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Repair of DNA damage protects genomic integrity, which is key to tissue functional

integrity. In cancer, the type and fidelity of DNA damage response is the fundamental

basis for clinical response to cytotoxic therapy. Here we consider the contribution

of transforming growth factor-beta (TGFβ), a ubiquitous, pleotropic cytokine that

is abundant in the tumor microenvironment, to therapeutic response. The action

of TGFβ is best illustrated in head and neck squamous cell carcinoma (HNSCC).

Survival of HNSCC patients with human papilloma virus (HPV) positive cancer is more

than double compared to those with HPV-negative HNSCC. Notably, HPV infection

profoundly impairs TGFβ signaling. HPV blockade of TGFβ signaling, or pharmaceutical

TGFβ inhibition that phenocopies HPV infection, shifts cancer cells from error-free

homologous-recombination DNA double-strand-break (DSB) repair to error-prone

alternative end-joining (altEJ). Cells using altEJ are more sensitive to standard of care

radiotherapy and cisplatin, and are sensitized to PARP inhibitors. Hence, HPV-positive

HNSCC is an experiment of nature that provides a strong rationale for the use of TGFβ

inhibitors for optimal therapeutic combinations that improve patient outcome.

Keywords: cancer, TGFβ, DNA repair, tumor microenvironment, genomic integrity, cytotoxic therapy, therapeutic

response

INTRODUCTION

DNA repair is executed by multiple pathways that must be coordinated to deal with different types
of DNA damage, including oxidative damage, single strand breaks (SSB), and double strand breaks
(DSB). Complex intracellular mechanisms have developed to ensure an appropriate DNA damage
response (DDR). In cancer, gene mutations and altered cell signaling can give rise to dysregulated
and aberrant DNA repair mechanisms that presumably contribute to genomic instability and
mutational burden that are associated with cancer progression.

Cancer cells are actively involved in crosstalk with host cells of the tumor microenvironment
(TME), which includes the vasculature, immune cells and stroma, constitutes a robust but skewed
signaling network distinct from normal tissue. Though the TME is critical in shaping the biology of
a tumor, the impact of context-related signaling on the tumor cell’s DNA repair proficiency is poorly
understood. This article reviews cell intrinsic execution of DSB repair proficiency and pathway
competency to discuss DNA repair in the context of the TME.
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We focus on transforming growth factor-beta (TGFβ), which
is critically involved in extrinsic control of pathway competency
in DSB repair. Recently, we determined that compromised TGFβ
signaling caused by human papilloma virus (HPV) in head and
neck squamous cell carcinoma (HNSCC) shifts DSB repair to
error prone and inefficient alternative end-joining (altEJ). HPV
is an experiment of nature that provides compelling evidence
that signaling from TGFβ, and thus the TME, is critical for DNA
repair execution and pathway choice. The insight gained from
understanding of the mechanisms by which TGFβ signaling,
DDR, and TME are functionally linked, paves the way to
further exploit weakness in specific cancers and develop pertinent
therapeutic strategies.

DSB REPAIR PATHWAYS

Tens of thousands of DNA lesions are produced in a cell’s
daily life as a result of endogenous metabolic activities such as
DNA replication or reactive oxygen species (ROS), as well as
exposure to exogenous agents like ultraviolet (UV) or ionizing
radiation (1, 2). Of the many types of DNA damage, DSBs are
among the most dangerous. Failure to repair DSBs may lead to
mutations, genomic, and chromosomal rearrangements, or cell
death. In order to maintain genomic integrity, two predominant
DSB repair pathways have developed to deal with different
types of lesions: classical non-homologous end-joining (c-NHEJ)
and homologous recombination repair (HRR) [Figure 1; (3)].
In mammalian cells, c-NHEJ is the predominant DSB repair
pathway that can efficiently rejoin most DSBs (4). Although c-
NHEJ functions throughout the cell cycle, it is particularly critical
in the G1 phase when the cell has yet to replicate its DNA
(5, 6). C-NHEJ is initiated by the binding of the Ku70/Ku80
heterodimer to the ends of the DSB, which is then recognized

FIGURE 1 | DSB repair pathways. Once a DSB is induced by a DNA damaging agent, cancer cells will try to repair it by one of these three mechanisms. Critical repair

proteins in each pathway are shown.

with high affinity by the catalytic subunit of DNA-dependent
protein kinase (DNA-PKcs), forming the DNA-PK complex (7).
This enables the recruitment of nucleases, including Artemis,
to trim any short overhangs that are present on the DSB ends
(8), and polymerases, including Polµ, to fill in any gaps (9–
11). The final ligation step involves a ligase complex comprised
of DNA ligase IV, X-ray repair cross-complementing protein 4
(XRCC4), and XRCC4-like factor (XLF), which is responsible for
bridging and ligating the two processed ends (12). Because DSB
ends often require processing to remove damaged nucleotides
to enable ligation, c-NHEJ is considered an error-prone form
of repair that can lead to short insertions and/or deletions.
However, growing evidence suggests the context under which c-
NHEJ is used in DSB repair is a critical determinant of the repair
outcome, i.e., error-prone or error-prevention (13, 14). Although
it awaits further evidence, it has been speculated that orchestrated
repair with c-NHEJ in normal cells prevents chromosome
instability, but in cancer cells with dysregulated repair pathways,
inappropriate implementation of c-NHEJ-dependent end joining
of non-contiguous ends can cause genomic alterations and lead
to chromosome instability (13, 14).

The repair of DSBs by HRR is a highly complex process

that requires the generation of single-stranded 3′ overhangs at

each end, after which the homologous sequence on the sister
chromatid is used to accurately fill in the gaps and restore the
original DNA sequence (15, 16). In the first step of HRR, the DSB
ends are recognized by the MRN complex, which is composed
of meiotic recombination 11 homolog A (MRE11), RAD50, and
Nijmegen breakage syndrome 1 (NBS1). Once bound to the
DSB, the MRN complex activates ataxia telangiectasia mutated
(ATM), a serine-threonine kinase that initiates the DDR by
phosphorylating a plethora of substrates, thus facilitating the
recognition of the DSB and the activation of downstream repair
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factors. In addition to its role in the MRN complex, MRE11 also
associates with C-terminal binding protein interacting protein
(CtIP), an endonuclease that allows for the removal of ∼100
nucleotides from the 3′ end of the DSB (17, 18).

Following the initial processing step byMRE11 andCtIP,more
extensive resection is subsequently mediated by either the EXO1
exonuclease or a combination of the RECQ helicase (BLM or
RECQL4) and the DNA2 exonuclease (19). The single-stranded
DNA formed by these resection steps is very quickly coated with
and stabilized by replication protein A (RPA), preventing them
from being degraded or forming DNA hairpins (20). For the
final phase of HRR, RPA is replaced with RAD51 to facilitate
homology search, strand invasion into the sister chromatid, and
initiation of DNA synthesis at the region of the DSB (21).
This process requires several proteins known as recombination
mediators, e.g., the tumor suppressor breast cancer 1, early onset
2 (BRCA2) (22, 23). Repair is then completed upon resolution of
crossover junctions by resolvases (24). Because HRR requires a
homologous template, it can only be used to repair DNA that has
been replicated (i.e., during the S and G2 phases of the cell cycle).

A third mechanism for repair of DSBs is altEJ, which is also
referred to as backup end joining, or microhomology-mediated
end joining (25, 26). A comparison of repair strategies is depicted
in Figure 1. AltEJ uses poly [ADP-ribose] polymerase 1 (PARP1)
to tether broken DNA ends (27), DNA polymerase theta (Pol
θ) coded by the POLQ gene to initiate DNA replication at
sites within two single-stranded 3′ overhangs (28), and DNA
ligase I (LIG1) or DNA ligase III (LIG3) to join the DNA
ends (29). AltEJ commonly occurs at sites containing short
complementary sequences, known as microhomology, that are
exposed after end resection; this requirement for resection and
minimal homologymeans that altEJ has low fidelity and therefore
frequently results in small deletions, insertions, and gross
chromosomal rearrangements (30, 31). Because its execution
increases genomic instability, altEJ is believed to be more active
in certain cancers (32).

Other DSB repair pathways, such as single-strand annealing
(SSA), can result in large deletions during repair by annealing of
longer (e.g., >100 nt) repeats following extensive end-resection.
These are rarely used in mammalian cells and have been reviewed
recently (24), and will not be discussed herein.

DSB REPAIR PATHWAY COMPETENCY IN
CANCER

The mechanism by which DSB are repaired is determined
by a variety of factors, although the outcome is ultimately
determined by the presence or absence of end resection. The
initial phase of c-NHEJ, i.e., binding of the Ku heterodimer to
DSB ends, minimizes end resection to allow accurate end-joining.
End processing and resection are therefore tightly regulated
by Ku70/Ku80, along with WRN and 53BP1, which together
protect DNA ends during the G1 phase when HRR cannot
occur due to the absence of a sister chromatid. Resection is also
normally limited to late S or G2 due to the cell-cycle dependent
expression of CtIP and its activation by CDK1 or CDK2 (33, 34).

Importantly, resection requires the repositioning of 53BP1 on
DSB ends by BRCA1, and therefore the loss of BRCA1 inhibits
HRR, which was demonstrated by the fact that a deficiency
in 53BP1 rescues the defect in HRR caused by the absence of
BRCA1 (35). Noordermeer et al. recently demonstrated that
53BP1 effector complex, shieldin, localizes to DSB to prioritize c-
NHEJ repair (36). In BRCA1-deficient cells, loss of shieldin or its
subunits can restore HRR and resistance to PARP inhibition (37).

AltEJ was initially believed to be a backup pathway for c-
NHEJ and HRR (26). The Ku heterodimer has much higher
affinity for DSB ends relative to PARP1; thus, c-NHEJ is highly
favored over altEJ inmost circumstances (38). A higher frequency
of altEJ-mediated repair was observed after the depletion of
HRR factors such as RPA, BRCA1, and BRCA2 (39), suggesting
HRR is used with priority in normal settings. In addition,
because both HRR and altEJ require an initial resection step
at DSB ends, both pathways are inhibited by c-NHEJ factors.
Conversely, end resection is sufficient to block repair by c-NHEJ,
as Ku70/Ku80 has very low affinity for single stranded DNA
(40). Notably, accumulating evidence suggests that altEJ also
competes with HRR for the repair of DSB (28, 41). For example,
by studying dysfunctional telomeres and accumulation of RAD51
at DSBs, Mateos-Gomez and co-authors found that the loss of a
critical component in altEJ, Pol θ, increased HRR in mice (28).
Similar findings have been reported in ovarian cancers: HRR was
upregulated when Pol θ expression was inhibited, while Pol θ

expression blocks RAD51-mediated HRR due to RAD51 binding
motifs in Pol θ (41).

Cell cycle phase plays an important role in DSB repair pathway
choice. In S and G2 phases, HRR is preferentially used to repair
DSB due to the presence of CYREN, an inhibitor of c-NHEJ (42).
AltEJ is largely inactive in normal cells, but in quickly dividing
cancer cells, altEJ may be increased to handle the increased level
of DNA damage and, as a result, generate more mutations as by-
products. Although the cell cycle dependency of altEJ is not clear,
it is possible that HRR-deficient cells use altEJ mainly in S or G2
phases, while c-NHEJ defects may increase altEJ in G1 phase. In
addition, host cell type, chromosomal location, and epigenetic
modification are also important factors for pathway competence
at DSBs, which has been reviewed elsewhere (43).

EXPLOITING DNA REPAIR DEFICITS IN
CANCER CELLS

Many DNA repair genes are tumor suppressors, and are
frequently mutated during tumor progression. Loss of functions
in some DNA repair genes increases compensating mechanisms
of repair that may expose a targetable “Achilles heel.” Synthetic
lethality, which is defined as a cytotoxic response to the loss
or inhibition of a gene or pathway that only happens in the
presence of another specific genetic deficit, can specifically target
cancer cells containing a defect in a DNA repair gene. The clinical
application of synthetic lethality is best exemplified using PARP
inhibitors in cells that have germ line or somatic mutations
in BRCA1 or BRCA2 (44, 45). PARP inhibition results in the
accumulation of single-strand breaks (SSB) that produce DSBs
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upon collision with a DNA replication fork, which require HRR
to repair. This is one mechanism by which BRCA1/2-deficient
cancers are highly sensitized to PARP inhibition, although other
functions of PARP may contribute as well. For example, PARP is
directly involved in detoxifying endogenous ROS (46, 47), while
BRCA1 down-regulates cellular levels of ROS (48). Thus, BRCA
deficient cells may be more sensitive to increased cytotoxic ROS
that result fromPARP inhibition. Although the clinical benefits of
PARP inhibition are clear in BRCA1/2-deficient cancers, tumors
with HRR defects in the absence of BRCA gene mutations (i.e.,
BRCAness) are also responsive to PARP inhibition (49). Hence,
mutation of genes that are directly or indirectly involved in
HRR or the Fanconi anemia pathway, a DNA repair pathway
that intersects HRR, can contribute to so-called BRCAness, i.e.,
tumors that behave as if BRCA1 or BRCA2 are mutated (49).
Biomarkers to assess BRCAness, which include transcriptional
signatures, genomic scars, or levels of Rad51 foci, are under
intensive investigation (50–52).

SYNTHETIC LETHALITY BETWEEN ALTEJ
AND OTHER DSB REPAIR PATHWAYS

Besides its key role in SSB repair, PARP1 is also a critical
component of altEJ; thus, PARP inhibition can cause synthetic
lethality in tumors that rely on altEJ (25). Other altEJ components
are promising therapeutic targets for tumors that depend on this
repair pathway. Indeed Pol θ -mediated end joining becomes
critical when either HRR or c-NHEJ fails. A recent genetic screen
reported that both Pol θ and another altEJ component, the
structure-specific endonuclease FEN1, are synthetic lethal with
BRCA2 (53). The potential synergy of HRR and altEJ is indicated
by embryonic lethality of combined loss of Brca1/Fancd2 and
Polq in mice (28, 41). Depletion of Pol θ in human cancer
cells deficient in HRR due to absence of BRCA1/2 increases
chromosomal aberrations and impaired cell survival (28). Pol θ

loss also increases HRR-impaired cells sensitivity to DNA-
damage (41).

Moreover, there is growing evidence that defects in HRR can
lead to increased dependence on altEJ for repair, particularly in
the context of fork stalling during replication stress (26, 54). In
addition to its relationship with HRR, altEJ may also be synthetic
lethal with c-NHEJ. Combined deletion of POLQ and Ku70,
as well as POLQ and 53BP1, leads to markedly reduced cell
proliferation and survival associated with excessive end resection
and chromosomal aberrations (55). Notably, POLQ is highly
expressed in a subset of cancer types (56, 57) and its expression is
associated with poor prognosis (58, 59).

DNA REPAIR IN CONTEXT: THE TUMOR
MICROENVIRONMENT

Cancer cells react to endogenous (e.g., replication stress) or
exogenous (e.g., radiation, chemotherapy) DNA damage in the
context of their TME. The TME plays an important role in
determining cancer clinical behavior and progression, and can
influence cancer cell response to therapy (60, 61). Components

of the TME include cellular constituents of bone-marrow derived
cells, fibroblasts and vessels, insoluble extracellular matrix, and
soluble cytokines and chemokines (62). These TME components
closely collaborate with cancer cells for development of a
neoplastic phenotype. In this “team,” frequent interactions and
crosstalk in a complicated signaling network unite them as
a whole. Better understanding of “tumor as a whole” could
provide information about the optimal use of therapies, and
improve the development of personalized therapy based on
integrated features of a tumor derived from both cancer cells and
TME composition.

The influence of TME conditions on DNA repair is
complex. Although DNA repair is largely regulated through
autonomous signaling cascades, tissue-wide stress responses
from DNA damage may be networked among tumor cells,
stromal cells, and other TME components. TME composition
influences DNA repair efficiency by transmitting inter- and
intra-cellular signals in a tissue-specific fashion. Many TME
factors, which include cytokines, extracellular matrix, stromal
cells, hypoxia, and inflammation, are known to modulate DNA
repair efficiency (63–68).

Here we focus on TGFβ, a highly pleiotropic cytokine and a
canonical tumor suppressor. Because TGFβ suppresses epithelial
cell cycle progression, all carcinomas must escape TGFβ growth
regulation (69). Notably, high TGFβ expression and signaling is
associated with poor prognosis in multiple cancer types (52, 70)
because TGFβ becomes a tumor promoter that is involved in
tumor progression by modifying the TME, suppressing immune
response, and promoting metastasis (71). Due to these critical
functions and association with poor outcomes, TGFβ is an
intriguing therapeutic target in clinical trials (72, 73).

TGFβ BIOLOGY

Understanding the biology of TGFβ is rooted in understanding
when and where it is active. There are three mammalian TGFβ
isoforms, each encode a polypeptide that is cleaved intracellularly
to form a roughly 24 kD TGFβ that is non-covalently associated
with an 80 kD dimer of its pre-pro peptide, called latency
associated peptide (LAP). This complex, TGFβ and LAP, is
secreted as the latent TGFβ complex and is often sequestered in
forms bound to extracellular matrix. TGFβ canonical signaling is
initiated upon the release of TGFβ ligand from its latent complex,
and subsequent binding to the type II TGFβ receptor (TβRII),
which causes recruitment and phosphorylation of type I receptor
(TβRI). Activated TβRI kinase phosphorylates the carboxy-
terminal serine residue of the mothers against DPP Homolog
proteins SMAD2 or SMAD3, which induces oligomerization
of SMAD2 or SMAD3 with SMAD4, and DNA binding of
the complex to mediate transcriptional activation or repression
of target genes. TGFβ also transduces signals through non-
canonical signaling pathways, such as MAPK/ERK, PI3K/AKT,
Rho/Rock. Activation of TGFβ is highly controlled in normal
tissues. In cancers, TGFβ signaling is highly dysregulated (70, 74,
75). Defective TGFβ signaling, which can be caused by mutations
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in SMAD4 and TGFBR2, are frequent in certain types of cancer
(52, 73).

Both cancer cells and stromal cells produce TGFβ that
may, when activated, elicit paracrine or autocrine signaling
to stimulate fibroblasts, endothelial cells and immune cells
that further alter the TME. Moreover, TGFβ is a potent
immunosuppressive cytokine involved in shaping TME by
inhibiting the activation and function of T cells (76, 77), inducing
immune suppressive myeloid cells (78), as well as by other
multifaceted mechanisms (79–81). These complex interactions
are just a few of TGFβ’s roles in the TME.

An unexpected role for TGFβ, an intrinsically extracellular
signal, is response to intracellular DNA damage. Glick et al.
(82) was likely the first study to implicate TGFβ in the
cellular response to DNA damage. They showed that Tgfb1
null murine keratinocytes were highly genomically unstable,
independent of G1 arrest and p53 function (82). Consistent
with a role of TGFβ in maintaining genomic stability,
Maxwell et al. (83) demonstrated more centrosome aberrations
and aneuploidy in irradiated Tgfb1-null compared to TGFβ-
competent keratinocytes. Notably, this effect is phenocopied by
TGFβ inhibition in human epithelial cells (83). In a subsequent
study, Glick and colleagues revealed a DNA repair deficit due
to hypermethylatedO(6)-methylguanine DNAmethyltransferase
(MGMT) that affected the DDR of Tgfb1-null keratinocytes
(84). Similarly, Kirshner et al. (85) showed that inhibiting TGFβ
signaling attenuates DDR by compromising the function of ATM,
the DDR kinase involved in DSB recognition (85). Consequently,
pharmaceutical inhibition of TβRI kinase or knockout of Tgfb1
reduces ATM autophosphorylation and phosphorylation of its
substrates, e.g., p53, Chk2, and Rad17, inhibits formation of
radiation-induced γH2AX foci, and increases radiosensitivity
(85). In support of this, Wiegman et al. (86) showed that
exogenous TGFβ stimulates ATM and p53 phosphorylation in
irradiated cells in a SMAD-independent fashion (86). Notably,
TGFβ inhibition also reduces LIG4 expression, which is required
in c-NHEJ (87).

Nucleotide excision repair (NER) is a versatile DNA repair
pathway that eliminates a wide variety of helix-distorting base
lesions induced by environmental carcinogenic sources. UVB
radiation downregulates E-cadherin, a cell adhesion protein,
in mouse skin and skin tumors whereas inhibiting the TGFβ
pathway in these cells increases the NER of UV-induced DNA
damage (88). E-cadherin inhibition in keratinocytes suppresses
NER through activating the TGF-β pathway and increasing
TGFβ1 mRNA levels. Interestingly, TGFβ is activated by
ionizing radiation and in turn, promotes epithelial-mesenchymal
transition characterized by loss of E-cadherin (89). Treatment
of cells with exogenous TGFβ enhances NER of DNA damage
formed by polycyclic aromatic hydrocarbons and UVC radiation
independent of the cell cycle (90).

Consistent with role of TGFβ in DDR, the SMAD proteins,
which are the critical transducers of TGFβ intracellular signaling,
are involved in DSB repair. Both pSmad2 and Smad7 can co-
localize with nuclear γH2AX foci at DSB, while pSmad2 foci
formation is ATM dependent (91). Studies in Smad4 conditional
knockout mice confirmed that TGFβ is critical in maintaining

genomic stability through regulation of genes in the Fanconi
anemia/BRCA DNA repair pathway (92). SMAD4 suppresses a
micro RNA, miR182, which inhibits FOXO3, which is required
for ATM kinase activity (32, 52). MiR182 also suppresses BRCA1
expression (93, 94). Hence, TGFβ signaling through SMAD4
promotes HRR in part by suppressing miR182 (52). C-NHEJ is
also partially compromised because LIG4 expression and ATM
activity are reduced once TGFβ signaling is blocked (85, 87).

Although tumors must evade TGFβ growth control, at the
time of clinical appearance, many tumors maintain signaling
competency. Indeed, squamous cell carcinomas may take
advantage of TGFβ signaling to maintain a sub-population of
cells at a quiescent state for chemo-resistance (95). Moreover,
the high TGFβ activity of TME could promote tumor-intrinsic
resistance to cytotoxic agents due to its role in DNA damage
recognition and repair. If so, pharmacological TGFβ blockade
could sensitize certain tumors to radiation and other cytotoxic
therapies. Exploration of brain, breast, and lung cancer pre-
clinical models is consistent with this concept, since TGFβ
inhibition radiosensitized 38 of 43 murine and human cancer
cell lines in vitro (85, 96–98). Because TGFβ provides extrinsic
control of several aspects of intracellular DNA repair pathway
competency, one prediction is that tumors that are insensitive
to TGFβ can be exploited by targeting their deficiency in
DNA repair.

TGFβ SIGNALING REGULATES DNA
REPAIR PATHWAY COMPETENCY

The contribution of TGFβ signaling as a barrier compromising
therapeutic response to cytotoxic therapy is exemplified by
HPV-positive (HPV+) HNSCC (52), which have much better
(70%) survival at 5 years compared to HPV-negative (HPV-)
cancers that attain only 30% survival, even when HNSCC
location and stage are similar. The considerable difference in
outcomes has stimulated significant interest based on the idea
that the mechanism of sensitivity of HPV+ cancer to standard-
of-care chemoradiation therapy, which could provide insights
that can be therapeutically exploited to achieve better response
in HPV- cancer.

Consistent with a cell-intrinsic effect, HPV+ cancer cell
lines exhibit altered expression of DNA repair proteins (99)
and increased sensitivity to cytotoxic therapy (100, 101). Most
research has focused on oncogenic impairment of p53 and
retinoblastoma (Rb) proteins by HPV E6 or E7, respectively.
However, HPV proteins E5, E6, and E7 target both the type I
and II TGFβ receptors and SMAD 2, 3, and 4, the transducers
of ligand binding, for degradation (102, 103). We examined
the impact of HPV on TGFβ signaling in HNSCC at multiple
levels. Functionally, TGFβ induced phosphorylation of SMAD2
(pSMAD), indicative of signaling competency, is significantly
reduced in HPV+ cell line, patient derived xenografts, and
primary tumor explants, compared to HPV− specimens (52).
Notably, HPV+ specimens in a HNSCC tumor array with 130
HPV− and 65 HPV+ samples exhibit less pSMAD compared
to HPV− specimens. In addition, TCGA HPV+ tumors are
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identified by low activity (243 HPV− vs. 36 HPV+ ones)
of a TGFβ pathway signature, which contains 50 TGFβ-
regulated genes that were derived from epithelial cells chronically
stimulated or inhibited for the corresponding pathway.

Interestingly, Wang and colleagues engineered a conditional
Smad4 deletion in oral mucosa that gave rise to spontaneous
HNSCC accompanied by high rates of genomic instability (92).
Subsequent studies by this group showed that Smad4 deletion
leads to decreased Brca1 expression in mice and that loss of
SMAD4 protein correlates with decreased BRCA1 and RAD51
proteins in human HNSCC. BRCA1 is crucial for HRR during S-
phase/G2, acts upon the cell cycle machinery, and affects gene
expression and cell fate decisions via chromatin remodeling
and transcriptional activity (104). Wang and colleagues showed
that BRCA1 is transcriptionally down-regulated by SMAD4-
dependent CtPB1 (105). A second, more direct route by which
TGFβ controls of BRCA1 is via TGFβ suppression of miR-
182, which targets BRCA1 message stability and translation in
mouse and human cells. Thus, pharmacologically or genetically
compromised TGFβ increase levels of miR-182 and consequently
suppress BRCA1 (94).

Consistent with our earlier studies in breast, lung and brain
cancer cells (85, 96–98), HPV+ HNSCC cell lines were more
sensitive to radiation than HPV− cell lines (52). Indeed, the
degree of pSMAD response to TGFβ and cellular radiosensitivity
are highly correlated. Radiation sensitivity reflects the cumulative
damage and inherent capacity to repair the damage based
on the cells ability to recognize DNA damage, assemble the
repair machinery, and execute repair; abrogation of any of these
components decreases cell survival. As noted above, BRCA1 is
critical for HRR-mediated DNA repair. HRR requires RAD51
binding to 3′-single-stranded DNA overhangs from processed
DSB and strand pairing; thus, the formation of RAD51 foci is
evidence of HRR. Significantly, fewer RAD51 foci are formed
in HPV- HNSCC cells and tumor specimens if TGFβ is
pharmacologically blocked, which is not observed in HPV+
HNSCC cells.

A deficiency in HRR should increase the proportion of cells
that are killed in response to PARPi. As predicted, TGFβ-
unresponsive HPV+ cell lines are more sensitive to olaparib
alone compared to TGFβ-responsive HPV- cancer cells, which
were sensitized 4-fold by TGFβ inhibition (52).

Loss of effective HRR can activate altEJ, which competes
with HRR for repair of DSBs in S-phase (41) and/or acts as
backup repair when HRR or c-NHEJ are compromised (26).
As mentioned earlier, altEJ requires PARP1 and Pol θ, the
product of the POLQ gene (28). To evaluate altEJ, we established
TGFβ-responsive cells with a reporter construct detecting altEJ
events (106). As expected, a specific PARP1 inhibitor reduced
altEJ events, while TGFβ inhibitors significantly increased
altEJ events.

Thus, either pharmaceutical blockade of TGFβ signaling in
HPV− cells or intrinsic-defects in TGFβ signaling in HPV+ cells
shifts DSB repair to altEJ (Figure 2). This shift may result from
decreased implementation of HRR and c-NHEJ, or may indicate
an increase in altEJ competency. Notably, BRCA1 heterozygous
cells exhibit preferential use of altEJ (107), suggesting that the

decrease in BRCA1 that occurs upon loss of TGFβ signaling
phenocopies the genetic BRCA1 loss. As c-NHEJ is also partially
compromised because LIG4 expression and ATM activity are
reduced (85, 87), cells with deficient TGFβ signalingmay increase
altEJ to compensate for a deficiency in both HRR and c-NHEJ.

TGFβ-unresponsive cells that depend on altEJ are still capable
of rejoining most DSBs, which hinders the maximal cytotoxic
response to DNA damage. As mentioned above, recent studies
demonstrate that Pol θ is required in altEJ (28, 41). HRR-deficient
ovarian and breast cancers exhibit increased POLQ expression,
perhaps indicative of altEJ (41). Consistent with this, POLQ
expression is increased in HPV+ vs. HPV− HNSCC TCGA
(52). Notably, POLQ shRNA expressing HPV− cells treated with
TGFβ inhibitors were more sensitive DNA damage, supporting
the idea that Pol θ-mediated altEJ is increasingly used when
TGFβ signaling is abrogated. These data suggest that combining
altEJ inhibitors with pharmaceutical blockade of TGFβ signaling
would induce synthetic lethality, thus creating a novel route that
could boost the sensitivity of TGFβ-active tumors to therapies
that involve DNA damage. Moreover, since altEJ is a backup
mechanism that operates preferentially in cancer cells, inhibiting
altEJ may pre-dominantly sensitize tumor cells and spare normal
cells. Alternatively, one might select cancers that are defective
in TGFβ to target drugs that interfere with altEJ, since these
drugs will both improve the treatment effectiveness and the
toxicity profile.

The importance of alt-EJ in TGFβ-deficient cells discovered
in HNSCC raises several questions. We are following this lead
to determine if the same mechanism is evident in other cancers
in which TGFβ signaling is compromised. Almost all cervical
cancers are HPV positive, which we would expect to show
similar DDR choices as HNSCC. However, TGFβ signaling is
compromised by various mechanisms in many cancers (108).
Our analysis across the spectrum of cancers suggest that there
is probably a generic mechanism (unpublished). We also find
that the repair shift to altEJ in TGFβ-deficient cells occurs
independent of miR-182. Further studies are necessary to
decipher the underlying mechanisms.

Although most evidence supports TGFβ as a factor enforcing
DNA-repair proficiency to protect against genomic instability,
conflicting evidence about the role of TGFβ in DDR also
exists (109–112). For example, Pal et al. reported that TGFβ
hinders DSB repair in cancer stem cells by reducing HRR gene
expression, which was proposed to heighten genetic diversity and
adaptability of cancer stem cells (112). This subpopulation may
regulate DDR differently, but it is interesting that in another
study, glioblastoma cancer stem cells make 5-fold more TGFβ
than bulk cultures (97). Considering that TGFβ is a pleotropic
cytokine, the extensive technical and conditional differences in
these studies may lead to a different conclusion.

For example, TGFβ signaling induces squamous cell
carcinoma cancer stem cells quiescence, which would be
expected to affect repair pathway competency in a manner that
contributes to chemo-resistance (95). However, many cancer
cells have escaped TGFβ cell growth control, as stated above. For
example, in our HNSCC study, the cell cycle was not significantly
changed upon TGFβ stimulation or inhibition of HNSCC cell
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FIGURE 2 | Defective TGFβ signaling in HNSCC increases altEJ (52). (A) TGFβ signaling suppresses miR182, which suppresses expression of BRCA1 and FOXO3.

DNA damage elicits activates ATM autophosphorylation and its phosphorylation of BRCA1, which gives rise to use of HRR in S-phase. (B) In contrast, deficient TGFβ

signaling, which can be caused by HPV infection, TGFβ receptor kinase inhibitors (TBRi) or SMAD4 mutations (SMAD4 mut), leads to increased miR182 that

suppresses BRCA1 and FOXO3. Loss of FOXO3 inhibits ATM auto-activation, which together with decreased BRCA1, impedes HRR. This is accompanied by

increased altEJ.

lines (52), which indicates that TGFβ can regulate DNA repair
pathway by mechanisms independent of cell cycle effects.

OUTLOOK

Intensive investigation of the TME has advanced our
knowledge about the tumor as a whole, whereas in-depth
analysis of DDR now provides mechanisms of DNA repair
strategies and their implementation in cancer cells. How
DDR is executed in different tumors is an area of growing
complexity. The highly heterogeneous TME is a function
of cancer cell genetics, epigenetics, host cell composition
that result in complicated signaling networks. However,
opportunities also lie in these challenges. DDR-related signaling

pathways regulated by the TME components may contain
biomarkers for cancer stratification, as well as molecular
or cellular targets for drug development, which deserves
significant investigation.
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