface temperature 22.4 (23.1–21.6) x x x x x

day surface temperature 2.44 (2.05–2.83) x x x x x

EVI 21 (22.3–0.4) x x x x x

MIR 27.5 (28.8–26.3) x x x x x

rainfall 20.73 (21.07–20.39) x x x x x

lat 0.2 (20.24–0.64) 0.2 (0.13–0.26) – 20.17 (20.3–
20.05)

0.46 (0.29–0.63) –

lon 0.09 (20.28–0.47) 20.33 (20.39–20.27) 0.152 (0.104–0.2) 0.18 (0.08–0.28) 20.33 (20.47–
20.19)

–

abs(lat) 25 (25.5–24.5) 0.83 (0.73–0.93) 0.36 (0.28–0.44) 0.44 (0.27–0.62) – 0.14 (0.09–0.19)

mean night surface temperature 23.8 (24.5–23.1) 0.48 (0.37–0.6) 20.17 (20.24–20.11) 0.55 (0.33–0.77) 1.12 (0.94–1.31) 0.16 (0.1–0.22)

mean day surface temperature 0.5 (20.1–1) 0.15 (0.06–0.24) – 20.63 (20.79–
20.47)

0.38 (0.19–0.57) 20.121 (20.155–
20.086)

mean EVI – – – – – –

mean MIR 23.3 (23.8–22.8) – 0.42 (0.32–0.51) 1.03 (0.8–1.27) – –

mean rainfall 1.6 (1.1–2.2) 20.25 (20.36–20.14) – 20.22 (20.37–
20.06)

– –

altitude 23.3 (23.8–22.8) 0.42 (0.34–0.5) – 0.22 (0.07–0.38) 0.75 (0.57–0.92) 0.077 (0.035–0.119)

evergreen broadleaf forest 0.28 (20.02–0.58) – – – 20.68 (20.84–
20.51)

–

deciduous broadleaf forest 0.28 (0.16–0.39) – – – – 20.032 (20.053–
20.012)

closed shrubland – – – – – –

open shrublands 1.54 (1.24–1.84) – 20.28 (20.34–20.23) 20.29 (20.39–
20.19)

– 20.093 (20.12–
20.065)

woody savannas 1.07 (0.77–1.38) 20.13 (20.19–20.08) – 20.14 (20.22–
20.06)

– –

savannas 20.01 (20.26–0.23) – – 0.23 (0.14–0.32) – –

grasslands – – – – – –

croplands – – – – – –

barren or sparsely vegetated 20.4 (21–0.2) 0.36 (0.27–0.44) 20.57 (20.67–20.47) – 0.98 (0.77–1.19) 0.124 (0.08–0.167)

variance of random effects 19 0.49 0.42 0.75 2.2 0.063

x indicates interaction terms not considered.
– indicates variables not included in the final model.
doi:10.1371/journal.pone.0056487.t002
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efficient, and therefore, we finally re-fitted the full model (3) in a

single-step, including only the variables and interaction terms

identified in steps 1 and 2. In order to assess if the level-two

variables z‘j explain the step-1 random effects u�kj sufficiently, such

that the remainder ukj was small, we also fitted the full model, but

with each random slope excluded separately and performed a

deviance test to assess significance of the excluded random slope.

Model fitting was undertaken using the lme4 package in the R

software version 2.13.0.

Model Validation and Extrapolation to Higher Resolution
To validate the model fit, we re-fitted the models to a validation

dataset containing 90% of the data (excluding the full time series of

a randomly chosen 10%). We then extrapolated the validation

model to the excluded locations to obtain estimates of the air

temperature at these locations by using the parameter estimates

obtained from the validation model in conjunction with the values

of the covariates at the locations excluded in this fit. We compared

the obtained air temperature estimates with the input data as well

as assessing the model fit to the full dataset.

A complication for applying the model to non-fitted locations

was that the random effects were only estimated for the locations

the model was fitted to, so they needed to be extrapolated to any

further locations of interest first. To achieve this, we used ordinary

kriging to make use of the spatial correlations between the

estimated random effects [50]. To this end, we fitted functional

forms of the exponential type to the observed variograms,

described by

c(d)~
0 ifd~0

nzs 1{ exp { d
r

� �� �
ifdw0,

(
ð5Þ

where d is the distance (here measured in u latitude/longitude),

c(d) is the semivariance at distance d , and n, s and r are the

nugget, sill and range parameters of the model, respectively. We

then used these fitted variograms in the kriging. Briefly, the

random effect extrapolated to any new location i, ri is given by a

linear combination of the random effects rj at the grid locations

j~1 . . . N, ri~
P

j

wjrj . The weights wj are determined by

C : w~D ð6Þ

with C~

C11 . . . C1N 1

..

.
P

..

. ..
.

CN1 . . . CNN 1

1 . . . 1 0

0
BBB@

1
CCCA,w~

w1

..

.

wN

m

0
BBB@

1
CCCA and

D~

C10

..

.

CN0

1

0
BBB@

1
CCCA.

The Cij are the covariances between locations i and j, as

determined by their distance dij and the variogram c(dij) as

Cij~nzs{c(dij). The Lagrange parameter m is used to ensure

the estimate is unbiased via the condition
PN
j~1

wj~1; it can also be

used to estimate the error variance.

We used the same process, but with the final model fitted to the

full dataset, to extrapolate the model to the higher resolution at

which the covariates were available. Finally we used a Fast Fourier

Transform algorithm [51] to perform Fourier transforms of the

observed and estimated air temperatures as well as the covariate

time series, and reconstructed time series based on the constant

term and the annual and biannual frequencies to represent

smoothed overall seasonality trends. Further details of the Fourier

transforms and the identification of relevant frequencies are given

in Text S1.

Malaria Transmission Indices
In the Ross-Macdonald model for malaria transmission [52],

the basic reproduction number for malaria is given by

R0~
ma2bce{m EIP

rm
, ð7Þ

where m is the vector:host ratio, a the mosquito biting rate, b and c
transmission probabilities from host to vector and vector to host,

respectively, m the mosquito mortality rate, EIP the extrinsic

incubation period and r the recovery rate of the human host.

Here, the term e{m EIP describes the probability that an infected

mosquito will survive the incubation period, whereas 1=m is the

average duration of infectiousness given survival to the onset of

infectiousness, such that the average infectious period of any

mosquito is determined by dI~e{m EIP=m. The average number of

blood meals an infected mosquito takes during its infectious period

is nb~ae{mEIP=m. The dependence of R0 on air temperature can

be summarised by the temperature dependence in this quantity

(termed the temperature suitability index):

z(T)~
a(T)2e{m(T) EIP(T)

m(T)
, ð8Þ

(note that this definition differs slightly from that used in [20]).

To illustrate the effect that temperature variation can have on

malaria transmission, we calculated these quantities across Africa

at high resolution taking into account the diurnal cycles and

seasonality in temperature. Whilst temperature could also

influence the vector to host ratio m, this is normally dominated

by the dependence on rainfall. Furthermore any temperature

dependence on mosquito population size is largely an effect of

water temperatures governing the larval development and

therefore not well represented by the air temperature dataset

considered in this study.

Biting rate. The frequency of biting is largely determined by

the time it takes the mosquito (i) to search for a host and attack, (i)

to digest a blood meal, and (iii) to search for a suitable oviposition

site. While the first and third phases together take approximately

24 h irrespective of temperature, the second phase exhibits strong

temperature dependence, although data characterising this

dependence is sparse in the recent literature. However, data for

An. maculipennis, a vector similar to Anopheles gambiae [53], at a

relative humidity of 70 to 80% suggests a biting rate dependence

on temperature of

a(T)~ max 0, 1z
36:5

T{9:9

� �{1
 !

, ð9Þ

where temperature T is measured in uC and the time unit is days

[21,54,55]. For simplicity, we neglect the presence of non-human

potential hosts and assume that all bites are on humans.

Extrinsic incubation period. Once the parasite has entered

the mosquito, it needs to complete a number of developmental

stages before it can be transmitted on to a human host. To

Air Temperature and Malaria Transmission in Africa
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calculate the extrinsic incubation period of Plasmodium falciparum in

the mosquito, we use a widely used linear functional form for the

dependence of the parasite development rate on temperature,

r(T)[6]

r(T)~ max 0,
T{16

111

� �
: ð10Þ

The extrinsic incubation period EIPcan then be determined by

solving the integral

ðEIP

0

r(T(t))dt~1: ð11Þ

Extrinsic infectious period. Assuming that mosquitoes

experience a temperature-dependent death rate, m(T) given by

m(T)~ {4:4z1:31T{0:03T2
� �{1

6½ �, ð12Þ

the probability that a mosquito survives the incubation period is

given by

psurvival~ exp {

ðEIP

0

m(T(t))dt

� 	
: ð13Þ

The remaining life expectancy A following onset of infectiousness,

given that the mosquito has survived the extrinsic incubation

period EIP, is then

A~

ð?
0

exp {

ða

0

m(T(t{EIP)dt

� �
da: ð14Þ

The mean duration of infectiousness of mosquitoes, termed

extrinsic infectious period, is therefore given by dI~psurvivalA.

Number of infectious bites and temperature suitability

index. The number of infectious bites per infected mosquito nb

is defined as the product of the duration of the infectious period

and the daily average biting rate at the time of the onset of

infectiousness, a fairly accurate approximation given that the

typical duration of infectiousness is only a few days and the linear

dependence of the biting rate on temperature. In order to calculate

the temperature suitability index z we multiply this by the biting

rate at the time of infection of the mosquito.

Diurnal temperature curves. To calculate both extrinsic

incubation and infectious periods, we use temperature curves that

take into account the diurnal variations as well as the seasonal

changes. The diurnal temperature cycle is modelled according to a

sine wave during day time, and exponential decay at night [31,56]

as

T(t)~Tminz Tmax{Tminð Þ sin p
t{trise

Dz2a

� �
fortriseƒtvtset, ð15Þ

T(t)~Tminz Tset{Tminð Þ exp {b
t{tset

24{D


 �
fortsetƒtvtrise,ð16Þ

where t is the time of day, trise and tset are the times of sunrise and

sunset.T(t) is the temperature at time t, and Tset is the

temperature at sunset. D is the number of hours of daylight, and

a~1:86 and b~2:2 are model parameters as fitted by Parton and

Logan [56]. We use the temperature measurement during the day,

Tday, for Tmax, whereas Tmin~
Tnight{Tsete{b

1{e{b such that the lowest

temperature reached in the diurnal curve is the night-time

temperature measurement, Tnight. Sunrise and sunset times for

each day of the year and location are calculated according to

[57,58]. Temperature curves are constructed in hourly intervals

over the year for each location, using the smoothed day and night

time temperatures obtained from the Fourier transforms for

modelled air temperatures including the constant term as well as

the annual and biannual modes.

In our calculations, mosquitoes are infected each day at

midnight. For each of these mosquitoes the duration of the

extrinsic incubation period, the probability of survival and the life

expectancy after the onset of infectiousness are calculated based on

the hourly temperature curves for any given location and season.

For computational purposes we incorporate a maximum mosquito

life span of 60 days.

Results

Relationship between Land Surface and Air Temperature
The observed air temperatures differ from the corresponding

land surface temperatures in the same location in a complex

manner. During the night, mean surface temperatures across the

year are below the corresponding mean air temperatures, whereas

during the day, they tend to be considerably higher than the

corresponding mean air temperatures in most locations apart from

parts of central western Africa (Figure 1). Furthermore, there is

additional variation in the difference between air and surface

temperatures over calendar time (Figure 2). For example, in

Figure 2F (which refers to location L3 in Figure 1B), the observed

surface temperatures are higher than the observed air tempera-

tures throughout the year, but the difference between surface and

air temperatures is much higher during summer than during

winter.

The best fitting model fitted to both the night and day air

temperature time series included night and day surface temper-

ature, EVI, MIR and rainfall as time series and latitude, longitude,

altitude and various land cover classifications as static variables as

well as interaction terms between the time series and static

variables. A random slope and random effects for all time series

variables were also included (Tables 1 and 2).

The annual mean of the estimated air temperatures reproduced

the observed air temperatures near perfectly, and the correlations

between the observed and estimated air temperature time series

were much higher than those between the observed air and surface

temperatures (Table 3). This could also be seen in the time series

of the differences between estimated and observed air tempera-

tures (red lines in Figure 2), which show fast fluctuations around

the mean value of 0, but little seasonal variation, demonstrating

that the seasonal patterns were captured very well by our model. It

is exactly these seasonal patterns that were captured in the Fourier

transforms, which show annual amplitudes of temperature

variation close to 0 in the equatorial region, increasing to around

10 in southern and up to 14uC in northern Africa, with biannual

amplitudes generally considerably smaller apart from some areas

in eastern Africa where the biannual modes were stronger than the

annual modes (Figure 3).
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Model Validation
For model validation we compared the output of the model

fitted to the full dataset at 1113 locations on a 1.5u grid to that of

the validation model fitted to the data from 90% of the locations in

the full dataset. Variograms of the random effects obtained by

fitting to the full dataset are very similar to those obtained by

fitting to the validation dataset (see Table S1 as well as Figures S11

and S12 in Text S1).

We extrapolated the validation model to those locations that

were excluded (using the variograms obtained from the validation

model) and compared the model output from the full model at

these locations with the extrapolation obtained from the validation

model to assess the magnitude of the errors made in the

Figure 1. Annual mean differences between observed surface and air temperature during night (left) and day (right). Locations L1, L2
and L3 at latitudes 19.5, 0, and 225.5 and longitudes 0. 19.5 and 25.5, respectively, give the locations for the time series shown in Figure 2.
doi:10.1371/journal.pone.0056487.g001

Figure 2. Differences between surface and air temperatures over time for three selected locations. Locations as marked in Figure 1: L1
left (panels A and D), L2 middle (panels B and E) and L3 right (panels C and F), respectively, for night time (top: panels A, B, C) and day time (bottom:
panels D, E, F). Red lines for difference between fitted and air temperatures, black lines for difference between surface and air temperatures.
doi:10.1371/journal.pone.0056487.g002
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extrapolation process. The correlations between the random

effects of the full and extrapolated validation model are positive

throughout, but variable in magnitude (see Table 4 and Figures

S13 and S14 in Text S1). The variances of the random effects

estimated in the full model at the locations excluded in the

validation dataset were considerably larger than those extrapolat-

ed from the validation model (see Table 5). These results

demonstrate that the random effects do indeed contain a

substantial amount of spatial information which we can recover

by extrapolation. However, there is also a component that cannot

be explained spatially and is therefore lost in the extrapolation

process (see Figures S15 and S16 in Text S1).

We then proceeded to compare the temperature data and

estimates from the full and validation model at the 10% of

locations excluded from the validation dataset. We used the raw

temperature time series aggregated to 64 time points per year

(from the input data or as estimated by the models) and the

temperature time series smoothed by Fourier transform (from the

Figure 3. Fitted air temperature in 6C extrapolated to a 0.16 grid. Mean temperatures (A and D) as well as the amplitudes of the annual (B
and E) and biannual (C and F) modes of the Fourier transform for night (top) and day time (bottom), respectively.
doi:10.1371/journal.pone.0056487.g003

Table 3. Temperature ranges and correlations between air and surface temperatures across Africa.

median (95% range) of

temperature in 6Celsius
correlation with air temperature
(95% CI)

correlation of the mean over the
year with mean air temperature
(95% CI)

night air temperature 20.8 (6.0–29.5) – –

night surface temperature 17.5 (1.7–24.4) 0.881 (0.880–0.882) 0.84 (0.82–0.86)

fitted night air temperature 20.9 (6.3–29.1) 0.967 (0.967–0.967) 1.00 (1.00–1.00)

day air temperature 29.2 (17.0–41.3) – –

day surface temperature 34.6 (19.8–52.0) 0.778 (0.777–0.780) 0.70 (0.67–0.72)

fitted day air temperature 29.1 (17.5–40.9) 0.961 (0.961–0.961) 1.00 (1.00–1.00)

Data are based on the time series between 2003 and 2006 aggregated to 64 time points per year, showing correlations (95% confidence intervals based on 1000
bootstrap samples) between time series and between means of the time series for night and day time.
– for correlations of a dataset with itself.
doi:10.1371/journal.pone.0056487.t003
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input data or estimated by the models), which describe the typical

seasonal mean temperature. As the raw observed temperature

time series is the ‘‘gold standard’’ that we aimed to predict with

our model, we evaluated the differences between this and the

estimated raw and smoothed time series, using the root mean

squared differences to quantify the goodness of fit (Table 6). The

fitted time series differed by typically around 62uC from the raw

observed time series – a substantial difference. When considering

the differences between the smoothed time series and the raw

observed temperature time series, it becomes clear that there is a

lot of weekly variation around the seasonal mean. This weekly

variation is not captured very well by the model fits, but the

smoothed versions of the estimated temperatures from both the

full and the validation model are very similar to the smoothed

observed temperature time series, with in general less than 0.2uC
difference between the two. For the extrapolated validation fit

there was typically a less than 0.6uC difference for both day and

night time temperatures.

Malaria Transmission
The estimated annual mean mosquito life span ranges from

close to zero in some highland regions to around nine days, with

durations of over a week in most of sub-Saharan Africa (Figure 4A).

The annual mean of the extrinsic incubation period for Plasmodium

falciparum ranges from around 6 days in the Sahel and sub-Sahel

regions, through 20 days in parts of Northern and Southern

Africa, to 60 days or more in highland areas (Figure 4B).

Combining the extrinsic incubation period with temperature

dependency in mosquito survival, we estimated the longest

infectious periods (and shortest incubation periods) are to be

expected in West, Central and Eastern Africa (Figure 4C),

coincident with areas known to support high malaria transmission

intensity. The average biting rate (Figure 4D) echoes the patterns

of temperature with the highest biting rates in the Sahara desert

(ignoring other factors that determine mosquito abundance).

Combining this with the duration of the infectious period we get a

concentration of the number of infectious bites per infected

mosquito in the belt between 5u and 15u latitude as well as further

south on the East coast of the continent, and even more focus in

West and East Africa for the temperature suitability index

(Figure 4E and F).

The seasonal variation of incubation and infectious periods

show the complex interplay of the temperature dependencies (see

Figure 5 for three selected locations or Movie S1). Short infectious

periods (and therefore lower transmission intensities) are observed

whenever the incubation periods are long, due to the low

probability that the mosquito survives to become infectious.

However, short incubation periods do not always lead to long

infectious periods, as in areas where more extreme temperature

fluctuations are observed diurnally and seasonally there is a

competing risk that mosquitoes will die more quickly. When taking

the biting rates into account to calculate the number of infectious

bites and the temperature suitability index, the overall seasonal

patterns remain similar to that of the infectious period, but are

modulated somewhat between locations.

To demonstrate the importance of using the correct type of

temperature data we evaluated the malaria transmission indices

using land surface temperatures as input data, showing that the

results are strikingly different in magnitude as well as in seasonal

patterns (see Files S1 and S2). This difference is mainly caused by

the reduced mosquito life span due to the very high day-time land

surface temperatures in many areas, and means that the area of

suitability would be predicted to be much more concentrated on

Table 4. Correlations (95% CIs from 1000 bootstrap samples)
between the fitted and extrapolated random effects for
models fitted to night and day time temperatures.

night day

Intercept 0.57 (0.43–0.68) 0.70 (0.57–0.80)

Night surface temperature 0.68 (0.59–0.77) 0.73 (0.62–0.83)

Day surface temperature 0.62 (0.46–0.77) 0.60 (0.46–0.74)

EVI 0.47 (0.26–0.63) 0.58 (0.41–0.71)

MIR 0.40 (0.22–0.56) 0.45 (0.30–0.59)

Rainfall 0.68 (0.57–0.78) 0.75 (0.61–0.85)

Fitted random effects are obtained from the full model, whereas extrapolated
random effects are from the validation model extrapolated to the excluded 10%
of locations.
doi:10.1371/journal.pone.0056487.t004

Table 5. Variances of the random effects of the locations excluded from the 90% dataset for the model fitted to all locations, and
the model fitted to 90% of locations, extrapolated to the remaining 10% of locations.

Intercept
Night surface
temperature

Day surface
temperature EVI MIR Rainfall

Night day night day night day night day night day night day

full fit 17 19 0.57 0.45 0.41 0.44 1.3 0.58 1.9 2.4 0.04 0.056

extrapolation 6.5 11 0.22 0.27 0.14 0.22 0.36 0.27 0.42 0.81 0.021 0.036

doi:10.1371/journal.pone.0056487.t005

Table 6. Root mean squared differences between the raw
observed temperature time, series aggregated to 64 points
per year, and the estimated time series from both the full fit
and the validation fit, as well as smoothed versions of the raw
data, full fit and validation fit.

night day

Raw smoothed raw smoothed

observed – 1.58 – 2.03

full fit 1.50 1.70 1.72 2.15

validation fit 2.02 2.15 2.21 2.54

Results are shown only for the 10% of locations excluded from the validation
dataset.
A lower root mean squared difference indicates a better fit.
doi:10.1371/journal.pone.0056487.t006
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tropical regions in Central and West Africa when using land

surface temperatures.

Dataset Publication
The Fourier transforms of the estimated air temperatures are

published as Datasets S1 and S2 for night and day time

temperatures, respectively, at a resolution of 0.1u longitude and

latitude; for information on recovering time series from the Fourier

transforms see Text S1 and the worked examples in R and Excel

in Calculations S1 and S2, respectively. For higher resolution

datasets at 300 = 1/120u or datasets of the ecological covariates

used in the model fitting please contact the authors.

Discussion

Previous studies have demonstrated the importance of temper-

ature on the developmental stages of Anopheles species [7,8,54]

which in turn partly determine the suitability of localities for

malaria transmission [20]. Whilst differences between land-

surface, air and indoor temperature have been recognised

[29,59], the absence of high resolution (both spatially and

temporally) data on air surface temperature has limited translation

of these results to maps of areas of malaria transmission suitability.

Our results demonstrate that air and surface temperatures across

Africa differ substantially, as demonstrated previously for specific

locations [59]. We find that air temperatures can be predicted with

a high degree of accuracy at a continental scale using surface

temperatures and other climatic and ecological covariates,

consistent with previous studies that identify relationships between

vegetation, land cover and air temperature [60,61,62,63].

Although temperature and other climatic variables fluctuate

substantially on a daily or weekly basis in addition to the more

regular diurnal fluctuations, the average seasonal pattern is often

more relevant to understand the impact of interventions against

malaria. These can be obtained by smoothing time series through

Fourier transforms, and reconstructing them by only including the

modes of interest. Our results demonstrate that the mean and the

annual and biannual modes give a good representation of

seasonality across Africa while smoothing out the high frequency

fluctuations. The use of Fourier transforms to represent the time

series also means that the size of the dataset can be reduced

substantially, as there are only 5 parameters necessary for each

location to describe the mean and first two modes, as opposed to a

much larger number of time points if the raw time series are used.

This becomes important when large spatial areas are to be

represented at high spatial resolution.

The validation of our model fit revealed substantial deviations

from the raw temperature time series. This is primarily due to

weekly fluctuations that are not captured well. However, when

comparing the smoothed time series derived through Fourier

Transforms, these differences are substantially reduced, showing

that our model captures the overall seasonal patterns well. It is

important to keep this in mind and only use datasets such as ours

when the random weekly fluctuations are not relevant, for instance

if the typical pattern across several years is of interest, in which

Figure 4. Maps of the mean annual malaria transmission parameters. (A) average mosquito life span, (B) mean extrinsic incubation period
(cut off at 60 days), (C) mean extrinsic infectious period, (D) mean biting rate, (E) mean number of infectious bites per infected mosquito and (F)
temperature suitability index.
doi:10.1371/journal.pone.0056487.g004
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case the short-term random fluctuations would be a nuisance

rather than useful information.

To assess the impact of temperatures on malaria transmission

we focused on the adult mosquito stages of the transmission cycle,

investigating the effect of air temperatures on mosquito survival,

biting rate and parasite development inside the mosquito [6,64],

using a similar approach to that used in other work [20]. However,

our definition of the temperature suitability index differs from that

study in that we have not taken into account the effect that

mortality temperature dependence has on mosquito abundance.

This is because we felt that mosquito abundance is much more

dominated by factors such as rainfall patterns. However, the

recruitment rate of adult mosquito emergence will also depend on

temperatures, albeit water rather than air temperatures. Here we

have focussed on the substantial temperature dependence of the

biting rate, which causes a concentration of the temperature

suitability in the Sahel and sub-Sahel belt as there the trade-off

between mortality and biting rates, which both increase with

increasing temperature, appears to be optimal.

The areas that we identified with a high average temperature

suitability index, indicating the potential for malaria transmission

based on temperature, broadly encompass the areas in which

malaria is endemic [65]. However, temperature suitability is only

one environmental factor that determines the potential for malaria

transmission and thus some areas that are identified here do not in

reality support high levels of malaria. In particular, temperature

alone identifies parts of the Horn of Africa (Southern Sudan,

Somalia, Northern Kenya and parts of Ethiopia) as having higher

potential for transmission than is truly the case. Furthermore other

climatic factors influence Anopheles population dynamics, includ-

ing the dependence of larval development dependent on water

temperatures and vector abundance on the availability of suitable

habitats which is related to rainfall patterns [4,5].

We used the modelled air temperature time series fitted to

approximately weekly temperature data smoothed by Fourier

transforms to evaluate the impact of temperature on the malaria

transmission potential. We also incorporated diurnal fluctuations

which are important for malaria transmission dynamics [31], using

hourly timesteps in the calculations of the malaria transmission

indices in which we interpolated between the smoothed day and

night time temperatures. While our approach in determining

malaria transmission intensity is similar to that used in [20], there

long-term monthly mean, minimum and maximum temperatures

were used, which were interpolated to obtain smooth temperature

curves. In contrast, our approach is more likely to give a realistic

picture of the actual seasonality due to the richer temperature data

used as input. A further difference is the period of input data.

Whilst [20] used data from 1950 to 2000, which would be

appropriate to explain historical patterns of malaria, our datasets

cover the period from 2003 to 2006, making our study well-suited

to explain currently observed patterns of malaria transmission, and

for use in projections into the future.

In summary, we have estimated air temperatures at spatial

resolution of up to 30 arcseconds longitude and latitude (approx.

1 km) and published these datasets for use in further research. We

then used the synthetic datasets we generated to highlight the areas

across Africa where temperature profiles are favourable to malaria

transmission. Combined with other climate-dependent factors

influencing malaria transmission intensity, such as the abundance

of competent vector species, these data can give insights into

geographic variation in malarial transmission intensity patterns of

seasonality that can help to inform malaria control and are crucial

Figure 5. Seasonality of temperatures as well as several malaria transmission parameters for three selected locations. (A) Daily
minimum (solid lines) and maximum (dashed lines) air temperatures, (B) extrinsic incubation period, (C) extrinsic infectious period, (D) daily biting
rate, (E) average number of infectious bites per infected mosquito and (F) temperature suitability index. Locations as marked in Figure 1: Black, red
and green lines for L1, L2 and L3, respectively.
doi:10.1371/journal.pone.0056487.g005
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for developing more sustainable vector control approaches such as

integrated vector management that are urgently needed in the face

of increasing resistance of mosquitos to conventional insecticides

[66].
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resurgence in the East African highlands: Temperature trends revisited.

Proceedings of the National Academy of Sciences 103: 5829–5834.

26. van Lieshout M, Kovats RS, Livermore MTJ, Martens P (2004) Climate change

and malaria: analysis of the SRES climate and socio-economic scenarios. Global
Environmental Change 14: 87–99.

27. Paaijmans KP (2010) Relevant microclimate for determining the development
rate of malaria mosquitoes and possible implications of climate change. Malaria

Journal 9: 1.

28. Paaijmans KP, Jacobs AFG, Takken W, Heusinkveld BG, Githeko AK, et al.

(2008) Observations and model estimates of diurnal water temperature dynamics
in mosquito breeding sites in western Kenya. Hydrological Processes 22: 4789–

4801.

29. Paaijmans K, Thomas M (2011) The influence of mosquito resting behaviour

and associated microclimate for malaria risk. Malaria Journal 10: 183.

30. Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, et al. (2010) Influence

of climate on malaria transmission depends on daily temperature variation.
Proceedings of the National Academy of Sciences 107: 15135–15139.

31. Paaijmans KP, Read AF, Thomas MB (2009) Understanding the link between

malaria risk and climate. Proceedings of the National Academy of Sciences 106:

13844–13849.

Air Temperature and Malaria Transmission in Africa

PLOS ONE | www.plosone.org 12 February 2013 | Volume 8 | Issue 2 | e56487



32. Gemperli A, Sogoba N, Fondjo E, Mabaso M, Bagayoko M, et al. (2006)

Mapping malaria transmission in West and Central Africa Tropical Medicine &
International Health 11: 1032–1046.

33. Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, et al. (2010)

The International Limits and Population at Risk of Plasmodium vivax
Transmission in 2009. PLoS Negl Trop Dis 4: e774.

34. Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, et al. (2009) A World
Malaria Map: Plasmodium falciparum Endemicity in 2007. PLoS Med 6:

e1000048.

35. Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, et al. (2004) A
Global Index Representing the Stability of Malaria Transmission. The

American Journal of Tropical Medicine and Hygiene 70: 486–498.
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