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H I G H L I G H T S
� The current methods of testing for the virus are RT-PCR and RAT. These test results may take up to 24 h. Recent studies and research have shown that lung images
show the presence or damage caused by the virus using machine learning techniques.

� Adversarial Attack is a major security threat in the domain of machine learning. Adversarial training is the most widely explored technique to defend against
adversarial attacks.

� High-level representation Guided Denoiser (HGD) architecture, another defensive technique, being suitable for high-resolution images, makes it a good candidate for
medical image applications.

� HGD architecture has been evaluated as a potential defensive technique for the task of medical image analysis with a new loss function.
� In a White box scenario considerable increase in accuracy is seen. However, in the black box setting, the defense fails to defend against adversarial samples.
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A B S T R A C T

Covid-19 has posed a serious threat to the existence of the human race. Early detection of the virus is vital to
effectively containing the virus and treating the patients. Profound testing methods such as the Real-time reverse
transcription-polymerase chain reaction (RT-PCR) test and the Rapid Antigen Test (RAT) are being used for
detection, but they have their limitations. The need for early detection has led researchers to explore other testing
techniques. Deep Neural Network (DNN) models have shown high potential in medical image classification and
various models have been built by researchers which exhibit high accuracy for the task of Covid-19 detection
using chest X-ray images. However, it is proven that DNNs are inherently susceptible to adversarial inputs, which
can compromise the results of the models. In this paper, the adversarial robustness of such Covid-19 classifiers is
evaluated by performing common adversarial attacks, which include the Fast Gradient Sign Method (FGSM) and
Projected Gradient Descent (PGD). Using these attacks, it is found that the accuracy of the models for Covid-19
samples decreases drastically. In the medical domain, adversarial training is the most widely explored technique
to defend against adversarial attacks. However, using this technique requires replacing the original model and
retraining it by including adversarial samples. Another defensive technique, High-Level Representation Guided
Denoiser (HGD), overcomes this limitation by employing an adversarial filter which is also transferable across
models. Moreover, the HGD architecture, being suitable for high-resolution images, makes it a good candidate for
medical image applications. In this paper, the HGD architecture has been evaluated as a potential defensive
technique for the task of medical image analysis. Experiments carried out show an increased accuracy of up to
82% in the white box setting. However, in the black box setting, the defense completely fails to defend against
adversarial samples.
(S. Eswaran).
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1. Introduction

Covid-19 [1], claimed to have origins in China, has been tormenting
the world since early December 2019. The outbreak has been so severe
that governments have had to impose strict travel bans and lockdowns to
restrict the movement of individuals. Studies show that the virus takes
anywhere between 7 and 14 days to mature within human bodies, and by
this time, the infected individuals have already spread it to three others
on average. The infection rate has been growing exponentially. The
current methods of testing for the virus are RT-PCR [2] and RAT [3]. The
accuracy of the tests is not well established, and results may take up to 24
h. There are several limitations to these methods as well. The availability
of testing kits, qualified professionals to collect samples, and assessing
large numbers of samples at labs are the main challenges. Recent studies
and research have shown that lung images show the presence or damage
caused by the virus. Chest X-Rays [4] turned out to be a good candidate
for detection of the virus. Radiologists can examine chest X-rays and can
speculate on the presence of the virus. The number of such qualified
radiologists is scarce.

Researchers have been exploring the use of Machine Learning in
detecting the virus [5, 6]. However, due to the unavailability of quality
datasets, the studies are still in a nascent form. These studies have been
relying on data manipulation techniques and augmentations to increase
the sample size. A pertinent question that often arises when Machine
Learning systems are introduced in the medical field [7] is about the risks
involved in allowing machines to work autonomously in making de-
cisions. Many autonomous robots are already in trials, and a major
breakthrough is with the FDA-approved IDx-DR [8] to perform diabetic
retinopathy. Such apprehensions are valid and highlight the need for
more research in addressing such security concerns. Countries like China,
Canada, Iran, and South Korea [9, 10] have already begun implementing
such Machine Learning models as part of testing protocols in select labs.
This paper explores the accuracy of such Machine Learning Models and
attempts to improve their robustness against adversarial attacks like the
Fast Gradient Sign Method and Projected Gradient Descent. A defensive
technique, High-Level Representation Guided Denoiser, has been evalu-
ated to defend against such attacks.

2. Literature survey

The identification of Covid-19 through chest X-rays is a relatively new
problem, with few published works giving positive results. Studies have
explored several architectures such as CNN, DarkNet, and Logistic
Regression for the purpose of classification using chest X-ray and CT scan
images. Countries like China, South Korea, and Canada have also been
testing the use of such models in real-time labs. Most of the studies
propose training multiclass classifiers since it is difficult to differentiate
between pneumonia and Covid-19. One of the biggest problems high-
lighted by these studies is the dataset constraint. In some studies, this
problem has been overcome with Transfer Learning, which yields better
results on smaller datasets. The results have been documented in the
survey paper [10].

Experiments performed in [11] indicate that medical images are more
susceptible to adversarial noise due to the nature of the medical images
and the Deep Neural Networks (DNNs) used for their classification. The
authors explain that when compared to normal images, less noise is
required to be added in the case of medical images for a successful
adversarial attack. This is because the attention of the model shifts to
regions that do not necessarily affect the classification. The paper also
demonstrates that DNNs used for medical imaging tasks are highly
vulnerable to adversarial samples due to overparameterization. This in-
dicates that the threat of Adversarial Attacks in the case of medical im-
aging analysis is very high.

The adversarial samples generated for one target model are highly
likely to fool any other model for the same application, irrespective of the
model architecture [12]. This is because the models trained for a specific
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application learn similar functions, and hence an attacker can perform a
successful adversarial attack without having direct access to the target
model just by creating their own model for the same application.

Many different methods of creating adversarial samples are discussed
by Ren et al. [13]. These include the FGSM attack, L-BFGS attack, Iter-
ative attacks, and Saliency map methods. FGSM attack is simple, in a way
that, rather than minimizing the loss by tuning the weights of the
network during backpropagation, the attack tunes the input data to
maximize the loss based on the same backpropagation gradients. In
simpler words, the input is changed in such a way that the loss is
maximum for the original class of the input.

The PGD attack, a white-box attack setup, is one of the most powerful
first-order adversaries [14, 15]. Formulating the PGD attack in itself is an
optimization problem. It attempts to find the perturbation that maxi-
mizes the loss of a model on a particular input while keeping the size of
the perturbation small. The L2 or L∞ norm of the perturbation is added so
that the content of the adversarial sample is the same as the clean sample.
PGD generated samples show a decline in the accuracy of the classifier
(from 87% to 46%). Adversarial training, a popular defense technique,
yields an accuracy improvement of only 64%.

Adversarial training involves training the model with adversarial
samples. This method has proved to highly increase the model accuracy.
However, it leads to a problem of label leaking wherein the new model
can classify adversarial samples correctly, but its accuracy decreases
when classifying clean images [16], hence a gain in robustness at the cost
of accuracy. High-Level Representation Guided Denoiser (HGD), a novel
defense architecture, has been proven to be an effective defense against
adversarial attacks [17]. Adversarial training takes a long time to train
the model and is computationally very expensive. Its output on a new
sample on which it was not trained is not authentic, i.e., it does not make
the model completely robust. The denoisers are like the first steps taken
towards making the model more robust.

Xiao et al. proposes a novel loss function that could be utilized by
existing denoisers to perform better. The new loss function uses the
reconstruction error at different higher-level representations of the image
in the target model architecture and helps in reducing the residual error
and guiding better training. The HGD aims to remove the high-level in-
fluence of adversarial noise. To test the novel loss function, the authors
used a DUNET, a denoising architecture, and trained it using the new loss
function. This paper uses HGD architecture in experiments to address the
problem of adversarial attacks in the medical domain. The chosen attacks
and defenses will be performed on the Covid-Net [18] model. The model
classifies chest X-ray images into 3 classes (Covid-19, No Disease, and
Pneumonia). It forms a good candidate since it achieves a high accuracy
of 92.6% and has a different architecture compared to the VGG19 sur-
rogate model.

3. Adversarial attack generation framework

The Covid-19 classifier can generate four different outcomes namely,
True Positive, True Negative, False Positive, and False Negative. Any
trained classifier will have inconsistencies with another trained classifier
who has complete authority on a subject, which we refer to as ‘Oracle’.
Humans, for example, can act as Oracles in a lot of circumstances. An
attacker might take advantage of these inconsistencies to cause the
trained classifier to make more errors. This section describes the crafting
of adversarial samples by the adversary. As referred to in the paper [19],
the adversarial sample generator framework consists of two major
operations:

a. Directional sensitivity estimation
b. Perturbation selection

The entire framework is diagrammatically represented in Figure 1.
The figure highlights the process of generation of adversarial samples for
image classification Deep learning models, which primarily consist of the



Figure 1. Adversarial example crafting framework [20].
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above-mentioned operations. The framework is for generation of
adversarial samples in white box setting. Going into the relevant details
of the framework:

Consider a Deep Neural Network F which has been trained on a
dataset D. Let θ be parameters of the model. Since a white-box setting is
being used, the ability of the adversary to generate adversarial samples is
limited by θ: Let X be a clean image sampled from the dataset D such that,
F(X) ¼ C1, where C1 belongs to C, where C is the set of class outputs. The
prime objective of the adversary is to generate an adversarial sample Xadv

from clean sample X (i.e.) Xadv ¼ X þ δ X such that, F (Xadv) ¼ C*, where
C* 6¼ C1. The output of F when adversarial samples are sent as input solely
depends on the objective of the adversary. To achieve this, the adversary
begins with the clean sample X and the two processes mentioned above:

a) Directional sensitivity estimation:

This is an evaluation process where the adversary estimates the sensi-
tivity of class change based on the features of the input. This is done by
identifying the data regions around the clean image sample in the image
space such that the trainedmodel F is sensitive to and is likely tomisclassify.

b) Perturbation selection:

The above sensitivity information of the model is then exploited to
select the most efficient noise δX such that when added to clean image X,
the model D gives out a wrong prediction. However, the degree of
perturbation δX must be controlled, i.e., the noise to be added must not
be detected by the human eye. Hence, the noise to be added must be as
minimum as possible and must also serve its purpose to fool Deep
Learning models. In order to achieve this, a norm ||.|| is defined to
measure the variance between two samples in the input domain. The
generation of adversarial samples based on the above constraint can be
treated as solutions to the optimization problem, which can be repre-
sented as given in Eq. (1).

Xadv ¼Xþ argminδXðkδXk : FðXþ δXÞ 6¼ FðXÞÞ (1)

The various techniques to generate adversarial samples tend to
approximate the solution to the above optimization problem and
generate an adversarial sample. The current techniques start off by trying
to identify the directional sensitivity of the model. They start with an
input sample X and tend to identify the dimensions in the input domain
such that a small perturbation added in those dimensions will result in an
adversarial sample. The identification of model sensitivity is performed
differently by different adversarial generation algorithms. FGSM and
PGD are the adversarial attacks that have been used to benchmark the
defense in this paper.
3

3.1. Fast Gradient Sign Method (FGSM)

In training a neural network, the updating of weights involves
choosing a new set of weights which decreases the loss of the model. This
is done by calculating the gradient of the loss with respect to the weights
of the model. Since the gradient gives the direction where the loss is
maximized, the weights are moved in the opposite direction to minimize
the loss at each step. The FGSM attack uses a similar principle to perform
the attack. To perform a misclassification, the attack aims to maximize
the loss by calculating the gradient of the loss with respect to the input
parameters which yields the direction in which the image should be
changed to maximize the loss. This is expressed as presented in Eq. (2).

x
0 ¼ xþ ε:signðrxJðΘ; x; yÞÞ (2)

where,

x0 is the resulting adversarial sample,
x is the original sample,
ε parameter controls the amount of noise added to the original sample.
y is the output of the model
Θ represents the model parameters
▽x J (Θ, x, y) is the gradient of loss w.r.t to x

Since this attack strategy requires access to the model, this kind of an
attack is a white-box attack. This process of generating adversarial
samples is a one-step process.
3.2. Projected Gradient Descent (PGD)

The PGD attack is an iterative white-box attack. This attack attempts
to maximize the loss in a number of iterations and hence produces
samples that are more likely to be misclassified by the model. To control
the amount of noise added to the image, a constraint such as the L∞ norm
is specified. Whenever the noise added violates the constraint, the noise
is projected back to the norm and the process continues. Since the
method tries to maximize the loss iteratively, it is a much stronger attack.
On the other hand, it is computationally costly to generate Adversarial
samples. The formula for PGD is given by,

x
0
tþ1 ¼Π

�
x
0
t þ ε:signðrxJðΘ; x0

; yÞÞ� (3)

where,

Π takes the projection in the specified norm.
x

0
t is the adversarial image generated at iteration t



Figure 3. Surrogate model architecture.
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ε parameter controls the amount of noise added to the original sample
y is the output of the model
Θ represents the model parameters
▽x J (Θ, x0

t, y) is the gradient of loss w.r.t to x
0
t

4. Adversarial defense framework

While discussing potential defenses against adversarial samples,
adversarial training is the first explored mechanism. Goodfellow et al.
[12], describe adversarial training in detail. Adversarial training involves
training the target deep learning model by introducing adversarial
samples in the training dataset and generating new adversarial samples
in each step of training with that state of the deep learning model at a
particular step. This increases the variance of the dataset and better
tuning of the model weights so that the degree of misclassification of
adversarial samples decreases. This leads to a better generalization of the
model. However, in doing so, there is a possibility that it decreases the
overall accuracy of the model.

Since an adversarial sample is created by adding controlled pertur-
bation (adversarial noise) to an existing clean sample, the use of Deno-
isers as a defense can be considered to make the model more robust. The
use of denoisers constitutes preprocessing based methods for defense
against adversarial samples. The adversarial samples are initially sent as
input to a filter which removes the adversarial effect of the added
adversarial perturbation. This preprocessed image is sent as input to the
image classification model. The denoiser based defense strategy used
here, in experiments, called High-Level Representation Guided Denoiser,
has been referenced from Fangzhou Liao et al [17].
4.1. High-Level Representation Guided Denoiser

The denoiser proposed by Fangzhou Liao et al. [17]. is different from
a trivial denoiser present today. Denoising autoencoders (DAE) are some
of the most popular denoising models. A DAE consists of an autoencoder
network. An autoencoder network is a multilayer perceptron that consists
Figure 2. Overview of t
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of twomajor segments, the encoder and the decoder. The encoder section
of the autoencoder reduces the dimension of the image to a
lower-dimension vector, known as the code. The decoder section of the
autoencoder tries to reconstruct the code back to the input. In a typical
denoiser network, updates to weights are based on the L1 norm of the
clean image and the image generated by the denoiser.

L ¼ ||X � X0 || (4)

In Eq. (4) X is the input clean image and X0 is the image generated by
the DAE. This loss is known as the pixel loss, as a pixel-to-pixel difference
is calculated. Denoisers that tune weights based on the pixel loss are
known as pixel-guided denoisers. For the image domain, the encoder and
the decoder are composed of CNN layers.

Due to the bottlenecking of the trivial DAEs (pixel-guided denoiser)
between the encoder and the decoder in reconstructing the input, i.e.,
lack of transmission of finer-level features from the encoder to decoder,
better autoencoder architectures have been considered. An enhanced
autoencoder architecture known as DUNET has been developed. A
DUNET overcomes the bottleneck problem of the DAE architecture by
having lateral connection between the encoder layer and the corre-
sponding decoder layer. Another key difference between both the ar-
chitectures is that the DUNET architecture learns the noise to be added to
he proposed system.



Figure 4. Adversarial sample generation.
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the input rather than recreating the input. The noise generated by the
DUNET architecture is then added to the adversarial image to remove the
adversarial effect. However, the loss function plays a key role in the
denoiser architecture. As described in Fangzhou Liao et al. [17], pixel
guided is unable to propagate the loss to the deeper layers in the network
due to the nature of the perturbation added. The degree of perturbation
added to the image is quite small to be captured by the pixel noise.
Fangzhou Liao et al. [17]. proposes a new type of loss function calcula-
tion that involves a high-level representation of the image. The refined
loss function proposed takes the form as stated in Eq. (5).

Ll ¼ ||fl(X) - fl(X1) || (5)

In Eq. (5), X is the clean image from the dataset. X1 is the recon-
structed image generated by the denoise when it receives adversarial
samples generated from clean image X. fl(X) is the high-level represen-
tation of the clean image X at layer l of the CNN and the fl (X1) is the high
representation of the image at layer l of reconstructed image X1. The
layer l used for loss calculation characterizes a different denoiser.

The logit level loss function is calculated as the difference between the
logit level representation of X and X1. These denoisers are known as Logit-
Guided Denoiser (LGD). In our experiments, another loss function which is
a combination of both the Pixel Guided Loss (PGL) and Logit Guided Loss
(LGL) has been compared. The new loss is specified in Eq. (6).

L ¼ L1 þ L2 (6)

The addition of PGL to LGL is based on the hypothesis that PGL will
contribute in the tuning of weights of the denoiser so that image
Figure 6. Adversarial Samples Generated by PGD. (a) Original clean ima

Figure 5. Adversarial Samples Generated by FGSM. (a) Original clean im
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generated would be better, getting rid of adversarial noise, and also not
distort image generated too much from the clean image.

5. Proposed methodology

This section describes the overall methodology which includes the
details of the dataset used in experiments and Surrogate model archi-
tecture which is a key component in the Generation of adversarial sam-
ples. This is followed by using the adversarial samples to perform attacks
and finally the defense methodology. Figure 2 depicts the overall flow of
the proposed system.
5.1. Dataset

One of the major challenges for Covid-19 classification is the avail-
ability of datasets. Since the disease has been recognized much recently,
there is scarcity in the number of Covid-19 positive Chest X-Ray images.
For all the experiments, images from the CovidX dataset have been used.
Compared to other datasets, at the time of this study, this dataset contains
the highest number of Covid-19 positive Chest X-Ray samples known at
the time of experiments. The dataset is composed of Chest X-Ray images
from 3 classes: Normal (No disease), Pneumonia and Covid-19. For
training the surrogate model, 4000 images of each class were included.
Since the original dataset only included 1600 images labeled as Covid-19
positive, image augmentations such as horizontal flipping, rotation etc.
were used to upscale the number to 4000.
5.2. Surrogate model

The surrogate model is a model on which the attacker performs the
white-box attacks to generate the adversarial samples. It is important to
note that the application of this model should be the same as of the target
model (such as Covid-19 classification) in order for the adversarial
samples to be transferable. This is because the surrogate model functions
as an approximation to the target model, irrespective of the architecture
or the parameters of the target model.
ge, (b) Noise factor ¼ 1, (c) Noise factor ¼ 4, (d) Noise factor ¼ 8.

age, (b) Noise factor ¼ 1, (c) Noise factor ¼ 4, (d) Noise factor ¼ 8.



Figure 7. FGSM and PGD Generated Images for High Epsilon Value. (a) Original clean image, (b) Adversarial image generated using FGSM with noise factor ¼ 40, (c)
Adversarial image generated using PGD with noise factor ¼ 40.

Figure 8. Architecture pipeline.
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For the generation of adversarial samples, a surrogate model for the
application of Covid-19 classification is built. We leverage transfer
learning and reuse an existing VGG-19 model pre-trained on the
ImageNet dataset for the task of Covid-19 classification. Due to the
imbalance in the dataset, up-sampling of Covid-19 images was performed
by applying data augmentations such as rotation, translation, and hori-
zontal flipping of images. The architecture of the model can be seen in
Figure 3.
5.3. Generation of adversarial samples

The adversarial samples are generated using the two algorithms:
FGSM and PGD, taken from the Cleverhans library [21]. A random value
for epsilon is chosen from the range of 0.8–8. Each image from the
dataset is transformed into an adversarial sample by applying FGSM or
PGD. These samples are then sent to the target models for prediction.
Figure 4 shows the path taken by a clean image from the dataset to reach
the adversarial samples repository. FGSM and PGD generators require a
surrogatemodel as shown in Figure 3. An image is taken from the original
dataset and is perturbed by the attacks separately. These generated im-
ages form the adversarial samples.

Figure 5 (a) is an image directly taken from the dataset. FGSM attack
is applied on this image with varying values of epsilon as shown in
Figure 5 (b–d). The level of visible changes will increase as the value of
epsilon increases. Figure 6(a) shows another image taken from the
dataset to which PGD attack is applied. The same values of epsilon are
taken and are shown in Figures 6 (b–d). It can be observed that PGD
generated samples are even more unnoticeable to the naked eye
compared to FGSM generated samples. Images given in Figure 7 con-
firms this with more visibility where high epsilon values are used. Using
the original image shown in Figure 7(a), adversarial images are
Table 1. Confusion matrix for the surrogate model.

True/Predicted COVID-19 Normal Pneumonia

COVID-19 82 8 10

Normal 18 832 35

Pneumonia 25 98 471
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generated using FGSM and PGD methods, shown in Figure 7(b and c)
respectively. PGD clearly performs better. It is necessary to strike a
trade-off between the distinctly visible perturbations and the model
getting fooled. Epsilon is a hyperparameter that needs to be tuned
accordingly.

5.4. Attack strategy

To perform the classification, traditionally, an image is directly fed to
the target model. This leaves the target model vulnerable to adversarial
samples. An individual can compromise the results by directly feeding in
an adversarial sample or intercepting an image and adding adversarial
noise to it. Based on the access to the target model, it can be a white-box
attack or a black-box attack.

For the experiments, we consider a scenario where an attacker does
not have access to model parameters and architecture, making it a black-
box attack. However, to generate adversarial samples using the white-
box attacks, another model is created for the same application of
Covid-19 classification, called the surrogate model. Adversarial images
are generated by performing white-box attacks on the surrogate model
and these images are used to test the robustness of the target model and
thereby performing a black-box attack on the target model.

5.5. Defense strategy

Defense strategies can be classified as white box and black box.
Consider a Denoiser D which is trained using a set of adversarial
samples generated using a model A. Let D be used to filter images
before it is processed by a Model B for the classification. A defense
strategy can be classified as a white box when A ¼ B and as black box
Table 2. Accuracy before and after respective attacks.

Samples White Box Setting Black Box Setting

Accuracy Accuracy Drop Accuracy Accuracy Drop

Clean 91% - 87% -

FGSM 8% 83% 64% 23%

PGD 8% 83% 67% 20%



Table 3. F1 Score after respective attacks.

White Box Setting

Covid-19 Normal Pneumonia

FGSM 0.06 0.04 0.14

PGD 0.03 0.04 0.14

Black Box Setting

Covid-19 Normal Pneumonia

FGSM 0.63 0.68 0.63

PGD 0.65 0.70 0.68

Table 5. F1 Score with defenses.

White Box Setting
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when A 6¼ B. In order to defend against adversarial samples, the im-
ages are passed through a filter before sending them to the target
model. The overall flow of a sample image to the classification output
is shown in Figure 8. For the experiments, an adversarial filter is
trained using the adversarial samples generated using the FGSM and
the PGD attack while minimizing the LGD loss which is calculated
from the surrogate model.

6. Experimental results and discussion

This section describes performance of the surrogate model, perfor-
mance of both surrogate model and the target model when subjected to
adversarial samples in the absence and presence of the defense. The
target model chosen here for experiments is the CovidNet Model [18]
which has also been trained using the same CovidX dataset as the sur-
rogate model.

6.1. Surrogate model performance

The Surrogate Model is validated on the test set (clean samples)
included in the CovidX dataset and it achieves an accuracy of 88%. The
Confusion matrix for the surrogate model is shown in Table 1. The di-
agonal values are high indicating that the model can distinguish between
the 3 classes fairly well.

6.2. Attack scenario metrics without defense

The surrogate model and the target model are tested with the
image datasets: clean samples and adversarial samples generated by
FGSM and PGD. The results in Table 2 show a drastic decrease in the
accuracy values when performing attacks in the white box setting.
However, in case of the black box setting, the accuracy decrease is not
as significant.

The F1 scores shown in Table 3 also confirm this observation.
Moreover, it can be seen that the reduction in accuracy when using
adversarial samples generated by FGSM is higher compared to the ac-
curacy drop seen with samples generated using the PGD attack method.
This is unexpected since the PGD method is assumed to generate
samples that are more likely to be misclassified. This suggests that not
all the adversarial samples generated using the surrogate model
Table 4. Accuracy with defenses.

Defense
Architecture

White Box Setting Black Box Setting

Accuracy Increase in
Accuracy

Accuracy Increase in
Accuracy

PGL 8% 0% 64% 0%

LGL 82% 74% 33% -31%

PGL þ LGL 76% 68% 38% -26%
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generalize and the noise added by the white-box attacks exploits the
vulnerabilities of the model on which the attacks are performed. These
vulnerabilities may not be shared by another model for the same
application.
6.3. Attack scenario metrics with defense

Further, the different defense architectures are tested with adver-
sarial samples generated by FGSM and PGD. Table 4 shows the accu-
racies recomputed after using the proposed defense architectures. In the
white-box setting, it can be seen that the PGL-driven defense archi-
tecture fails to improve the accuracy. As mentioned in section 4, due to
the nature of adversarial noise added, the pixel noise fails to tune the
weights of the denoiser to remove the effect of the added adversarial
noise. Hence, with PGL defense no change in accuracy is observed. In
contrast, while using the LGL in training of the denoiser, a noticeable
improvement of 74% is observed. The LGL, unlike the PGL, captures the
loss between higher-level representation (logit level) of the adversarial
image and the clean image, leading to generation of loss that helps in
the weight-tuning of layers deeper in the network. This leads to the
LGL-driven defense architecture performing much better than the PGL-
driven defense architecture. Though the use of LGL is very successful in
reducing the nature of adversarial noise from an adversarial image, it
cares less about how it generates the adversarial-effect-free image. The
PGL þ LGL driven architecture increases the accuracy of the model, yet
the increase is not as good as the improvement seen in the LGL-driven
defense.

However, similar results are not observed when considering a black
box setting. The PGL-driven defense architecture sees no improvement in
accuracy, which is expected as mentioned previously. The LGL and LGLþ
PGL driven defenses further degrade the performance of the model. The
degrading performance can be traced back to the training of the defense.
Since the defense architecture was initially trained on the surrogate
model, the defense architecture develops a high dependency on the
surrogate model. The F1 scores presented in Table 5 confirms the in-
adequacy of the defense techniques in a black box setting.

All modifications done to the adversarial image to remove the
adversarial noise effect are done to increase the performance of the
surrogate model. Similar modifications to the adversarial images
may not favor the classification function approximated by the target
model, and hence the degradation in the accuracy. Figure 9 shows
the images generated by each of the defenses. Since the PGL con-
siders the pixel-wise difference in the images it shows visibly no
difference from the original image. LGL only considers the loss be-
tween the higher layers of the model and the output image is much
more distinct from the original. In case of the new loss function
proposed i.e., LGL þ PGL, the output image is much better than the
image generated by LGL.
Covid-19 Normal Pneumonia

PGL 0.05 0.04 0.14

LGL 0.85 0.81 0.79

LGL þ PGL 0.81 0.74 0.74

Black Box Setting

Covid 19 Normal Pneumonia

PGL 0.63 0.68 0.63

LGL 0.00 0.50 0.00

LGL þ PGL 0.52 0.02 0.28



Figure 9. Images generated by the different defense architectures. Row 1 depicts the original clean images, row 2 depicts adversarial images generated using FGSM or
PGD methods, rows 3–5 depict images generated by a PGL, LGL, LGL þ PGL based denoisers respectively.
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7. Conclusion

The detection of Covid-19 using Chest X-Rays is a significant step
towards speeding up the testing process for detection of the virus.
Adversarial samples given to such models can compromise results in
both the white-box as well as the black-box setting. However, after the
addition of an adversarial filter, HGD, in a white box setting, an in-
crease in metrics is observed when using the LGL and the new proposed
loss function, LGL þ PGL defense. These may lead to undesirable
changes to the original image. However, as seen, changes in the image
8

can be mitigated by using different loss functions, which include a
combination of pixel and logit level loss. The PGL architecture
completely fails to improve the accuracy. In the black box setting, the
defense architecture fails and even leads to a decrease in accuracy. This
suggests that the HGD defense architecture is a good candidate for a
defense strategy in a white box setting as it does not lead to re-training
of the target model which is being defended. Results in a black box
setting suggest that it is not transferable across models, which may be
because of the differences in the performance of the surrogate model
and the target model.
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8. Limitations and future work

At the time of experiments, the major challenge was the unavail-
ability of exhaustive Covid-19 Datasets. Including additional Covid-19
positive images in the dataset will lead to better tuning of surrogate
model weights, thereby generating better adversarial samples. The scope
of this paper included two attacks, namely FGSM and PGD. However,
more effective attacks such as GAN based attacks [22] and ensemble
methods [23] can be included in the experiments to prepare a more
robust denoiser. With respect to HGD, more loss functions can be
explored and included in the study which may lead to a more robust
defense.
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