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Abstract: FoxL1+-Telocytes (TCFoxL1+) are subepithelial cells that form a network underneath the
epithelium. We have shown that without inflammatory stress, mice with loss of function in the
BMP signalling pathway in TCFoxL1+ (BmpR1a∆FoxL1+) initiated colonic neoplasia. Although TCFoxL1+

are modulated in IBD patients, their specific role in this pathogenesis remains unclear. Thus, we
investigated how the loss of BMP signalling in TCFoxL1+ influences the severity of inflammation
and fosters epithelial recovery after inflammatory stress. BmpR1a was genetically ablated in mouse
colonic TCFoxL1+. Experimental colitis was performed using a DSS challenge followed by recovery
steps to assess wound healing. Physical barrier properties, including mucus composition and glyco-
sylation, were assessed by alcian blue staining, immunofluorescences and RT-qPCR. We found that
BmpR1a∆FoxL1+ mice had impaired mucus quality, and upon exposure to inflammatory challenges,
they had increased susceptibility to experimental colitis and delayed healing. In addition, defective
BMP signalling in TCFoxL1+ altered the functionality of goblet cells, thereby affecting mucosal struc-
ture and promoting bacterial invasion. Following inflammatory stress, TCFoxL1+ with impaired BMP
signalling lose their homing signal for optimal distribution along the epithelium, which is critical
in tissue regeneration after injury. Overall, our findings revealed key roles of BMP signalling in
TCFoxL1+ in IBD pathogenesis.

Keywords: inflammatory bowel diseases; cellular microenvironment; wound healing; goblet cells;
O-glycosylation

1. Introduction

Intestinal inflammation has long been considered as a process in which effector im-
mune cells destroy the mucosa and subsequently result in chronic inflammation when left
unresolved [1]. Therefore, the mucosa is a target instead of a possible trigger for inflam-
matory bowel disease (IBD). Studies investigating the deregulation of non-hematopoietic
mucosa cells in various phases of IBD have broadened the understanding of their involve-
ment in IBD pathogenesis [2–4]. Thus, epithelial and mesenchymal cells also participate in
IBD, from pathogen or damage recognition to recruitment of immune cells to the injury
site, pathogen or damage elimination and, ultimately, resolution of inflammation [3,5].
Particularly, mesenchymal cells are strategically positioned between the epithelial and im-
mune cell compartments and can consequently regulate epithelial functions and influence
mucosal immune cells [5,6].

Gastrointestinal mesenchymal cells consist of a heterogeneous community of fibrob-
lasts, myofibroblasts, FoxL1+-Telocytes (TCFoxL1+) and trophocytes, among others [3,6,7].
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Myofibroblasts, trophocytes and TCFoxL1+ are especially bioactive with the production
of growth factors, cytokines, chemokines and extracellular matrix (ECM) proteins, thus
forming a microenvironment that supports epithelial and immune cell homeostasis [6,8–10].
Evidence suggests that myofibroblasts lack the heterogeneity to create the necessary gradi-
ents needed to support the ever changing epithelial functions along a vertical axis such
as the crypt-villus in the small intestine or the crypt in the colon [7]. Conversely, TCFoxL1+

represent one of the mesenchymal sources of the gradients in addition to being of high
relevance with regards to epithelial–mesenchymal interactions nesting directly under ep-
ithelial cells along the vertical axis [3,5,6,8]. The latter is of importance as TCFoxL1+ can
differentially influence the epithelium depending upon their position along this axis [6]. As
shown from the pericryptal mesenchymal cell population, TCFoxL1+ and trophocytes play a
crucial role in the establishment of the stem cell niche as they are the major source of bone
morphogenetic protein (BMP) inhibitors, WNT5a, WNT2B and R-spondin 3 [4,6,7,11]. In
addition to their involvement in the stem cells niche, RNA-sequencing analysis in TCFoxL1+

also demonstrated expression of other key signalling molecules such as the BMP ligands,
the BMPR1A receptor along with members of the Hedgehog and FGF signalling family.
This indicates the full potential of TCFoxL1+ to also be involved in other cell processes such
as epithelial determination, differentiation and functionality [6,7,12].

Recently, TCFoxL1+ have been reported to be modulated in patients with ulcerative
colitis, suggesting that they are important in IBD pathogenesis. Moreover, signals from
TCFoxL1+ help maintain the epithelial barrier integrity and immune homeostasis [3]. Physi-
cal and chemical barriers not only protect the colonic mucosa from inflammatory triggers
contained in its lumen, but also prevent the harmful adhesion and invasion of microorgan-
isms [13]. From the physical barrier, protection by the mucus layers has been of interest
in IBD pathogenesis. Alterations in mucus-producing goblet cells or the composition,
structure and thickness of the mucus itself directly affect epithelial protection [14]. The
regulation of goblet cells is of particular interest in TCFoxL1+ as the latter has an essential
role in the maintenance of the stem cell niche [4,6,11]. Because all colonic epithelial cells
are derived from the same stem cell, the effect of TCFoxL1+ on the niche invariably affects
epithelial cell-fate decisions and the maturation of progenitors into colonocytes or goblet
cells [3,6,7]. However, the specific roles played by TCFoxL1+ in barrier integrity, goblet cell
functionality, IBD initiation and resolution remain unclear.

Our previous work on genetically modified gut TCFoxL1+ (BmpR1a∆FoxL1+ mice) has
shown that disruption of the BMP signalling, an important pathway in gastrointestinal
diseases [2,8,10,15], influences the microenvironment via the reprogramming of stroma
into reactive mesenchyme, which subsequently initiates spontaneous neoplasia in the ep-
ithelium [8]. In addition, BmpR1a∆FoxL1+ mice revealed that mutant mice developed colonic
dysplastic regions with substantial early onset stromal changes, well before polyposis.
With time, the enlarged mesenchymal compartment of BmpR1a∆FoxL1+ mice presented
immune cells infiltration but this never led to a spontaneous inflammatory flare [8]. This
study revealed the potential of signalling-impaired TCFoxL1+ in initiating gastrointestinal
diseases such as neoplasia. Although it is clear that mesenchymal cells can contribute to
IBD pathogenesis [3,5,8,9], the precise effect of TCFoxL1+ in IBD remains unexplored.

Therefore, in this study, we explored the role of BMP-TCFoxL1+-associated signalling
in IBD susceptibility and wound healing, as well as its effect on colonic physical barrier
homeostasis in mice with conditionally inactivated BmpR1a in TCFoxL1+. Consistent with
the important regulatory role of TCFoxL1+ in the maintenance of epithelial homeostasis,
our findings indicate that defective TCFoxL1+ are key contributors in IBD susceptibility
and limit the tissue wound healing ability along with resolution of inflammation. We
demonstrate that for the maintenance of tissue functionality following injury, TCFoxL1+

population localisation along the colonic epithelial axis is critical to resolve and repair
the inflammatory insult. Overall, we show that BMP signalling plays a critical role in
the optimal functionality and homeostasis of TCFoxL1+, thereby affecting epithelial injury
and repair.
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2. Materials and Methods
2.1. Animals

The transgenic line C57BL/6J FoxL1-Cre was provided by Dr. Kaestner [16] and the
C57BL/6J -BmpR1afx/fx mouse was gifted by Dr. Mishina [17]. BmpR1a∆FoxL1+ conditional
knockout mice were generated as previously described [8,10].

2.2. Induction and Assessment of DSS-Induced Colitis and Recovery

Colitis was induced in post-natal 90-day-old BmpR1a∆FoxL1+ and control mice using
dextran sulphate sodium (DSS; MW: 35,000–50,000) as previously described [2]. For the
acute colitis experiment, mice were fed with 3% (w/v) DSS water (n = 10 per sex and group)
ad libitum for 7 days. For the recovery group, mice were fed with 3% (w/v) DSS water
(n = 12 per sex and group) ad libitum for 5 days, followed by tap water for 14 days. Mice
were assessed for disease activity using the modified criteria by Cooper et al. [18] and
histological scoring was based on Dieleman et al. [19].

2.3. Histological Analysis and Grading of Colitis

Colons from 90-day-old mice were fixed as previously described [8]. Histological
scoring was blindly performed on four colons from different mice per group using 12 high-
field images of H&E-stained sections. To analyse the mucus barrier, tissues were fixed in
Carnoy’s solution as previously described [20]. Tissues were sectioned and stained with
H&E or alcian blue following standard protocols [2,8].

2.4. Intestinal Permeability Assay

Permeability assay was performed in 90-day-old BmpR1a∆FoxL1 and littermate control
mice. Both groups were fasted for 16 h and 150 µL of 80 mg/mL of 4-kDa fluorescein
isothiocyanate (FITC)-dextran (Sigma-Aldrich, St. Louis, MI, USA) was applied orally at
a single dose. Mice were anaesthetised after 4 h and serum was collected. Fluorescence
was measured spectrophotometrically (Infinite M200 PRO, Tecan, Crailsheim, Germany) in
96-well plates (excitation: 492 nm, emission: 525 nm). FITC-dextran concentrations were
calculated using a standard curve prepared in serum ranging from 0 to 80 µg/mL 4-kDa
FITC dextran.

2.5. Electron Microscopy

Colons from post-natal 90-day-old BmpR1a∆FoxL1+ and control mice were fixed and
sectioned as previously described [2]. Transmission electron microscopy images were
digitally coloured in blue using Adobe Photoshop CC 2017.

2.6. Immunofluorescence and Fluorescence In Situ Hybridisation

Immunofluorescence staining for TCFoxL1+ population was performed as follows;
slides were immersed in 0.01 M citric acid buffer (pH 6.0) and microwaved to boil for
6 min for antigen retrieval, then cooled, washed in PBS and incubated for 40 min at room
temperature in blocking solution (1% Gelatin from cold water fish skin, 2% BSA, 0.2% Triton
X-100 in PBS). Two first primary antibodies anti-Gli1 (1:500, NB600-600, Novus Biological,
CO, USA) and anti-PDGFRα (1:150, AF1062, R&D System, MN, USA) were simultaneously
diluted in the blocking solution and incubated overnight at 4 ◦C in a moist chamber. After
washing with PBS, Alexa 594 (anti-goat) and Alexa 647 (anti-rabbit) secondary antibodies
were diluted in blocking solution, applied to the slides and incubated for 1 h at RT. A
second blocking step was performed incubating the slides for 40 min at room temperature
in the blocking solution described above. Then, slides were incubated 1 h at RT with anti-
CD34 (1:100, ab81289, Abcam, Cambridge, UK) diluted in the blocking solution, followed
by 1 h with Alexa 488 (anti-rabbit) at RT. Nuclei were stained with DAPI. Images were
captured on a confocal Microscope Zeiss LSM 880 2 photons. Telocytes population was
analysed using Fiji ImageJ v 2.1.0, from high-powered fields in a blinded manner on an
average of 10 independent fields of the whole colon per animal (N = 6 per group). Staining
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on frozen sections was performed as followed: tissues were fixed in 100% Ethanol for
15 min at −20 ◦C [2,8,10,15]. For all other antibodies, immunofluorescence was assessed as
previously described [2,8,10]. The following antibodies were used at the indicated dilutions:
Anti-MUC2 (1:200, sc-15334, H-300, Santa Cruz); Anti-JAM-A (1:25, 36–1700, Zymed
laboratories, San Francisco, CA, USA) anti-Claudin 1 (1:50, 51–9000, Zymed laboratories,
San Francisco, CA, USA), anti-Claudin 2 (1:80, 51–6100, Invitrogen, Waltham, MA, USA),
anti- ZO-1 (1:50, 61–7300, Zymed laboratories, San Francisco, CA, USA); co-staining for
myofibroblast population, anti-vimentin (1:100, 5741S, Cell signaling, MA, USA) and
anti-αSMA (1:5000, A2547, Sigma-Aldrich, St. Louis, MI, USA)); Alexa 488-conjugated
anti-rabbit (1:300, 4412S, Cell Signalling, MA, USA); Alexa 594-conjugated anti-rabbit
(1:300, 8889S, Cell Signalling, MA, USA); FITC-labelled Anti-rabbit (1:300, FI-1000, Vector);
Alexa 647-conjugated anti-rabbit (1:300, A21443, Invitrogen, Waltham, MA, USA); Alexa
594-conjugated anti-goat (1:300, A11058, Invitrogen, Waltham, MA, USA) and Alexa 594-
conjugated anti-mouse (1:300, 8890S, Cell Signalling, MA, USA). Images were captured on
a Microscope Zeiss Axioscope 5. Carnoy-fixed colon sections were hybridised with a Cy3-
coupled bacterial 16S rRNA probe (EUB338). A Cy3-coupled nonsense probe (NS_EUB338)
was used as the control for non-specific binding. Probe sequences for fluorescence in situ
hybridisation were CY3_EUB338_SENSE 5′-/5Cy3/GCTGCCTCCCGTAGGAGT-3′ and
CY3_NS_EUB338 5′-/5Cy3/CGACGGAGGGCATCCTCA-3′. Nuclei were stained with
DAPI. Images were captured on a Leica DM2500 Optigrid.

2.7. Analysis of Post-Translational Modifications in Goblet Cell and Mucins

Slides were incubated with lectin probes: FITC-labelled Ulex europaeus agglutinin
I (UEA-1; 1:750, L9006, Sigma-Aldrich, St. Louis, MI, USA) and Cy3-labelled Sambucus
nigra lectin (SNA; 1:750, CL-1303, Vector Laboratories, ON, CA). For biotinylated Maackia
amurensis lectin II (MAL II; 1:750, B-1265, Vector Laboratories, ON, CA), the sections were
treated with avidin and biotin. The naive streptavidin protein Texas red (1:200, ab136227,
Abcam, Cambridge, UK) was used to label the biotinylated MAL-II. FITC-labelled peanut
agglutinin (PNA; 1:750, FL-1071, Vector Laboratories, ON, CA) was evaluated as described
previously, [21] with and without enzymatic digestion and chemical pretreatment.

2.8. Quantification of Cell Number, Cell Distribution, Vesicle and Goblet Cell
Post-Translational Modifications

The presence of goblet cells was analysed using alcian blue-stained sections from low-
powered fields of well-oriented colonic cross-sections in a blinded manner on an average of
10 independent fields of the proximal, middle and distal colon per animal (N = 4 per group).
Goblet cell vesicles were analysed from 10 pictures from transmission electron microscopy
images. Using Fiji ImageJ v 2.1.0 they were divided into clear, light grey and dark grey
and then quantified (N = 3 per group). For lectins and MUC2 immunofluorescence, we
measured the corrected total cell fluorescence (CTCF) by applying the following formula
CTCF = Integrated Density—(Area of selected cell X Mean fluorescence of background
readings), using Fiji ImageJ v 2.1.0. TCFoxL1+ were labelled according to the most recent
consensus in the literature as described in Section 2.6 [7]. Triple immunostaining for
PDGFRα, Gli-1 and CD34 was performed, and TCFoxL1+ were identified as PDGFRα+/Gli-
1+/CD34−. TCFoxL1+ number was averaged from ten different image fields per mouse in
each condition (naive, acute, recovery). TCFoxL1+ distribution was also evaluated from these
images, where the colon mucosa was separated in 3 different zones, based on epithelial
cell identity: stem cells and progenitor cells, transit-amplifying and differentiated zones.
TCFoxL1+ were assigned to either one of the zones in all 3 conditions (naive, acute, recovery).
Multiple images for each mouse were evaluated and the relative frequency of distribution in
percentage was then calculated (zone SC-P + zone TA + zone D = 100%). For myofibroblasts,
total number of double-positive cells for Vimentin/αSMA was counted using Fiji ImageJ
v 2.1.0, from high-powered fields in a blinded manner on an average of 10 independent
fields of the distal colon per animal (N = 4–6 per group).
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2.9. RNA Extraction and Gene Expression

Total RNA was isolated from the colon of control mice and the colonic dysplastic
regions of BmpR1a∆FoxL1+ mice using a Totally RNA extraction kit (Thermo Fisher Scientific,
MA, USA) [8,12]. Epithelial total RNA was isolated as previously described [22]. Reverse
transcription and quantitative RT-qPCR were performed as previously described [2,8,10].
For every qPCR run, a no-template control was performed for each primer pair, each of
which was consistently negative. For every qPCR run, specific PCR primer sequences
were used to detect the presence of Hes1; F: 5′-CTTCAATTGGTCCTGTCCAT-3′, R: 5′-
CCTGTCTGGGAGGATCAAAA -3′; Math1, F: 5′-CGATGATGGCACAGAAGGA-3′, R:
5′-GGGGAAAACTCTCCGTCACT-3′; Gfi1, F: 5′-ATG TGC GGC AAG ACC TTC-3′, R:
5′-TCCGAGTGAATGAGCAGATG-3′; Klf4, F: 5′-CAGTATACATTCCGCCACAGC-3′, R:
5′-TCCGAGTGAATGAGCAGATG-3′; Spdef, F: 5′-GCCTGGATGAAGGAGAGGAC-3′,
R: 5′-GGCTTGAGCAGCAGTTCTTT-3′; Muc1; F: 5′-GGACACCTACCATCCTATGAG-3′,
R: 5′-CTTGCTCCTACAAGTTGGCAG-3′; Muc2, F: 5′-CTTCAATTGGTCCTGTCCAT-3′,
R:’5′-TGGCTAAACACGCTTCTCCT-3′; Muc3, F: 5′-CTTCCAGCCTTCCCTAAACC-3′, R:
5′-TGGCTAAACACGCTTCTCCT-3′; Muc4, F: 5′-ATCCACTATCTGAACAACCAGC-3′,
R: 5′-GTAGCCATCACATGTGAAGTAC-3′; Fut2, 5′-GAGTCAAGGGGAGGGAGAAC-
3′ R: 5′-CCAGGGCTACAGAAGTGGAC-3′; Tff3, F: 5′-GCTGCCATGGAGACCAGA-3′,
R: 5′-GAGCCTGGACAGCTTCAAAA-3′; Fcgbp, 5′-TGGTTCTCAGGGGAAGACAC-3′,
R: 5′-ACACAGGGCATCTTCCAATC-3′; Agr2, F: 5′-ACCGGCTCTACGCTTATGAA-3′ R:
5′-TCTGCAAGTCCACAGTGCTT-3′; Retlnb, F: 5′-CGCAATGCTCCTTTGAGTCT-3′, R:
5′-CCACAAGCACATCCAGTGAC-3′; Tbp, F: 5′-GGGGAGCTGTGATGTGAAGT-3′, R:
5′-GGAGAACAATTCTGGGTTTGA-3′.

2.10. Statistical Analysis

Statistical significance was calculated using the Mann–Whitney test in GraphPad
Prism v8. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 were considered significant.
Data are presented as the mean ± SEM. For the goblet cell vesicles counting and TCFoxL1+

distribution along the crypt axis, 2-way ANOVA was used as a statistical test. Data are
presented as the mean ± SD.

3. Results

3.1. BmpR1a∆FoxL1+ Mice Have Increased Susceptibility to Experimental Colitis and Delayed
Wound Healing

Upon the induction of acute colitis with DSS (herein, acute phase), a reduction in body
weight was observed in both male and female BmpR1a∆FoxL1+ mice compared with the
controls at day 5 (Figure 1A). After recovery from acute colitis (herein, recovery phase),
there was no significant difference in weight loss in BmpR1a∆FoxL1+ mice between the acute
and recovery phases compared with the control (Figure 1B). Noticeably, a 60% death rate
was observed in BmpR1a∆FoxL1+ mice in the first two days of recovery. The body weights of
the surviving mice were similar between both groups by day 11 until day 19 (end of the
experimental period). We observed a significant 1.6-fold modulation in disease activity
index (DAI) between the control and BmpR1a∆FoxL1+ mice in the acute phase (Figure 1C).
After completing the recovery phase, there was no significant difference in the DAI of
surviving animals in both groups. Histological analysis results revealed normal colonic
mucosa in naive control and BmpR1a∆FoxL1+ mice (Figure 1D). Following the acute phase,
crypt erosions, minor immune infiltration and a preserved epithelial layer were observed
in the control, whereas complete loss of crypt architecture, strong influx of immune cells
and total loss of the epithelial lining were observed in BmpR1a∆FoxL1+ mice (Figure 1D). In
the recovery phase, the controls showed nearly restored colonic mucosa compared with
the surviving BmpR1a∆FoxL1+ mice that still presented significant immune cell infiltration
with some areas having crypt abscess or denuded epithelium (Figure 1D). H&E staining
demonstrated significant differences between the control and BmpR1a∆FoxL1+ mice in both
acute and recovery phases. In both treatments, surviving BmpR1a∆FoxL1+ mice had a 1.4-
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fold increase in their histological score after the acute (7 days) and recovery treatments
(19 days) compared with the control mice (Figure 1E).
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Figure 1. Loss of BMP signalling in telocytes predisposes mice to severe experimental colitis. (A) BmpR1a∆FoxL1+ mice (red
squares) had greater weight loss than control mice (blue circles) following the induction of acute experimental colitis and
(B) the subsequent recovery phase (N = 10). (C) DAI analysis revealed a significant DAI increase in mutant mice only during
the acute phase. (D) H&E staining shows normal mucosa architecture under naive condition in all groups. During the acute
phase, control mice presented crypt erosion but the epithelial layer was preserved while BmpR1a∆FoxL1+ mice presented a
complete loss of their epithelial sheet. After recovery, control mice showed a restored mucosa, whereas BmpR1a∆FoxL1+ mice
still presented immune infiltration and regions with crypt distortion. (E) Histological scores reveal a significant increase in
mutant mice in both treatments. Data are expressed as the mean ± SEM (N = 19–20). * p < 0.05; ** p < 0.01; *** p < 0.001
analysed by Mann–Whitney test. Scale bar: 250 µm. † Animals that died during the experiment.

3.2. Defective Telocytes Lead to the Development of Compromised Mucus Layers and Abnormal
Bacterial Infiltration

The loss of the epithelial barrier function has been reported as a cause of IBD [2,23].
However, impaired epithelial permeability was not observed in both groups (Figure 2A).
The mucus layers serve as another protective mechanism in the epithelium against com-
mensal bacteria as they form part of the physical barrier. Goblet cells are responsible for
the production of mucus, thereby protecting the epithelial gut lining by forming the mucus
barrier [24]. Under naive conditions, we observed no differences in goblet cell number
along the colonic crypts in both groups, although we noticed a thinner and discontinuous
barrier layer in BmpR1a∆FoxL1+ mice (Figure 2B,C). Under acute phase, reduced goblet cells
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in the colonic crypt were observed in both groups; notably, in BmpR1a∆FoxL1+ mice, an
almost complete depletion of these cells was observed in the distal colon (Figure 2B,C). The
partial erosion of the barrier layer occurred in all mice but was greater in BmpR1a∆FoxL1+

mice (Figure 2C). In the recovery phase, we observed a partial restoration in goblet cell
count and mucus layers in the control group, whereas delayed mucus layer restoration and
low goblet cell density were observed in BmpR1a∆FoxL1+ mice (Figure 2B,C).
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Figure 2. Impaired barrier layer in BmpR1a∆FoxL1+ mice resulted in susceptibility to bacterial mucosal invasion. (A) No
differences in concentration of FITC-dextran were observed in serum of controls and BmpR1a∆FoxL1+ mice (N = 5–10).
(B) Statistical analysis showed a significant decrease in the number of acidic mucin-positive cells in mutant mice compared
with the control, only in the distal colon after both (acute and recovery) treatments; no significant modulation was observed
in other colonic sections (N = 4; n = 20). After the acute phase, there was a 0.2-fold decrease in goblet cells, and 0.8-fold
decrease following recovery. (C) Under naive conditions, a well-preserved barrier layer (double black arrow) was observed
in control mice, whereas in BmpR1a∆FoxL1+ mice a discontinuous (black asterisk) and thinner barrier layer was observed
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(N = 8). During the acute phase, all mice showed partial erosion of the barrier layer with BmpR1a∆FoxL1+ mice presenting
more advanced erosion. After recovery, BmpR1a∆FoxL1+ mice still presented a thinner barrier layer while control mice
improved. (D) Before treatment, bacteria (red) were localised only in the outer mucus layer and not found in the inner layer
(double white arrows) in control mice; during the acute phase, bacteria were in contact with the epithelium but not detected
in the inner mucosa. In BmpR1a∆FoxL1+ mice, during the acute phase, large amounts of bacteria (white asterisks) invaded
the colonic mucosa. Following recovery, the control mice restored the sterility of the barrier layer (double white arrow),
whereas mutant mice still presented bacteria in contact with the epithelium. Nuclei were counterstained with DAPI (blue).
Epithelium is delimited by the white discontinuous line. E: Epithelium. Scale bars: 250 µm (C); 105 µm (D). * p < 0.05;
*** p < 0.001 analysed by Mann–Whitney test.

The primary role of healthy mucus layers is to physically protect the epithelial surface
against bacteria in the lumen. Given that BmpR1a∆FoxL1+ mice showed discontinuous
mucus layers, we hypothesized that commensal bacteria could directly interact with the
epithelium. We found that under naive conditions, bacteria were only detected in the
outer mucus layer in the control but within the barrier layer in close contact with the
non-inflamed epithelium in BmpR1a∆FoxL1+ mice (Figure 2D). Following the acute phase,
the control mice presented with typical erosion of the barrier layer and increased bacteria
near the epithelia. In contrast, a significant number of bacteria invading the inflamed
colonic mucosa in BmpR1a∆FoxL1+ mice were observed (Figure 2D). After recovery, the
control mice had restored mucus layers and no bacteria were found in the sterile inner
layer. Conversely, bacteria were still detected near the epithelial layer in BmpR1a∆FoxL1+

mice (Figure 2D).

3.3. BMP-Associated Signalling in Telocytes Supports the Maturation of Colonic Goblet Cells

Lineage commitment of gut epithelial cells, along with goblet cell fate specification,
involve the expression of transcription factors from the Notch signalling pathway and
Klf4 [25,26]. No modulation was found in the commitment genes Hes-1 and Atoh1, or in
specification genes Spdef and Gfi1, although a significant reduction was observed in the
maturation gene Klf4 (1.4-fold) (Figure 3A). Ultrastructural examination revealed normal
morphology in secretory goblet cells, i.e., a basal nucleus localisation and apical mucin
vesicle accumulation, in both groups (Figure 3B). Noticeably, the controls presented more
heterogeneity in vesicles compare to BmpR1a∆FoxL1+. Vesicles in BmpR1a∆FoxL1+ mice were
frequently fused together and less organised. We therefore quantified the number of
clear, light grey and dark vesicles found in goblet cells in both BmpR1a∆FoxL1+ and control
mice (Figure 3C). We found no statistical differences for the clear vesicles content and a
tendency to fewer dark vesicles in the goblet cells of BmpR1a∆FoxL1+ mice. However, we
observed a significant increase in light grey vesicles (1.7-fold) in mutant goblet cells when
compared to controls (Figure 3C). The decrease in vesicle heterogeneity in BmpR1a∆FoxL1+

mice led us to investigate mucin diversity and their structural components using RT-
qPCR analysis. The mRNA levels of Muc2 (3.01-fold), Fut2 (1.4-fold), Muc4 (2.4-fold) and
Argr2 (1.7-fold) were significantly increased in BmpR1a∆FoxL1+ mice when compared to
controls (Figure 3D). Electron microscopy analysis showed that in control mice, apical
microvilli were coated with thick glycocalyx while BmpR1a∆FoxL1+ mice showed very little
coating (Figure 3E). Typical ultrastructural apical junctional complexes were observed
in both groups (Figure 3E). Immunofluorescence against proteins involved in the tight
junction complex, such as ZO-1, claudin-1, claudin-2 and JAM-A revealed no apparent
change between both groups, suggesting the presence of a normal junctional complex in
BmpR1a∆FoxL1+ mice (Figure 3F).
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Figure 3. BmpR1a∆FoxL1+ mice displayed abnormalities in goblet cell vesicles and presented dysregulated mucus maturation
and structural gene expression. (A) Relative mRNA levels of the colonocyte/secretory lineage specification Hes1 and Atoh1,
along with committed-secretory cell toward the goblet fate or maturation Gfi1, Spdef and Klf4. A significant decrease was
observed for Klf4 mRNA levels in mutant mice while other mRNAs were not modulated between mutant and control mice
(N = 7–9). (B) Ultrastructural analysis of the goblet cells revealed vesicles without mucin diversity, disturbed morphology
in BmpR1a∆FoxL1+ mice (N = 4). (C) Vesicles pattern quantification revealed a significant increase in light grey vesicles in
mutant goblet cells when compared to controls (N = 3). (D) BmpR1a∆FoxL1+ mice showed a significant increase in Fut2,
Muc2, Muc4 and Agr2 mRNA levels in mutant mice. (E) Ultrastructural analysis of the glycocalyx and the apical junctional
complex (yellow bracket) revealed that the latter was not modified between both groups and showed loss of glycocalyx
in BmpR1a∆FoxL1+ mice (N = 4). (F) Immunofluorescence against ZO-1, claudin-1 and 2 as well as JAM-A revealed no
modulation in the tight junction complex proteins between both groups (N = 3). (C) 2-way ANOVA test. Data are presented
as the mean ± SD. (D) Mann–Whitney test. N: Nucleus; Mu: Mucin vesicles; G: Glycocalyx; AJC: Apical junctional complex.
Fold-change was normalised to that of TATA box protein (TBP) used as housekeeping gene (N = 10). * p < 0.05; ** p < 0.01;
*** p < 0.001 analysed by Mann–Whitney test.
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3.4. BMP-Associated Signalling in Telocytes Affects Post-Translational Modifications of Mucins

We first investigated the distribution of MUC2 using immunofluorescence and ob-
served its peculiar accumulation at the periphery of goblet cells in BmpR1a∆FoxL1+ mice
compared with its normal distribution in the control (Figure 4A–C).
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Figure 4. Loss of BMP signalling in telocytes promotes abnormal MUC2 localisation within secretory
vesicles and reduces mucin maturation. (A) Control mice presented well-filled mucin vesicles
(B) whereas BmpR1a∆FoxL1+ mice showed abnormal mucin (green) deposition at the periphery of
the vesicles. (C) Intensity measurements across goblet cells (middle vs. periphery) validated the
peripheral deposition of MUC2 in the mutant mice. (D) Control mice presented normal levels of
mucin fucosylation (green) while (E) BmpR1a∆FoxL1+ mice revealed a decrease in mucin fucosylated
residues. (F) Intensity measurements across goblet cells validated decreased mucin fucosylated
residues in mutant mice. (G) Control mice presented homogenous expression pattern for sialic acid
modifications (red) in mucins whereas (H) BmpR1a∆FoxL1+ mice presented a peripherical deposition
in the vesicles. (I) Intensity measurements across goblet cells validated reduction in patterns of sialic
acid modifications in the mutant mice. (J) Control mice revealed an orderly staining pattern for
sialic acid residues (red) in vesicles while (K) BmpR1a∆FoxL1+ mice showed scattered distribution
and reduced expression. (L) Intensity measurements across goblet cells confirmed no modulation in
patterns of sialic acid residues between both groups. (M) Control mice presented normal vesicles
pattern for terminal galactose β1,3 GalNAc residues (green) whereas (N) BmpR1a∆FoxL1+ mice showed
accumulation of the residues at the periphery of vesicles. (O) Intensity measurements across goblet
cells confirmed a reduction in terminal galactose β1,3 GalNAc residues in mutant mice. Nuclei were
counterstained with DAPI (blue); (M,N) were counterstained with Evan’s blue (red) (N = 4). Scale
bar: 450 µm. * p < 0.05; **** p < 0.0001 analysed by Mann–Whitney test.

UEA-I lectin recognises the Fucα1,2Galβ1,4 motif, and its lectin reactivity is distributed
uniformly along the different regions of the colon. We observed that control mice possessed
well-filled vesicles (Figure 4D); whereas BmpR1a∆FoxL1+ mice had mucin vesicles with
reduced fucosylated residues (Figure 4E,F). Sialic acid modifications in mucins were also
investigated. SNA-lectin in the distal colon was only detected in the upper part of the crypts
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and exhibited a pattern similar to the one observed in MUC2, i.e., accumulation of goblet
cells in the periphery in BmpR1a∆FoxL1+ mice compared with the control (Figure 4G–I).
MAL-II lectin staining in BmpR1a∆FoxL1+ mice revealed the scattered expression in goblet
cells compared with an orderly staining pattern along the distal crypts in control mice
(Figure 4J–L). PNA-lectin staining recognises terminal galactose β1,3 GalNAc residues.
Without chemical treatment or enzymatic digestion, PNA-lectin was only detected in
the Golgi complex. After desulphation-KOH-sialidase digestion, an equal number of
PNA-lectin+ goblet cells were found in the control and mutant mice (Figure 4M–O); the
peripheral accumulation of lectin in BmpR1a∆FoxL1+ mice was similar to that of MUC2.

3.5. Impaired BMP Signalling Does Not Affect Telocytes’ Number but Their Localisation toward
the crypt axis following Inflammatory Stress

Ultrastructural analysis revealed the classical features of telocytes, i.e., small bodies
and long telopodes, in both groups, with BmpR1a∆FoxL1+ mice exhibiting more irregularly
shaped telopodes than the control (Figure 5A). At higher magnification, TCFoxL1+ with
loss of BMP-associated signalling were surrounded by densely packed collagen fibrils,
suggesting the promotion of secretory activities; their telopodes had more pinched off or
shed vesicles than that of the control mice.
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Figure 5. Loss of BMP signalling leads to irregularly shaped telocytes under naive conditions, whereas inflammatory
challenge and recovery do not affect its number among groups. (A) Ultrastructural analysis of telocytes (blue) present
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classical features for these cells with small bodies and long telopodes in control and BmpR1a∆FoxL1+ mice. Presence
of irregularly shaped telopodes were observed in BmpR1a∆FoxL1+ mice. Higher magnification demonstrated increased
secretory activities from TCFoxL1+ in BmpR1a∆FoxL1+ mice as shown by presence of increased collagen fibrils deposition
and extracellular vesicles compared with the control. (B) Under naive condition, no difference was observed in TCFoxL1+

population numbers (Gli1+/grey, PDGFRα+/red, CD34−/green) (yellow asterisks) nor in localisation in regard to the
epithelium (white discontinuous line) in both groups. Upon acute phase, TCFoxL1+ population was reduced in both control
and BmpR1a∆FoxL1+ mice and we detected mostly CD34+ or PDGFRα+ cells (white asterisks). Following recovery, TCFoxL1+

population recovered in both groups. BmpR1a∆FoxL1+ mice showed a change of its TCFoxL1+ population in regard to their
expected positions along the colonic crypt vertical axis. Higher magnification shows TCFoxL1+ (yellow square), CD34+ or
PDGFRα+ cells (white square). (C) Total number of TCFoxL1+ in colon before, during and after inflammatory stress were
counted and no significant difference was observed between groups (N = 6). (D) TCFoxL1+ frequency along the colonic
vertical axis separated in three cell zones revealed a clear change in TCFoxL1+ population along the axis during the recovery
phase in BmpR1a∆FoxL1+ mice compared to controls. No modulation in TCFoxL1+ population along the colonic epithelial
axis was found under naive or acute condition between both groups. (C) Mann–Whitney test. (D) 2-way ANOVA test.
Data are presented as the mean ± SD (N = 3). Scale bar: 50 µm. N: Nucleus; Tp: Telopodes; EV: Extracellular vesicles; ER:
endoplasmic reticulum; COL: Collagen fibrils; M: Mitochondria; MVB: Multivesicular bodies; SC: Stem Cells; P: Progenitor
Cells; TA: Transit Amplifying; Diff.: Differentiated cells.

We next investigated the TCFoxL1+ distribution along the crypts before, during and
after an inflammatory flare. Telocytes were defined as Gli1+/PDGFRα+/CD34− cells.
Before treatment, no difference was detected in the TCFoxL1+ population, distribution and
localisation between both groups (Figure 5B,C). After the acute phase, both control and
BmpR1a∆FoxL1+ mice presented a decrease in TCFoxL1+ population and we found mostly
single-labelled (Gli1+ or PDGFRα+) cells in their stroma (Figure 5B,C). After recovery, both
control and BmpR1a∆FoxL1+ mice restored their preinjury TCFoxL1+ population (Figure 5B,C),
but only in control mice did they re-establish their localisation along the colonic epithelial
axis. We found that the majority of the TCFoxL1+ population was shifted to the upper part
of the colonic crypt in BmpR1a∆FoxL1+ mice (Figure 5B,D). Following this observation, we
investigated the status of myofibroblasts in our model.

Under naive conditions, myofibroblasts were distributed along the crypt vertical axis
in both mutant and control mice (Figure 6A,B,G). Upon acute inflammatory stress, myofi-
broblasts’ presence was exacerbated in both control and BmpR1a∆FoxL1+ mice (Figure 6C,D,G).
After recovery, we observed an important enduring population of myofibroblasts scattered
in the stroma with a strong presence at the bottom of the crypts near the stem cell region
in BmpR1a∆FoxL1+ mice, whereas the control myofibroblasts population returned to their
basal level (Figure 6E–G). Myofibroblasts counts along the crypt vertical axis in the various
conditions confirmed a significant enduring myofibroblasts population following recovery
in BmpR1a∆FoxL1+ mice when compared to controls (Figure 6G).
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Figure 6. Myofibroblasts are localised near stem cells and along the epithelial sheet upon recovery in BmpR1a∆FoxL1+ mice.
(A) Under naive condition, control mice demonstrated the basal myofibroblast (white asterisks) population (B) which was
comparable in BmpR1a∆FoxL1+ mice. (C) During the acute phase, control mice exhibited an increase in myofibroblasts (white
asterisks) in regard to the naive condition with (D) with a similar increase in BmpR1a∆FoxL1+ mice. (E) After recovery, control
mice showed a return to the basal level in myofibroblast population seen under naive condition (F) while BmpR1a∆FoxL1+

mice still presented a strong presence of myofibroblasts scattered in their mucosa with these cells also found in the region
associated with the stem cell niche and progenitor cells. (G) Myofibroblasts count along the crypt axis revealed a 1.9-fold
increase in myofibroblasts in mutant mice compared to controls after the recovery phase. The myofibroblast population was
found to be similar in both groups in the naive condition and during the acute phase. Scale bar: 50 µm. Mann–Whitney test
(N = 4–6) ** p < 0.01.

4. Discussion

BMP signalling is involved in the development and homeostasis of the gastrointestinal
tract [2,8,10,12]. BMP ligands are widely produced by both the epithelial and mesenchymal
compartments [7], and in conjunction with other cascades, BMP maintain the critical bal-
ance between cell proliferation and differentiation, thus maintaining gut homeostasis [7,12].
Defective BMP signalling is frequently observed during IBD pathogenesis [2,27]. Recently,
we have demonstrated that the targeted disturbance of BMP signalling in mouse TCFoxL1+

led to the reprogramming of the stroma, thus initiating neoplasia in the gastric and colonic
epithelia [8,10]. However, the precise role of signalling-impaired TCFoxL1+ in IBD suscepti-
bility and wound healing remains elusive. Without inflammatory stress, BmpR1a∆FoxL1+

mice possessed dysplastic areas with an enlarged mesenchymal compartment and promi-
nent immune cell infiltration [8]. These findings suggest that impaired BMP signalling in
TCFoxL1+ plays an active role during and after an inflammatory flare; however, they must
first be triggered to activate an inflammation cascade. In this study, using different DSS
challenges, we revealed a novel role for TCFoxL1+ in colon inflammation, resolution and
repair. During the acute phase, BmpR1a∆FoxL1+ mice demonstrated increased susceptibility
to experimental colitis due to disrupted mucus layer integrity and functionality. However,
mucosal damage in BmpR1a∆FoxL1+ mice resulted in slow mucosal recovery that proved
lethal. After recovery, the signalling-impaired TCFoxL1+ cells showed abnormal shape and
their population were disproportionally found at the top of the crypt with a scarce presence
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at the bottom near the stem cells and progenitors region (Figure 7). This result indicates that
although the number of TCFoxL1+ could be important for epithelial recovery, the difference
observed regarding the delays in healing in our model does not come from a decrease in
TCFoxL1+ in the mucosa.
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Figure 7. Schematic representation of IBD pathogenesis events in colonic mucosa with impaired
BMP-signalling telocytes. (A) Under naive condition BmpR1a∆FoxL1+ mice showed reduced diversity
in goblet cell vesicles, low glycocalyx coating and a thinner and discontinuous barrier layer with
bacteria in close contact with the non-inflamed epithelium. BmpR1a∆FoxL1+ mice exhibited TCFoxL1+

population with an irregular shape and surrounded by collagen fibers. (B) During inflammation, a
complete depletion of goblet cells was observed in BmpR1a∆FoxL1+ mice and a significant number of
bacteria invaded the inflamed colonic mucosa. TCFoxL1+ population was decreased in both groups.
A substantial presence of myofibroblasts were found in BmpR1a∆FoxL1+ mice compared to controls.
(C) After the recovery, mucosa in control mice recovered from the insult while in BmpR1a∆FoxL1+

mice it presented delayed wound healing. In BmpR1a∆FoxL1+ mice, TCFoxL1+ population was found
to be displaced along the colonic crypt with more TCFoxL1+ found at the top and less at the bottom.
Myofibroblast-like cells (vimentin+; αSMA+) were still strongly present in the stroma. Myofibroblast-
like cells were found to be scattered in the stroma with a robust presence at the base of the crypt.
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The participation of telocytes in tissue repair has been reported in several organs [28,29]
and two primary roles have been postulated: acting as progenitor cells or modulating
stem cell activity [30]. Recent studies have shown that mice with PDGFRα+ cells lacking
R-spondin 3 exhibit increased sensitivity to DSS-mediated inflammation that affects stem
cells [11] and that CD34+ cells are located in regions of active regeneration, thus influencing
the progenitors [4].

In this study, recovery experiments revealed that while TCFoxL1+ in control mice re-
sume their natural position along the colonic crypt, myofibroblasts are now more noticeable
than TCFoxL1+ near the stem cells in BmpR1a∆FoxL1+ mice. In recent years, the importance of
TCFoxL1+ in stem cell niche regulation, via the secretion of WNT [6,11] and BMP factors [7],
has been demonstrated. As morphogens, even a small dysregulation in the concentration or
gradient of WNT and BMP ligands could affect stem cell survival and cellular fate [7]. Our
results suggest that the delocalisation of TCFoxL1+ population along the crypt in the mutant
following recovery could affect tissue homeostasis, leading to more severe inflammation
and delayed healing. Currently, some of the secreted factors of TCFoxL1+ have been identi-
fied; however, the conducive conditions for TCFoxL1+ survival, expansion and homeostasis
remain unclear. BMP is fundamental for epithelial cell differentiation [12] and our results
suggest that it might not be different for TCFoxL1+. In other words, the BMP signalling is
most likely required by TCFoxL1+ for its optimal functionality in an autocrine/paracrine
feedback manner.

Ultrastructural analysis results demonstrated that TCFoxL1+ in BmpR1a∆FoxL1+ mice
were surrounded by a more complex microenvironment than the control mice. Telocytes
are involved in mechanical sensing, serve as scaffold platform for stroma elements, and
organise the ECM [31]. Thus, their behaviour is altered depending on the nature of the
ECM as shown in other tissues [8,31–33]. Niculite et al. have demonstrated that in the
presence of different enriched matrices, telocytes change their adherence, morphology and
telopodes [33]. In addition, extracellular vesicles produced by telocytes have been observed
in several tissues [31,32]. Upon the release of these extracellular vesicles and other soluble
factors, TCFoxL1+ exchange information with the surrounding microenvironment to dictate
stem-cell behaviour [6], tissue regeneration [34] and immune cell monitoring [6,35]. We
found no significant difference in TCFoxL1+ marker expression and localisation along the
colon crypts under naive conditions; however, upon acute inflammatory stress, the TCFoxL1+

population decreased, whereas that of myofibroblasts increased in both control and mutant
mice. This reduction in TCFoxL1+ has been previously described in ulcerative colitis [36] and
has been hypothesised to facilitate uncontrolled myofibroblast proliferation, thus increasing
ECM protein deposition. Excessive ECM production contributes to the disruption of tissue
homeostasis and the development of fibrosis in inflammatory diseases [36]. The increase
in myofibroblasts seen in both groups during the acute phase was maintained only in
the stroma of BmpR1a∆FoxL1+ mice following recovery, suggesting that apoptosis or trans-
differentiation from myofibroblast to fibroblast, normally expected during restitution, does
not occur [37]. Hence, this indicates that TCFoxL1+ with impaired BMP signalling influence
the homeostasis of the surrounding stromal cells, possibly through secretion of soluble
factors or extracellular vesicles [6,34,35]. This paracrine signalling with the surrounding
stroma cells will be further developed in upcoming studies.

The dominant phenotype of BmpR1a∆FoxL1+ mice was the presence of an irregular
colonic mucus, more specifically in the barrier layer. Upon an inflammatory insult, bacteria
infiltrated the epithelial barrier of mutant mice as shown in the MUC2-deficient mouse
model [38]. Recovery experiments demonstrated that in BmpR1a∆FoxL1+ mice, there was
delayed colonic mucosa healing, along with a decreased number of goblet cells, denuded
epithelial regions and structural problems in the mucus layers, long after the control
group had recovered from the insult. We observed no difference in the expression of
genes related to cell-fate decisions in both the secretory and absorbent lineages between
control and mutant mice, indicating that TCFoxL1+ with impaired BMP signalling do not
influence progenitor cells that directly affect cell determination. However, reduction in
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the maturation gene Klf4 in BmpR1a∆FoxL1+ mice suggested a possible defect in goblet cell
maturation and functionality following loss of BMP signalling in TCFoxL1+.

We focused on the analysis of goblet cell functionality, mucus synthesis and production
in our mouse model. Our ultrastructural analysis results provide new insights on the vesic-
ular composition of goblet cells and the expression of apical glycocalyx. BmpR1a∆FoxL1+

mice exhibited alterations in the epithelial surface glycocalyx and goblet cell vesicles with-
out heterogeneity. Furthermore, Muc2 and Muc4 mRNA expression significantly increased,
suggesting a shift in mucin ratios, which could support the deregulation observed in vesicle
diversity in mutant mice. In addition, BmpR1a∆FoxL1+ mice had a significant increase in the
expression of genes such as Arg2 and Fut2, affecting biosynthesis, final structure and func-
tionality of colonic mucins [14,39]. Anterior Gradient 2 (AGR2) has been associated with
MUC2 biosynthesis, particularly in its folding, trafficking and assembly [39]. Meanwhile,
fucosyltransferase 2 (FUT2) is involved in mucin maturation. Finally, the abnormal pattern
of the MUC2 protein within the goblet cell vesicles in BmpR1a∆FoxL1+ mice suggests an
aberrant glycosylation pattern [40]. Mucins have post-translational modifications that affect
their functionality [41]. Altogether, these findings led us to analyse components related
to mucus structure, such as glycosylation patterns, that could yield a low mucus quality
and support the increased susceptibility to experimental colitis observed in BmpR1a∆FoxL1+

mice.
O-glycosylation of mucins is initiated by the addition of GalNAc to the hydroxyl

groups of serine or threonine to form the Tn antigen [42]. Further steps lead to differ-
ent core structures containing galactose and terminal residues, such as fucose or sialic
acid [43,44]. These terminal residues are known to participate in gut microbiota home-
ostasis [45,46]. Here, in BmpR1a∆FoxL1+ mice, UEA-1 and SNA lectin had reduced fucose
and α2,6-linked sialic acid residues. Similar to previous studies [21,47], we only detected
galactose residues after desulphation and enzymatic digestion, which can be attributed
to further glycosylation or sulphation of the T antigen [21,47]. These results suggest that
BmpR1a∆FoxL1+ mice exhibit a defective glycosylation pathway, leading to the production
of immature mucin. Hence, the reduction in these residues could not only impair mucus
quality and promote bacterial accessibility to the epithelium [48], but also shape the gut
microbial community and its relationship with the host [49]. Indeed, because glycans
serve as carbon energy sources [46] and attachment sites for the resident microbiota, future
studies will be required to analyse the microbiota composition in both groups.

In summary, we have clearly demonstrated the involvement of TCFoxL1+ in the reg-
ulation of the healing functions of the colonic mucosa during and after inflammation.
BmpR1a∆FoxL1+ mice showed abnormal mucus quality, and following inflammation, they
had increased susceptibility to experimental colitis and delayed healing. Our results sug-
gest that cell–cell paracrine communication or direct interactions between goblet cells and
TCFoxL1+ are essential for maintaining the optimal functionality of the secretory cells. In
addition, these results revealed that BMP signalling in TCFoxL1+ is key for the regulation of
its own homeostasis and communication functionality. Our findings provide new insights
into the roles of TCFoxL1+ in the regulation of epithelial homeostasis beyond the stem
cell niche.
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