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Abstract: Olive is considered one of the oldest and the most important cultivated fruit trees in Albania.
In the present study, the genetic diversity and structure of Albanian olive germplasm is represented
by a set of 194 olive genotypes collected in-situ in their natural ecosystems and in the ex-situ collection.
The study was conducted using 26 microsatellite markers (14 genomic SSR and 12 Expressed Sequence
Tag microsatellites). The identity analysis revealed 183 unique genotypes. Genetic distance-based
and model-based Bayesian analyses were used to investigate the genetic diversity, relatedness, and
the partitioning of the genetic variability among the Albanian olive germplasm. The genetic distance-
based analysis grouped olives into 12 clusters, with an average similarity of 50.9%. Albanian native
olives clustered in one main group separated from introduced foreign cultivars, which was also
supported by Principal Coordinate Analysis (PCoA) and model-based methods. A core collection
of 57 genotypes representing all allelic richness found in Albanian germplasm was developed for
the first time. Herein, we report the first extended genetic characterization and structure of olive
germplasm in Albania. The findings suggest that Albanian olive germplasm is a unique gene pool
and provides an interesting genetic basis for breeding programs.

Keywords: Olea europaea; genetic variability; microsatellite; EST-SSR; core collection

1. Introduction

Olive (Olea europaea L.) is one of the most important and oldest cultivated plants in
the Mediterranean Basin and it is an emblematic tree crop, even in Albania. Olive has been
grown in Albania since ancient times due to the favorable climatic and ecological conditions.
The cultivation of olive in Albania is thought to have begun approximately at the same
time as in neighboring regions. The presence of olives in Albania has been historically
demonstrated by records of olive oil trade by 300–150 BC, finds at archeological sites of
olive mills dating back to the 4th Century BC [1], olive stones, and decorated amphorae’s
with olive trees [2]. The enormous number of ancient cultivars and oleasters with an
estimated age of up to 3000 years provides a living proof of olive antiquity in Albania [1].
The olive orchards are mainly located at hilly zones and on the western coast and central
region, and a few olive orchards which constitute a very interesting pool regarding their
genotypes’ adaption to colder climate are found in the northern part of Albania. The
co-existence of cultivated olives with their wild relatives, the oleasters, in Mediterranean
countries, has been inferred from archeological and paleobotanical findings [3]. In some
areas, cultivars and feral-wild olives live together within a radius of a few meters and they
are not easily distinguished [4]. The diversity of feral populations, due to the derivation of a
new seedling by sexual reproduction, grown without any agricultural aid, could give rise to
varieties with superior traits for cultivation [4]. Furthermore, the oleasters could contribute
to the explanation of domestication processes [5]. Presumed crosses between wild and
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cultivated forms may have led to new cultivars around the Mediterranean countries [6].
In Albania, feral and wild olives (oleasters) have also been found in isolated areas and in
association with cultivated olives, for which they are thought to be pollinators, and their
estimated age ranges from 200 to 1000 years [7] Frezzoti, 1930, cited by Reference [8].

Due to the increased demand for olive oil, as well as table olives, the Albanian govern-
ment promoted an increase of olive trees to be planted in the country, up to 25 million olive
trees over several years [9]. The planting campaign is still going on and at present, there
are ten million olive trees recorded [10], stressing the need for the correct characterization
to ensure preserving the main cultivars and safeguarding minor olive genotypes, avoid-
ing genetic erosion. Molecular marker methods have undoubted advantages, including
microsatellites, which have proven to be powerful tools for the identity, parentage, and
kinship analysis of a wide range of plant species. Microsatellite markers have been used
in various studies on olives, such as identification purposes, relationship establishment,
population structure analyses, core collections sorting, etc. Microsatellite markers have
been applied successfully in the assessment of genetic diversity and relationships among
wild olives [11], among cultivated and wild olives [5,12,13], as well as within native and
introduced cultivated olives [14]. The usefulness of microsatellite markers has been con-
firmed as a powerful tool for assessment of genetic relationships among cultivated olives
of different regions by assigning cultivars according to their area of origin [15–17]. Mi-
crosatellites are also preferentially used in inferring the structure of populations [12,13,18]
and establishing core collections for the conservation and the optimal management and use
of olive genetic resources [18–21]. Furthermore, projects on expressed sequence tags (EST)
of olives [22–25] offered the possibility of obtaining new microsatellites with less effort
and costs. The development of expressed sequence tag-SSRs(EST-SSR) markers in olives
has been reported in several studies [26–30] and they were successfully used to assess
variation in coding regions of the genome. In this scenario, the combination of the genomic
microsatellites (gSSR) and EST-SSR molecular markers will provide a powerful tool for
assessment of genetic variability in noncoding and in the coding regions.

Albanian olive germplasm evaluation has to date been traditionally characterized and
identified by morphological and agronomical traits, which are known to be influenced by
environmental factors and the developmental stage of the plant. The most recent olive
catalogue, based on morphological descriptors and oil content, describes 55 autochthonous
olive genotypes, of which 45 are cultivated olives and 10 are oleasters [7]. The molecular
studies conducted so far included a limited number of Albanian olives analyzed by means
of randomly amplified polymorphic DNA (RAPD) markers [8] and by nine SSRs [10].

The aim of the study was the evaluation of the genetic diversity, assessment of genetic
relationships of olive genotypes, and the variability among different geographical and
breeding groups of olives and establishing core collection. The molecular data provides for
the first time a broad inventory of olive genetic resources in Albania.

2. Materials and Methods
2.1. Plant Materials

A set of 194 samples of olive accessions (O. europaea ) were collected in situ and in the
ex-situ collection in Albania, encompassing the representatives of local olive cultivars (130),
cultivars of foreign origin (45) that have been introduced (mainly from Italy), and oleasters
(19), which are used mainly as rootstocks and are pollen donors for many cultivated
olive cultivars. A group of 74 olive trees represent very old plants, with an estimated
age of 500–3000 years, maintained in situ in their natural ecosystem at olive growing
regions throughout Albania. The ancient olive genotypes were previously morphologically
characterized and selected to construct an Albanian in situ olive germplasm collection
under the auspices of the Gene Bank of Albania.
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2.2. Microsatellite Genotyping

Total genomic DNA was extracted from young leaf tissue using the CTAB (cetyltrimethy-
lamonium bromide) method [31]. DNA concentration was quantified based on fluorescent
detection, on a DyNAQuantTM 200 fluorometer (Amersham Biosciences, Chicago, IL,
USA), according to the manufacturer’s instructions. The sample set was genotyped with
a set of 26 microsatellite markers, of which 14 were genomic SSRs [32–35] and 12 were
EST-SSRs [30].

The SSR analysis was performed following the approach of Schuelke [36], by ap-
pending a fluorescently labelled M13 tail to the forward primers. The detailed protocol is
described in Dervishi et al. [30]. Microsatellite loci were amplified using a touchdown PCR
protocol, by using the thermal profile described in Dervishi et al. [30].

2.3. Data Analysis

For each locus, particular attention was paid to genotyping errors, such as potential
allele dropout, which can lead to a decrease in sample heterozygosity and to stuttering
patterns, which can hide the true allele peak. The resulting low-frequency alleles occurring
≤ 5 times were double checked on the original pherogram and any genotyping errors
were corrected accordingly. The number of alleles per locus (No), the observed and
expected heterozygosity (Ho and He), Hardy-Weinberg equilibrium (HW), polymorphic
information content (PIC), and frequency of null alleles (Fnull) were calculated with Cervus
3.0 software [37] upon the set of resulted unique genotypes. Ne (effective number of
alleles) and the frequency of alleles (Freq ≤ 5) were calculated for each olive group defined
by geographic origin and breeding using GenAlEx v 6.501 [38,39]. Genetic relatedness
was evaluated by estimating DICE’s similarity index [40], implemented in the statistical
software NTSYS v 2.2 [41]. Cluster analysis was performed based on the unweighted
pair group method with an arithmetic mean (UPGMA) algorithm. Principal coordinate
analysis (PCoA) was performed based on a pairwise, individual-by-individual genetic
distance matrix calculated for codominant data and also by intercomparison of the different
olive groups/populations defined by their different breeding (cultivated and foreign
olive genotypes, oleasters), geographic origin/main area of distribution (Ionic region and
Adriatic region), and their product end-use (table olive vs. olive oil production).

Analysis of molecular variance (AMOVA) was carried out to determine the relative
partitioning of the total genetic variation among and within different groups of olive
genotypes by using GenAlEx 6.5 [38,39]. The significance of the ΦPT index was tested by
9999 permutations.

The model-based Bayesian method in STRUCTURE version 2.3.4 software [42] was
applied to multi-locus microsatellite data to infer the genetic structure. STRUCTURE
HARVESTER version 0.6.93 [43] was used for visualizing STRUCTURE output and the
Evanno method for detecting the number of clusters of individuals [44]. Ten runs of
STRUCTURE were performed by setting the number of clusters (K) ranging from 1 to
10. Each run consisted of a burn-in period of 200,000 steps followed by 106 MCMC
(Monte Carlo Markov Chain) replicates, assuming an admixture model and correlated
allele frequencies.

Finally, we assembled a core collection from the large database of individual molecular
profiles of our sample set, using the M strategy [45,46], applied with CoreFinder software.
The algorithm for inferring the core collection was obtained heuristically.

3. Results
3.1. Genetic Diversity

The genetic variation among 183 unique olive genotypes identified by identity analysis
was estimated using 26 SSR markers. The list of unique genotypes is presented in the
Supplementary Table S1. A total of 203 alleles were amplified across all samples. The
number of alleles per locus ranged from 2 (SiBi 03 and SiBi 11) to 19 (DCA09), with a
mean of 7.8 alleles, revealing a high level of variability in our sample set. The observed
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heterozygosity value (Ho) ranged from 0.357 (SiBi 03) to 0.939 (DCA03), with a mean
of 0.744, while the expected heterozygosity (He) ranged from 0.294 (SiBi 03) to 0.873
(DCA09), with a mean of 0.678. The observed heterozygosity showed higher values than
the expected heterozygosity across 19 loci, while it showed a slightly lower value than
expected heterozygosity at 7 loci out of 26, (DCA05, DCA09, DCA11, DCA16, GAPU59,
UDO24, and SNB19). Polymorphic information content (PIC) ranged from 0.250 (SiBi 03) to
0.859 (DCA09) respectively, with an average of 0.630. As we previously reported, high PIC
values (>0.5) were found in 73% of loci, and we classified these loci as highly informative.
Forty-six percent of loci (DCA03, DCA09, DCA16, DCA18, GAPU59, GAPU71B, GAPU101,
UDO24, EMO90. SNB03, SNB11, SNB14) showed PIC > 0.7 and could be classified as
potential markers for genetic mapping. The minimum of eleven markers were identified
by AMaCAID script as sufficient to differentiate among 183 genotypes [30].

The unique Albanian genotypes (183) were compared with 80 olive genotypes from 11
olive growing countries (deposited in the World Olive Database) at ten microsatellite loci
and with 19 olive cultivars from Slovenian collection at 26 loci. The comparative analysis
did not find cases of synonymy among compared microsatellite profiles.

3.2. Genetic Diversity of Oleasters and Olive Cultivars

The parameters of diversity calculated for 183 unique olive genotypes (comprised
18 oleaster genotypes, 120 native, and 45 foreign olive cultivars) are presented in the
Supplementary Table S2. The average number of alleles per loci obtained for 120 native
cultivated trees (6.92) and for the foreign cultivars (6.2) resulted higher than the average
number of alleles amplified in oleaster genotypes (5.31), while the mean number of effective
alleles (Ne) was in the same range among analyzed olive groups, ranging from 3.28 in
native cultivars, 3.51 in oleasters, and 3.72 in foreign cultivars. In total, 46 private (unique)
alleles were detected in three olive groups. The highest number of private alleles was
found in native cultivated genotypes, 24 (52%), whereas 13 (28.3%) private alleles belonged
to foreign olive cultivars and only 9 (19.6%) were observed in oleaster genotypes. The
mean expected heterozygosity resulted higher in oleaster genotypes (He = 0. 692) than in
cultivated olives (He = 0.657), whereas the mean observed heterozygosity resulted higher
in cultivated olives (Ho = 0.760) than in oleaster genotypes (Ho = 0.745) (Table 1).

Table 1. Genetic diversity parameters found in different olive groups/populations: native olive
cultivars, oleasters, and imported foreign olive cultivars.

Genetic Diversity
Parameters

Cultivars
(120)

Oleaster
(18)

Foreign
(45)

No Total 180 138 163

No
Mean 6.92 5.31 6.2
Min 2 2 2
Max 18 11 14

Na (Freq ≥ 5%) Mean 3.769 4.269 4.269

Npr Mean 0.923 0.346 0.500

Ne Mean 3.28 3.51 3.72

Ho
Mean 0.760 0.745 0.703
Min 0.403 0.333 0.156
Max 0.949 1 0.932

He
Mean 0.657 0.692 0.683
Min 0.323 0.413 0.145
Max 0.821 0.868 0.899

No—number of alleles, Na—number of alleles with frequency (Freq) ≥ 5%, Ho—observed heterozygosity,
Ne—number of effective alleles, Npr—number of private alleles per population, He—uni-based expected het-
erozygosity = (2N/(2N − 1)) * He. In parenthesis is the number of accessions per each group.
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3.3. Genetic Relatedness

The clustering analysis highlighted 12 groups of olive genotypes with mean similarity
of 0.509. Each of the main groups subdivides into several small clusters consisting of
related genotypes. In many cases, the high level of genetic similarity between genotypes
of the same subcluster (>85%) was observed. The genetic relationships among 183 olive
genotypes were visualized by a dendrogram, shown in Supplementary Figure S1 and
Table S2. The native Albanian olive genotypes were tightly clustered with each other in
three clusters (cluster IV, V, and VI) containing 99 (95%) Albanian genotypes and 5 (5%)
foreign cultivars (4 Italian and 1 USA).The rest of the Albanian genotypes were dispersed
within other clusters admixed with some foreign cultivars. While in clusters II and IX, the
majority of foreign cultivars were observed, 15 (75%) and 13 (62%), respectively. There
is a clear structuring of the variability relative to the geographic main distribution area
of Albanian native genotypes. Genotypes from central and northern regions (Adriatic
region) tend to be grouped in distinct clusters from those from southern Albania (Ionic
region). The Adriatic genotypes grouped mainly in three clusters, the cluster IV (subcluster
I): 93.6% (44 genotypes out of 47), cluster V: 90% (18 genotypes out 20), and cluster VI:
83.3% (10 Adriatic genotypes out of 12). The majority of Ionic genotypes, on the other
hand, were in cluster V (subcluster II): 80% (20 out of 25), and cluster XII: 71.4% (5 out of
7 cultivars).

The majority of genotypes used as table olives and dual use were dispersed in clusters
I, II, and IV (subcluster II). Most genotypes used for oil production were dispersed in
clusters IV (subcluster I), V, VI, and XII. Only native genotypes, especially those from the
central region, showed fairly good clustering according to their fruit end-use. Only five
oleasters out of 18 in cluster VI were subclustered distinctly. Most of the oleasters (13 out
of 18) clustered together with Albanian cultivated forms, especially with foreign cultivars,
in the different groups (Supplementary Figure S1), but five of them clustered separately
(Supplementary Figure S1—cluster VI), suggesting a genuine originality of these oleaster
genotypes. No clear distinction of cultivated olives and oleasters was observed in analysis
of relatedness.

3.4. Genetic Structure and Principal Coordinate Analysis

Principal coordinate analysis (PCoA), available in GenAlEx v 6.501 software [38,39],
was performed on a genetic distance-based matrix on the complete dataset of 183 unique
olive genotypes, and on specific groups of olive genotypes defined by their origin/main
area of distribution, breeding (cultivars vs. oleasters), and by their product end-use to
graphically present the relationship between individuals/groups of olives, and determines
whether partitioning into these groups is supported by genetic variation. A high level of
overlapping was shown in the PCoA scatter plot of the analysis of the entire dataset of
the 183 olive genotypes. PCoA analysis was also performed for different groups, native
vs. foreign genotypes and Ionic region vs. Adriatic region genotypes, as well as foreign
cultivars vs. native cultivars and oleasters (Figures 1 and 2).
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Figure 1. Principal coordinate analysis (PCoA) of olive genotypes based on their origin and breeding.
Pop 1—Native cultivars, Pop 2—Oleasters, Pop 3—Foreign imported cultivars.
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Figure 2. Principal coordinate analysis of olive genotypes based on their origin (A,B) and breeding (C,D).

The PCoA explained a total variation of 23.21% (Figure 1). The first principal coor-
dinate accounted for 9.22% of the total variation and allowed the discrimination of the
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majority of foreign olive cultivars from native olive cultivars and oleasters. The second
coordinate, which accounted for 7.98% of the total variation, differentiated the majority of
the oleasters. There was no clear separation of oleasters from native cultivated cultivars
or foreign ones. The same was observed in the phenogram (Supplementary Figure S1), in
which some oleasters were closely clustered with cultivated olive cultivars.

PCoA in pairwise comparison of olive groups (Figure 2) revealed a clear differentiation
between foreign cultivars and the group of oleasters (Figure 2B), while the differentiation
was not as clear between the groups of foreign cultivars and native cultivated olives
(Figure 2A). Oleaster genotypes were admixed much more with the ancient than with
the current olive cultivars (Figure 2C,D). The analysis of molecular variance (AMOVA)
performed to evaluate the partitioning of molecular variance among native cultivars, oleast-
ers, and foreign olive cultivars, showed that 93% of variation is due to genetic variation
within groups, with only 7% of genetic variance being observed among groups, indicating
the high heterozygous nature and mixed genetic structure of the olive genotypes [47].
The calculated PhiPT (analogue of Fst index) (0.074) was significant, p < 0.001, indicating
low genetic differentiation among groups. The p-values were calculated for a random
permutation test of 9999 permutations.

Based on a pairwise population matrix of Nei’s genetic distances (Supplementary
Table S3), the highest genetic distance (GD) was observed between foreign cultivars and
oleasters (0.127) and the lowest between native and foreign cultivars (0.092). Oleasters
were shown to be closer to native cultivars (GD = 0.106) than foreign cultivars (GD = 0.127).

Analysis of principal coordinates based on assignment of two geographical groups
according to their main area of distribution/origin (Ionic vs. Adriatic region) explained a
total of 26.30% of genetic variation. The first two principal coordinates accounted for 10.57
and 9.03 of variation, respectively (Figure 3). The slight overlapping of olive genotypes
did not allow them to be divided into two clear groups, although the differentiation of
genotypes from Ionic and Adriatic regions was obvious because the majority of them were
separated by the second principle coordinate, confirming previous results that were based
on morphological characters [1]. In addition, analysis of molecular variance (AMOVA)
performed to estimate the level of differentiation between these two groups (Ionic and
Adriatic) revealed higher values of variation between individuals within each group (92%)
than between these two groups (8%). The calculated PhiPT (0.081) was weakly significant
(p < 0.05). Nei’s genetic distance between the group of genotypes of the Ionic region and
that of the Adriatic region was 9.4%.
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The links among these three groups of olive genotypes based on their product end-use
was evaluated by PCoA (Figure 4). The olive genotypes were not separated into groups
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according to their end-use in the PCoA diagram. Principal coordinates explained 23.21% of
genetic variation: the first and second coordinates revealed 9.22% and 7.88% of variation,
respectively. AMOVA revealed that most genetic diversity was attributable to variability
within olive groups (96%) rather than between groups (4%) of different products’ end-
use. The calculated PhiPT = 0.045 for all olive groups used for oil, table, or dual use was
significant (p < 0.05). The admixture observed in the principal coordinate analysis suggests
that the abundant diversity existing in olives cannot be differentiated based on the end-use
of the product.
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cultivars used for double purposes, Pop 2—cultivars used for oil production, Pop 3—cultivars used
as table or canned olives production.

PCoA indicated that, despite slight overlapping, the olive genotypes showed grouping
according to their origin and their area of distribution. The differentiation of genotypes
according to their fruit end-use obtained in UPGMA analysis was not supported in the
PCoA analysis.

A model-based Bayesian approach was performed to infer the genetic structure of
individuals under K = 2 clusters, which, as estimated by Evanno’s ∆Ks statistics [44],
resulted in the best fit to the model for olive genetic structuring. The proportion of its
genome derived from different clusters was estimated. The plot of the mean log-likelihood
values (Ln(K) ± SD) averaged over 10 iterations and Evanno test for delta K are shown in
Supplementary Figure S2. Genotypes were assigned to a cluster when 85% or more of their
inferred genomes belonged to the cluster, with genotypes having a lower percentage being
considered to be admixed [48]. Using a threshold of >85% for the designation of group
representatives, 81 genotypes were assigned to group A (red bars) and 53 genotypes to
group B (green bars), and the remaining 49 genotypes (26.7%) were assigned as admixed
genotypes (Figure 5, Table S4).
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Hierarchical levels of population structure could hardly be recognized. Both groups,
A and B, are of mixed usage origin (oil, table, or dual use) and no well-assigned population
designations could therefore be recognized. We observed only weak differentiation, as
in group A (red color), containing 81 olive genotypes, there is 9 oleasters, the majority of
foreign imported olive cultivars (39), and some native cultivars (33), while group B (green
color) is composed of 53 native cultivars and lacks the oleaster genotypes and foreign
imported cultivars. This kind of differentiation was also observed in PCoA and AMOVA,
where only 7% of variation was observed among native cultivars, oleasters, and foreign
cultivars, indicating a mixed genetic structure of the olive genotypes.

The overall assignment of the samples to each of two clusters were 58.9% and 41.1%
for cluster A and B, respectively. Average distances (expected heterozygosity) among
individuals within a cluster were 0.708 and 0.559 for clusters A and B, respectively. The
low-differentiation structure (K = 2) detected within our analyzed set of samples may be
due to complex relationships among the olive cultivars.
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3.5. Sorting Out a Core Collection

The dataset of microsatellite profiles of 183 unique olive cultivars for 26 microsatellite
loci was used to construct an olive core collection, using the M strategy [45,46], imple-
mented in CoreFinder software. A core collection was herein assembled for each of the
olive germplasm collections maintained ex situ, in situ, and for the overall Albanian
olive germplasm, aiming to represent the entire genetic diversity identified in this study
(Figure 6).
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The entire allelic richness of the actual ex situ core collection (117 accessions) may be
represented by a minimum number of 45 accessions (38%), while the diversity of the in
situ collection (66 accessions) could be represented by 32 accessions (48%).

However, for better management of the two olive collections in Albania and the
preservation of the germplasm in a thorough and efficient way, the collections were unified
to sort out a core collection of all Albanian olive germplasm. CoreFinder analysis showed
that 203 alleles identified by characterization of 183 unique genotypes with 26 microsatellite
loci could be represented by a core collection of 57 accessions (31%) of all genotypes
(Supplementary Table S5).

4. Discussion
4.1. Olive Germplasm Genetic Diversity

Herein, this study examined genetic diversity and structure of Albanian olive
germplasm, consisting of native and introduced foreign cultivated olives and of oleasters.
In total, 26 microsatellites including 12 EST-SSRs were employed in this study. The analyses
revealed in total 203 alleles, with an average 7.8 alleles per locus, revealing a high level of
variability within a sample set. The obtained average number of alleles per locus is in the
same range as that reported for: 489 Italian olive varieties (7.6) [21], 84 Tunisian accessions
(8) [49], 30 cultivars from Southern Italy (8.8) [50], 48 cultivars from the Iranian olive col-
lection (9) [51], 108 accessions from the Davis collection, USA (9.93) [52], higher than that
reported for 10 Turkish cultivars (4.57) [53], 211 Italian olive cultivars from Southern Italy
(6.82) [16], 10 Iranian cultivars (5.6) [54], 60 Brazilian accessions (6) [47], 27 accessions from
Istria (6.75) [55], 19 cultivars from the Slovenian olive collection (6.8) [56], 33 Tunisian acces-
sions (7) [57], and lower than that reported for 142 Italian cultivars from Emilia-Romagna
(10.2) [58], 73 olive trees, including wild, cultivated, and ancient trees of Sardinia, Italy
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(10.46) [13], 46 Portugese cultivars (11) [59], 77 olive cultivars from the two olive collections,
World Olive Germplasm Bank (WOGB), Spain, and Agricultural Research Council-Olive
Growing and Oil Industry Research Centre collection (CRA-OLI) (12.2) [60], 505 accessions
derived from 14 olive growing countries in the OWGB germplasm of Marrakech (12.5) [18],
118 cultivars from the main Mediterranean olive-cultivating countries (13.2) [15], 30 wild
and 104 cultivated ancient olive trees of the Andalusian region, Spain (13.64) [61], 104
Greek accessions (13.5) [62], and 158 samples of wild and cultivated olives from three olive
growing areas in Spain (16.5) [12]. The high number of alleles obtained in some studies
may be due to the use of a large amount of highly diversified plant material [60,63], as well
as the high number of samples employed in the analysis. The lower mean number of alleles
observed in our olive genotypes could be explained by the low degree of polymorphism
revealed by some of the EST-SSR used, which is lower than the degree of polymorphism
detected by genomic SSR used in previously reported studies. Nevertheless, the latter gave
better quality of allelic pattern and were still sufficiently informative and showed slightly
higher level of heterozygosity than genomic SSRs [30].

The observed heterozygosity resulted higher than the expected one at the majority
of loci (19), while we only observed lower observed heterozygosity on 7 loci compared to
the expected heterozygosity. This observed heterozygosity deficiency may be related to
the presence of null alleles, whose frequency values were positive at six of these loci [30].
However, the expected heterozygosity in our study showed the mean of 0.678. This value
was similar to those reported in other studies, such as Fendri et al. [49] (0.680) and Diez
et al. [61] (0.698). The overall heterozygosity values in our olive genotypes was high, thus
indicating the presence of broad genetic diversity, which is explained by a high selection of
cultivars showing traits of interest, such as the size of the fruit or oil content. The presence
of null alleles favors an increase of homozygosity over heterozygosity, and the occurrence
of null alleles has already been described for the same microsatellite primers by other
authors [54,60,64,65].

The PIC value indicates the level of polymorphism information provided, as well
as the usefulness of the microsatellite primers for genotyping, gene mapping, molecular
breeding, and germplasm evaluation. In this sense, the most suitable loci for genetic
characterization of the analyzed set of olive genotypes were DCA03, DCA09, DCA18,
SNB03, and SNB11, which showed PIC values equal to or higher than 80% [30].

The comparative analysis of 183 unique genotypes with the allelic profiles of 99 olive
genotypes belonging to 12 olive growing countries did not find cases of synonymy, sup-
porting the hypothesis of an autochthonous origin of Albanian cultivars [7,8,66] and that
the Albanian olive cultivars represent a unique gene pool.

4.2. Comparative Assessment of Genetic Diversity of Oleaster and Cultivated Olives

Botanists have reported two varieties of O. europaea subsp. europaea: the cultivated
form var. sativa and wild form var. sylvestris, also called ‘oleaster’. Both varieties are diploid
species (2n = 46) [67,68]. True oleaster has been found in forest or land with apparently
no relation to a cultivated area, whereas feral forms are found around current orchards
or in old deserted orchards [69]. Presumed crosses between wild and cultivated forms
may have led to new cultivars around the Mediterranean countries [6]. However, the
contribution of oleaster on the evolution of cultivated olive is still a widely debated issue,
which relates to the distinction between real oleasters and feral plants derived from natural
dissemination of cultivars, since these two forms may show a similar appearance when
grown in the same ecological sites [70]. Several studies investigated genetic diversity and
the relationship between cultivated and wild olives [5,12,13] by microsatellite markers.
Assessing genetic diversity of olive germplasm is essential for its efficient utilization. Wild
olive genotypes are considered as a source of genes related to the resistance to biotic and
abiotic factors; as such, they constitute an important source for the breeding programs,
especially for genes linked to the resistance to harsh environmental conditions that might
be under upcoming climate change. Prior knowledge of genetic diversity of oleasters as
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well as their relatedness to cultivated olive genotypes provides efficient utilizations of these
resources in Albania. Therefore, in this study, we assessed comparative genetic diversity
among 18 oleaster genotypes collected in situ in old orchards, 120 native Albanian cultivars
and 45 introduced foreign olive cultivars. Genetic diversity among the analyzed groups
resulted in lower mean allele number in oleasters compared to native and foreign olive
cultivars (Table 1). However, the number of alleles per locus detected in Albanian oleaster
genotypes (5.1) was in the same range as that detected in 48 genotypes of wild olive in
Spain (5.62) [11], but lower than the average number of alleles detected in a study of 21 wild
olive individuals in the region of Sardinia (8) [13]. In agreement with the previous studies
that compared genetic diversity in wild and native cultivated olive groups [12,13,18], the
mean expected heterozygosity value was higher in oleaster genotypes than in cultivated
olives, whereas the observed heterozygosity values were higher in cultivated olives than
in oleaster genotypes. However, the level of heterozygosity shown by oleaster genotypes
was similar to previous studies carried out in wild olives [11,13,63,71]. The lower diversity
detected in oleaster genotypes compared to native cultivated olives in our study could be
due to the low number of oleasters (18) in comparison to cultivated olives (120). It might
also be due to the possibility that some of the sampled oleasters represent feral forms.

4.3. Genetic Relatedness

Based on the results of genetic relatedness, our sample set showed an average simi-
larity of 0.509, which was higher than the average similarity found in olive cultivars from
the Slovenian olive collection (0.26) [56] and within the range of mean similarity found in
Tunisian olives (0.574) [72]. The native Albanian genotypes were highly related with each
other in three clusters, comprising more than 95% of Albanian genotypes. High relatedness
and a clear distinction of Albanian cultivars from foreign ones (Greek, Italian, and Turkish)
was also observed by Belaj et al. [8], indicating their autochthonous origin.

The area of origin can be identified because of the climatic and pedological conditions
under which populations experienced a secondary structuration of variability. Distinguish-
ing among varieties belonging to different gene pools would enable selection of the most
adapted cultivars for the new breeding policies for each geographically defined area [15].
The olive distribution area in Albania is divided into two main regions, based on the corre-
lation of morphological diversity with the climatic conditions and geographical elements
of these areas. The olive germplasm is thus distributed into the south–western area, under
the influence of the Ionian Sea (Ionic region), and the central and northern areas under
the influence of the Adriatic Sea (Adriatic region) [1]. There was a clear structuring of the
variability observed relative to the geographic origin/main distribution area of Albanian
native genotypes. Genotypes from central and northern regions (Adriatic region) tend to
be grouped in distinct clusters from those from southern Albania (Ionic region), while the
majority of Ionic genotypes, on the other hand, were clustered distinctly. The obtained
clustering may also be due to selection pressure towards cultivars that are adapted to the
different climatic conditions of these two regions [8].

Weak clustering in relation to the fruit end-use was observed in the overall sample
set, in line with the findings of Abdelhamid et al. [57]. Only native genotypes, especially
those from the central region, showed fairly good clustering according to their fruit end-
use. Clustering in relation to the origin was observed for 5 out of 18 oleasters that were
distinctly clustered, suggesting a genuine originality of these oleaster genotypes. The
other oleasters clustered together with Albanian cultivated forms, especially with foreign
cultivars, supporting two hypotheses: (1) oleasters grouped in the same cluster with
cultivated forms may be feral olives and are showing high similarity with the cultivated
genotypes from which they derive, or (2) according to the second hypothesis, this may
be a case of clustering of true oleasters together with cultivated forms that derived from
them. No clear distinction of cultivated olives and oleasters was observed, which is in
accordance with previous studies [12], indicating the presence of feral forms in our sample
set. However, the co-existence of true oleasters and feral forms should not be excluded. The
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analysis of a larger number of oleasters, including oleasters from neighboring countries,
would contribute to a better understanding of origin and distribution in Albanian olives.

4.4. Genetic Structure

The model-based method, PCoA, and analysis of molecular variance showed a wide
range of variability within our olive groups. The geographical grouping according to
olive origin and area of distribution was confirmed, though not in a clear-cut way. There
was weak differentiation of olive genotypes based on fruit end-use. No hierarchical
differentiation based on olive end-use products was revealed by PCoA, either (Figure 4).
This level of admixture is possibly also due to the make-up of the sample set, in which
native and foreign cultivars and oleaster forms are included. The resulting overlapping
of oleasters mostly with native cultivars, especially ancient ones, might be due to the age
of ancient cultivars, which are representatives of ancient domestication events [61], or the
admixed oleaster genotypes might have been derived from ancient olive cultivars.

The clear separation of native cultivars from foreign cultivars and the presence of
oleasters suggest that the most native olive cultivars originated from native oleasters.
However, some of the present Albanian olive cultivars were admixed with foreign ones,
suggesting that they might be derived from the crossing of native and introduced foreign
cultivars (Figure 2A). The differentiation of genotypes according to their regions of origin
or main area of distribution, Ionic and Adriatic, was obvious, confirming previous results
that were based on morphological characters [1]. Olives are used mainly for oil production
or as table olives. Some olives are used for both purposes because they give a good
percentage of oil and have large fruit. The lack of differentiation of olive genotypes
according to their end-use observed in our results of PcoA and structure analysis (Figure 5)
did not support the differentiation of genotypes according to their fruit end-use obtained
in UPGMA (Supplementary Figure S1). Analysis of molecular variance confirmed a wide
range of variability within groups and significant differences among groups. Our results
are in line with previous studies, in which most variation was maintained within olive
populations [11,12], suggesting that, especially for wild olive, it is necessary to collect a
higher number of samples within sampling sites in future studies [11]. The obtained high
level of variance within cultivars may be due to mislabeling and the presence of homonyms
in olive germplasm [51].

The exchange of olive plant material that may have occurred between Italy and
Albania is also supported by the high similarity observed between some native olive
cultivars or oleasters and Italian cultivars grown in Albania, as well as with the cultivars
‘Frantoio’, ‘Leccino’, ‘Carolea’, ‘Ascolana Tenera’, and those from the olive database. The
Italian cultivars showed similarity with some native genotypes collected in situ at the
central and northern parts of Albania, suggesting that the trade developed in ancient times
between these two countries through the port city of Durrësi in Albania, or the well-known
trading activities of northern Albania with Venice, indicate how the material exchange
took place. Further studies employing a larger number of oleasters, including those of
neighboring countries, will elucidate the origin of olive origin in Albania as well as the
direction of olive exchange among countries.

A model-based Bayesian approach used to infer the genetic structure of samples
resulted in K = 2 clusters as the best fit to the model for olive genetic structuring. The set
of genotypes that were assigned to different gene pools showed no clear differentiation
based on olive end-use, and while based on their origin, a weak differentiation of Albanian
native cultivars was observed, this weak differentiation was also observed in PCoA and
AMOVA, where only 7% of variation was observed among native cultivars, oleasters,
and foreign cultivars, indicating a mixed genetic structure of the olive genotypes. The
low-differentiation structure (K = 2) detected within our analyzed set of samples may be
due to complex relationships among the olive cultivars or due to the inclusion of oleasters
in the cluster. A weak differentiation of cultivars (51) and wild olives (107) was also
reported by Belaj et al. [12], where wild olives and cultivars collected in three main Spanish
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olive growing regions were divided into four main gene pools. Only in two cases were
the majority of wild olives and cultivars coming from the same region, Andalusia and
Catalonia, clustered in separate gene pools. The wild olives of Valencia were assigned to
another gene pool, while the remaining Andalusian and Valencian cultivated olives were
clustered into the fourth gene pool. In contrast, Erre et al. [13] reported the assignment of
wild (21) and cultivated olives (57) of Sardinia into two different clusters.

Our population was not structurally based on the end-use of the fruit (oil or table),
in contrast to Do Val et al. [47], who reported genetic differentiation to a certain extent
according to the end-use of 60 Brazilian olive cultivars, indicating a relationship between
their genetic make-up and agronomical traits, such as size of fruit and percentage of the
oil. This level of admixture is possibly also due to the make-up of the sample set, in
which currently cultivated olive (native and foreign) ancient cultivars and oleaster forms
are included.

4.5. Core Collection

The conservation of cultivated plants by the establishment of a core collection is
essential for the optimal management and use of their genetic resources [18]. Two world
germplasm banks, in Spain and in Marrakech, have been constructed, including a huge
number of olive cultivars from all over the world. The construction of a core collection is
recommended for optimizing an olive germplasm collection. Several studies have arranged
core collections of large and important collections. Haouane et al. [18] developed a core
collection of 67 olive accessions from a total of 505 accessions from 14 Mediterranean
countries planted at OWGB in Marrakech (Morocco). Only 15% (59) of cultivars from the
collection of WOGB Córdoba Spain, coming from 21 different Mediterranean countries,
were necessary to capture 236 alleles displayed by the WOGB collection [19]. Muzzalupo
et al. [21] proposed an Italian olive core collection, capturing all 81 detected alleles of 489
olive cultivars of Italian germplasm CRA-OLI. Only 5% of olive accessions were sufficient
to construct the core collection. According to Belaj et al. [20], a core collection containing
10–19% of the total collection size was considered optimal to retain the bulk of genetic
diversity found in the IFAPA (Andalusian Institute of Agrarian and Fishing Research and
Training), a germplasm collection of 361 olive accessions. In our study, high percentages of
accessions (31%) were necessary to capture all the allelic richness found in olive germplasm
in Albania, suggesting the presence of high levels of diversity in our sample genotypes.
No data was previously reported in core collection development of the olive germplasm
in Albania. This information will serve for proper management of collections and genetic
resources conservation in the future.

5. Conclusions

This study is the most representative analysis of olive germplasm in Albania to
date, reporting the existing levels of genetic diversity and structure at a broad national
scale. In addition, the present study is the first report on the molecular characterization
of Albanian germplasm and an assessment of genetic relationships of oleasters, native
cultivars, and imported foreign cultivars. The geographical grouping according to olive
origin and area of distribution was confirmed, although not in a clear-cut way. There
was weak differentiation of olive genotypes based on their fruit end-use. The analysis of
genetic relatedness between native and foreign olive genotypes gives an insight into the
origin of Albanian olive cultivars. The native olive genotypes showed tight clustering,
suggesting their autochthonous origin. The molecular data provides for the first time a
broad inventor of olive genetic resources, as essential information to construct the reference
molecular database of Albanian olive germplasm. Herein, we assembled the core collection
to represent the entire diversity of the analyzed set of olive genotypes as a valuable source
for the development of an improved breeding strategy and for safeguarding the wealth of
genetic diversity. The findings will provide a useful resource as well as guidance for better
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germplasm utilization in genetic improvement and serve as a database for identification
and traceability purposes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/2/256/s1, Figure S1: Dendrogram of 183 olive genotypes based on DICE coefficient and
UPGMA clustering method, Figure S2: (A) Mean Log-likelihood (Ln(K) ± SD) averaged over
10 iterations for model-based structure analysis (STRUCTURE), (B) Evanno test for delta K, Table S1:
List of 183 unique olive genotypes, their origin, and fruit end-use, Table S2: The genetic relationships
of 183 olive genotypes in clusters according to UPGMA dendrogram, Table S3: Pairwise population
matrix of Nei’s genetic distance between native olive cultivars, foreign cultivars, and oleasters,
Table S4: The representation of Olive genotypes in each group identified by the Bayesian model-
cluster method, Table S5: Accessions included in the core collection and their origin.
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55. Poljuha, D.; Sladonja, B.; Šetić, E.; Milotić, A.; Bandelj, D.; Jakše, J.; Javornik, B. DNA fingerprinting of olive varieties in Istria
(Croatia) by microsatellite markers. Sci. Hortic. 2008, 115, 223–230. [CrossRef]

56. Bandelj, D.; Jakše, J.; Javornik, B. Assessment of genetic variability of olive varieties by microsatellite and AFLP markers. Euphytica.
2004, 136, 93–102. [CrossRef]

57. Abdelhamid, S.; Grati-kamoun, N.; Marra, F.; Caruso, T. Genetic similarity among Tunisian cultivated olive estimated through
SSR markers. Sci. Agric. 2013, 70, 33–38. [CrossRef]

58. Beghè, D.; Ferrarini, A.; Ganino, T.; Fabbri, A. Molecular characterization and identification of a group of local Olea europaea L.
varieties. Tree Genet. Genomes 2011, 7, 1185–1198. [CrossRef]

59. Gomes, S.; Martins-Lopes, P.; Lopes, L.; Guedes-Pinto, H. Assessing genetic diversity in Olea europaea L, using ISSR and SSR
markers. Plant Mol. Biol. Rep. 2009, 27, 365–373. [CrossRef]

60. Baldoni, L.; Cultrera, N.; Mariotti, R.; Ricciolini, C.; Arcioni, S.; Vendramin, G.; Buonamici, A.; Poceddu, A.; Sarri, V.; Ojeda, M.;
et al. A consensus list of microsatellite markers for olive genotyping. Mol. Breed. 2009, 24, 213–231. [CrossRef]

61. Díez, C.M.; Trujillo, I.; Barri, E.; Belaj, A.; Barranco, D.; Rallo, L. Centennial olive trees as reservoir of genetic diversity. Ann. Bot.
2011, 108, 797–807. [CrossRef] [PubMed]

62. Roubos, K.; Moustakas, M.; Aravanopoulos, F. Molecular identification of Greek olive (Olea europaea L) cultivars based on
microsatellite loci. Genet. Mol. Res. 2010, 9, 1865–1876. [CrossRef]

63. Belaj, A.; Munoz-Diez, C.; Baldoni, L.; Porceddu, A.; Barranco, D.; Satovic, Z. Genetic diversity and population structure of wild
olives from the North-Western Mediterranean assesses by SSR markers. Ann. Bot. 2007, 100, 449–458. [CrossRef]

64. Lopes, M.; Mendonça, D.; Sefc, K.; Sabino-Gil, F.; de Camara-Machado, A. Genetic evidence of intra-cultivar variability with
Iberian olive cultivars. Hortic. Sci. 2004, 39, 1562–1565. [CrossRef]

65. Muzzalupo, I.; Russo, A.; Chuappetta, A.; Benincasa, C.; Perri, E. Evaluation of genetic diversity in Italian olives (Olea europaea L.)
cultivars by SSR markers. J. Biotechnol. 2010, 150, 472–480. [CrossRef]

66. Kafazi, N.; Muço, T. Kultura e Ullirit; ILB press: Tirana, Albania, 1984; p. 359.
67. Green, P.S. A Revision of Olea L. (Oleaceae). Kew Bull. 2002, 57, 91–140. [CrossRef]

http://doi.org/10.1111/j.1471-8286.2005.01155.x
http://doi.org/10.1093/bioinformatics/bts460
http://www.ncbi.nlm.nih.gov/pubmed/22820204
http://doi.org/10.2307/1932409
http://doi.org/10.1007/s12686-011-9548-7
http://doi.org/10.1111/j.1365-294X.2005.02553.x
http://doi.org/10.1093/jhered/92.1.93
http://www.ncbi.nlm.nih.gov/pubmed/11336240
http://doi.org/10.1111/j.1744-7348.2008.00232.x
http://doi.org/10.4238/2012.March.8.4
http://doi.org/10.1007/s11295-013-0670-4
http://doi.org/10.21273/HORTSCI.45.10.1429
http://doi.org/10.1016/j.scienta.2009.07.007
http://doi.org/10.1016/j.scienta.2006.12.051
http://doi.org/10.1007/s10722-010-9595-z
http://doi.org/10.1007/s10528-011-9430-z
http://doi.org/10.21273/HORTSCI.42.7.1545
http://doi.org/10.1016/j.scienta.2007.08.018
http://doi.org/10.1023/B:EUPH.0000019552.42066.10
http://doi.org/10.1590/S0103-90162013000100006
http://doi.org/10.1007/s11295-011-0405-3
http://doi.org/10.1007/s11105-009-0106-3
http://doi.org/10.1007/s11032-009-9285-8
http://doi.org/10.1093/aob/mcr194
http://www.ncbi.nlm.nih.gov/pubmed/21852276
http://doi.org/10.4238/vol9-3gmr916
http://doi.org/10.1093/aob/mcm132
http://doi.org/10.21273/HORTSCI.39.7.1562
http://doi.org/10.1016/j.jbiotec.2010.09.707
http://doi.org/10.2307/4110824


Genes 2021, 12, 256 18 of 18

68. Besnard, G.; Gracia-Verdugo, C.; Ruvio de Casas, R.; Treier, U.A.; Galland, N.; Vargas, P. Polyploidy in olive complex (Olea
europaea L.): Evidence from flow cytometry and nuclear microsatellite analysis. Ann. Bot. 2008, 101, 25–30. [CrossRef] [PubMed]

69. Besnard, G.; Bervillé, A. Multiple origins for Mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA
polymorphisms. Comptes Rendus L’Acad. Des Sci. ParisSci. La Vie. Life Sci. 2000, 323, 173–181. [CrossRef]

70. Baldoni, L.; Belaj, A. Olive Oil crops. In Handbook of Plant Breeding; Vollman, J., Rajcan, I., Eds.; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 397–421.

71. Breton, C.; Tersac, M.; Bervillé, A. Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive:
Several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J. Biogeogr. 2006,
33, 1916–1928. [CrossRef]

72. Rekik, I.; Salimonti, A.; Kamonun, N.; Muzzalupo, I.; Lepais, O.; Gerber, S.; Perri, E.; Rebai, A. Characterization and identification
of Tunisian olive tree varieties by microsatellite markers. Hortic. Sci. 2008, 43, 1371–1376. [CrossRef]

http://doi.org/10.1093/aob/mcm275
http://www.ncbi.nlm.nih.gov/pubmed/18024415
http://doi.org/10.1016/S0764-4469(00)00118-9
http://doi.org/10.1111/j.1365-2699.2006.01544.x
http://doi.org/10.21273/HORTSCI.43.5.1371

	Introduction 
	Materials and Methods 
	Plant Materials 
	Microsatellite Genotyping 
	Data Analysis 

	Results 
	Genetic Diversity 
	Genetic Diversity of Oleasters and Olive Cultivars 
	Genetic Relatedness 
	Genetic Structure and Principal Coordinate Analysis 
	Sorting Out a Core Collection 

	Discussion 
	Olive Germplasm Genetic Diversity 
	Comparative Assessment of Genetic Diversity of Oleaster and Cultivated Olives 
	Genetic Relatedness 
	Genetic Structure 
	Core Collection 

	Conclusions 
	References

