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Abstract: The primary cause of breast cancer mortality is the metastatic invasion of cancerous stem
cells (CSQ). Cluster of differentiation 44 (CD44) is a well-known CSC marker in various cancers, as
well as a key role player in metastasis and relapse of breast cancer. CD44 is a cell-membrane embedded
protein, and it interacts with different proteins to regulate cancer cell behavior. Transcription factor
forkhead box protein A2 (FOXA2) acts as an important regulator in multiple cancers, including
breast cancer. However, the biological significance of CD44-FOXA2 association in breast cancer
metastasis remains unclear. Herein, we observed that CD44 expression was higher in metastatic
lymph nodes compared to primary tumors using a flow cytometric analysis. CD44 overexpression
in breast cancer cell lines significantly promoted cell migration and invasion abilities, whereas the
opposite effects occurred upon the knockdown of CD44. The stem cell array analysis revealed that
FOXA2 expression was upregulated in CD44 knockdown cells. However, the knockdown of FOXA2
in CD44 knockdown cells reversed the effects on cell migration and invasion. Furthermore, we found
that CD44 mediated FOXA2 localization in breast cancer cells through the AKT pathway. Moreover,
the immunofluorescence assay demonstrated that AKT inhibitor wortmannin and AKT activator
SC79 treatment in breast cancer cells impacted FOXA2 localization. Collectively, this study highlights
that CD44 promotes breast cancer metastasis by downregulating nuclear FOXA2.
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1. Introduction

Breast cancer is the most common malignancy affecting women worldwide. More
than 90% of breast cancer patients succumb due to cancer metastasis to different organs
such as bone, lung, brain, and liver [1,2]. Tumor heterogeneity in breast carcinoma refers
to the presence of heterogeneous cell populations among different patients (inter-tumor
heterogeneity) or within the same patient (intratumor heterogeneity), which leads to explicit
manifestations of the disease [3]. Despite the tremendous advances in the knowledge
of breast cancer heterogeneity, there exist several challenges to improve breast cancer
diagnosis, treatment, and prognosis [3].

CD44 is a complex transmembrane adhesion glycoprotein that exists in various molec-
ular forms, including the standard and CD44 variant isoforms [4]. CD44 is inherently
associated with the key constituents of the extracellular matrix (ECM) and hyaluronic acid
(HA) [4]. CD44 interacts with various other cell surface receptors to promote the activa-
tion of different signaling pathways such as Rho GTPases, Ras-MAPK, and PI3K/AKT,
which regulate cell migration, survival, invasion, and epithelial-mesenchymal transition
(EMT) [5-7]. CD44 has also been found to play a role in cellular signaling and cell—cell
communication through complex formation between extracellular components and intracel-
lular cytoskeletal elements [8]. Furthermore, CD44 has been implicated in sensing changes
in ECM and cellular microenvironment and influences various cell behaviors, including
cell survival, growth, differentiation, and motility [9].

CD44 is also a well-known surface biomarker of CSCs, and any anomalous expression
or dysregulation of CD44 may indicate tumorigenesis and metastasis in multiple cancers
such as colon [10-12], bladder [13], gastric [14], lung [15,16], and breast cancers [17-21]. It
has been reported that CD44 expression correlates with tumor grade and tumor recurrence
in breast cancer patients and also promotes metastasis [21]. In a meta-analysis study, it has
been reported that CD44 is associated with EMT and the cancer stem cell gene profile [22].
Studies on tetracycline-induced CD44 expression have also been reported in noninvasive
luminal MCF7 cell lines [23]. Furthermore, another study has demonstrated the role of
CD44 in promoting breast cancer invasion and tumor metastasis to liver in vivo [12].

Forkhead box protein A2 (FOXA2), also known as hepatocyte nuclear factor 3-beta
(HNF-3B), is a pioneer transcription factor that belongs to the forkhead/winged-helix
family of transcription factors [24]. Various members of the FOX transcription factor family
are widely distributed in eukaryotes [25]. These transcription factors contain a forkhead
domain (also known as the winged-helix domain) flanked by the sequences required
for nuclear localization [26]. FOXA2 plays a significant role in the formation of node,
notochord, nervous system, and endoderm-derived structures [27]. Additionally, FOXAZ2 is
a key regulator in embryonic development and the normal functioning of various cells and
tissues [24].

Several studies have confirmed the role of FOXA2 as a tumor suppressor gene or
oncogene in different cancers by activating or downregulating different pathways and
proteins [25-33]. In lung cancer, FOXA2 has been reported to be downregulated [28]
and inhibits lung cancer cell proliferation and metastasis [27,29]. Additionally, FOXAZ2 is
downregulated by miR-590-3p in ovarian cancer, which promotes cancer growth and metas-
tasis [30]. Similarly, FOXA2 has been reported to be a tumor suppressor gene in various
cancers and is a target of oncogenes, such as in pancreatic cancer [31], liver cancer [32], oral
cancer [33,34], and cervical cancer [35]. On the other hand, FOXAZ2 has been reported to
promote EMT in colon cancer and prostate cancer [36,37]. Nonetheless, targeting FOXA2 by
various microRNAs has been shown to promote cancer metastasis and proliferation [38,39].
In breast cancer, FOXA2 is known to attenuate EMT by regulating E-cadherin and ZEB2
expression [24]. Likewise, a previous study suggests that the interaction between FOXA2
and FOXP2 could inhibit EMT by activating E-cadherin and PHF2 transcription genes [23].
Additionally, the overexpression of FOXA2 combined with the downregulation of PGC-13
has been recently reported to inhibit breast cancer proliferation and migration and induce
apoptosis [38].
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In this study, we analyzed breast cancer patient samples to evaluate CD44 expression
using flow cytometry. It was found that CD44 expression was higher in metastatic lymph
nodes compared to primary tumors. Moreover, the overexpression of CD44 promoted breast
cancer migration and invasion. On the other hand, the knockdown of CD44 suppressed
the migration and invasion of breast cancer cells. Additionally, a stem cell microarray
analysis showed that FOXA2 expression was upregulated in CD44 knockdown cells. The
molecular mechanistic studies revealed that CD44 plays a pivotal role in controlling FOXA2
localization to promote cancer metastasis via the AKT signaling pathway.

2. Materials and Methods
2.1. Human Specimens

Primary tumors and lymph node specimens from female breast cancer patients were
obtained following surgical treatment at Kaohsiung Medical University Hospital under an
Institutional Review Board-approved protocol (KMUH-IRB-20130346).

2.2. Cell Culture

Human breast carcinoma cells (luminal types: MCF7, T47D, and ZR75; basal types:
MDA-MB-231 and HS578T) were obtained from the Bioresource Collection and Research
Center (BCRC; https:/ /www.bcre.firdi.org.tw /12092013 (accessed on 30 May 2022)). Cells
were maintained in DMEM (Gibco) with 5% CO, at 37 °C in a humidified incubator. All cell
culture media were supplemented with 10% FBS (Biological Industries) and 1% PSA (peni-
cillin G/streptomycin/amphotericin B; Biological Industries). Kinase inhibitor wortmannin
(20 uM; Sigma) and kinase activator SC79 (5 uM; Sigma) were used to investigate the Akt sig-
naling pathway. Three chemotherapy drugs, fluorouracil (5FU) (Sigma), paclitaxel (Sigma),
and doxorubicin (Sigma), were used to study chemoresistance in CD44-overexpressing and
knockdown cells.

2.3. Transwell Migration and Invasion Assays

Cell migration and invasion assays were performed as described in our previous
studies [40,41]. Briefly, breast cancer cells resuspended in serum-free cell culture medium
were transferred onto Corning Costar Transwell inserts (3 x 10* cells/8-um pore size insert;
Merck, Kenilworth, NJ, USA) in 24-well plates prefilled with complete cell culture medium
in the bottom wells. Inserts containing Corning Matrigel coating (Merck, Kenilworth, NJ,
USA) were used for the cell invasion assay, while inserts without Matrigel coating were used
for the cell migration assay. After 24-h incubation, cells remaining on the upper side of the
inserts were removed by cotton swabs, while those appearing on the underside of the inserts
were fixed and stained with crystal violet. The images were captured by a light microscope,
and the results were analyzed by Image] software (https://imagej.nih.gov/ij/08112014
(accessed on 20 May 2022). Three replicates were used for all migration and invasion assays.

2.4. Western Blo

The total protein lysates were extracted in RIPA lysis buffer (150 mM NaCl, 1% IGEPAL
CA-630, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris, pH8.0) [40]. The protein
concentration was measured by the Bio-Rad protein assay kit (BIO-RAD Laboratories,
Heracles, CA, USA). Equal amounts of total protein were fractionated by SDS-PAGE elec-
trophoresis and transferred to a nitrocellulose membrane (Millipore, Burlington, MA, USA).
A pre-stained protein ladder (Thermo Fisher Scientific, New York, NY, USA) was used as
the molecular weight standard. After incubation with 5% nonfat milk, the membranes
were incubated with designated primary antibodies at 4 °C overnight. Immunoreactive
proteins were detected after incubation with horseradish peroxidase-conjugated secondary
antibody (Thermo Fisher Scientific, Waltham, MA, USA) for 1 h at room temperature. The
immunoblots were visualized by using enhanced chemiluminescence Western Lightning
Plus-ECL (PerkinElmer, Waltham, MA, USA), and the images were captured by the Chemi-
Doc XRS+ imaging system (BIO-RAD Laboratories, Heracles, CA, USA) and quantified
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by Image Lab software (BIO-RAD Laboratories, Heracles, CA, USA). Antibodies against
[-actin (1:5000, A5441) were purchased from Sigma Aldrich (Burlington, MA, USA). An-
tibodies against E-cadherin (GTX52341, 1:2000), AKT (GTX110613, 1:2000), Lamin-A/C
(GTX101127, 1:5000), GAPDH (GTX 100118, 1:10,000), and CD44 (GTX102111, 1:3000) were
purchased from GenTax (Taiwan). Antibodies against FOXA2 (ARG63339, 1:1000) and
p-AKT (Cell signaling #3787, 1:1000) were purchased from Arigo (Glasgow, UK) and Cell
Signaling (Danvers, MA, USA), respectively. HRP-conjugated secondary antibodies were
purchased from Thermo Fisher Scientific (Waltham, MA, USA). Densitometry results were
obtained from three independent Western blots.

2.5. Immunohistochemistry

Immunohistochemical staining for CD44 was performed with the fully automated
Bond-Max system according to the manufacturer’s instructions (Leica Microsystems, Wet-
zlar, Germany). For quantification, the protein expression levels were scored using the
method of histochemical score (H-score), as described in our previous studies [40-43].
The H-score was calculated as the product of the percentage (0-100%) of stained cells
and intensity of staining (0-3). The discriminatory threshold was set at H-score = 200
and existing samples were reread and classified as low (H-score < 200) or high (>200)
CD44 expression. Two independent specialists made the determination of staining for each
sample simultaneously and separately under the same circumstances.

2.6. Flow Cytometry

Primary tumors and paired metastatic lymph nodes were collected from breast can-
cer patients and dissociated by the gentleMACS Dissociator (Miltenyi Biotec, Bergisch
Gladbach, Germany). To remove dead cells, the Debris Removal Solution (130-109-398)
was used as per the manufacturer’s instructions. Anti-CD45 magnetic beads (11153D,
Thermo Fisher Scientific, Invitrogen, Waltham, MA, USA) were added to 2 X 107 cells and
incubated at 4 °C for 30 min to remove the immune cells. Finally, the cells were placed on a
magnetic platform for 10 min before being extracted (1 x 10° cells) for the flow cytometry
analysis. Fluorochrome-conjugated antibodies against CD44 (11-0441-82, Thermo Fisher
Scientific, eBioscience, Waltham, MA, USA) conjugated with PE-Cy7 (BD Biosciences, San
Jose, CA, USA) and CD24 (45-0242-82, Thermo Fisher Scientific, eBioscience manufacturer,
Waltham, MA, USA) were used to label the cells before the flow cytometry analysis. The im-
munostained cells were detected using a BD FACSCalibur flow cytometer (BD Biosciences,
San Jose, CA, USA) and analyzed by FlowJo ver. 7.6.1 software (BD Biosciences, San Jose,
CA, USA).

2.7. Tumorsphere Formation Assay

Breast cancer cells were seeded onto Corning Costar Ultra-Low Attachment 96-well
plates (Merck, Kenilworth, NJ, USA) at a density of 1 x 10% cells/well with phenol red-free
DMEM (Thermo Fisher Scientific, New York, USA) containing 20 ng/mL EGF (PeproTech,
Rehovot, Israel), 20 ng/mL basic FGF (PeproTech, Rehovot, Israel), 10 pg/mL insulin
(Merck, Kenilworth, NJ, USA), and 1x B27 (Thermo Fisher Scientific, New York, NY,
USA). The cells were cultured under normal cell culture conditions for 7 days prior to the
assessment for tumorsphere formation. The plates were imaged under a light microscope
and analyzed by Image] software for tumorspheres with a diameter over 50 um.

2.8. Human Cancer Stem Cell Array

Total RNA was extracted using the TRIzol Reagent (Thermo Fisher Scientific, New York,
NY, USA) according to the manufacturer’s instructions. An aliquot of RNA (2 pg/sample)
was treated with DNase (Merck, Kenilworth, NJ, USA) and transcribed into cDNA using
the RT? First Strand Kit (Qiagen, MD, USA), followed by the procedures to screen for
84 cancer stem cell-associated genes with the human cancer stem cell RT? Profiler PCR
Array (Cat. No. 330231 PAHS-176ZA, Qiagen), as described previously [44].
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2.9. Gene Knockdown and Overexpression

To knockdown CD44 in breast cancer cells MDA-MB-231 and MCF7, a lentivirus carrying a
pLKO.1_puro lentiviral vector that expresses double-stranded shRNA oligonucleotides targeting
the sequences of human CD44 (2 clones) was used (Clone 1: IDTRCN0000296191 and Clone 2:
ID TRCN0000308110 (National RNAi Core Facility, Academia Sinica, Taipei, Taiwan) (Table S1)).
ShRNA used in this study targets the canonical CD44 (CD44s) standard isoform. Another
pLKO.1_puro lentiviral vector expressing shRNA targeting firefly luciferase, which is not
related to the human genome sequence, was used as a negative control (National RNAi
Core Facility, Academia Sinica, Taipei, Taiwan). FOXA2 shRNA was also purchased from
the National RNAi Core Facility, Academia Sinica, Taiwan.

To overexpress CD44 in breast cancer cells ZR75 and MCF7, a ready-to-use lentivirus
particle with the pReceiver Lv105 lentiviral vector, which expresses the human CD44 gene,
was purchased from Genecopoeia (Rockville, MD, USA). For the negative control, lentivirus
particles that carry an empty pReceiver Lv105 lentiviral vector were used (Genecopoeia,
Rockville, MD, USA). To knockdown or overexpress CD44 in breast cancer cells, MDA-MB-
231, MCF7, and ZR75 were seeded on 6-well plates at a density of 2 x 10° cells/well 24 h
prior to the lentiviral transduction. Lentiviral virus solution (MOI = 5) was added to cells
in the culture medium containing 8 pug/mL polybrene. Forty-eight hours after infection,
the virus-containing medium was replaced with 2 pg/mL puromycin-containing medium
and incubated for 48-72 h (duration dependent on noninfected cells that were used as the
negative control) to select knockdown cells. Surviving cells were maintained with 1 pg/mL
puromycin for 1 to 2 weeks (based on cell proliferation) until further experiments.

Similar steps were followed to knockdown FOXA? in CD44 knockdown cells. A large
amount (400 png/mL) of neomycin (G418) was used for selection of the FOXA2 knockdown
cell population in CD44 knockdown cells.

2.10. Statistics

Data from three independent experiments were presented as the mean + SD. Indi-
vidual statistical tests are mentioned in the figure legends, with statistical significance
established at p < 0.05. All statistical analyses were conducted using Prism 8.0 software
(GraphPad, La Jolla, CA, USA).

3. Results
3.1. CD44 Expression Was Higher in Metastatic Lymph Nodes and CD44 Knockdown Reduced
Migration and Invasion Abilities of Breast Cancer Cells

In order to analyze the CD44-positive cell population in primary tumors and lymph nodes,
tissue samples were collected from 14 breast cancer patients. The results from the flow cyto-
metric analysis showed that there was a markedly higher percentage of CD44-expressing cells
in metastatic lymph nodes compared to primary tumors (Figure 1a; Figure Sla,b). Addition-
ally, immunohistochemical staining showed that metastatic lymph nodes had a higher
expression of CD44 compared to primary tumors (Figure 1b). Subsequently, the expression
of CD44 was investigated in different breast cancer cell lines (Figure Slc). The results
revealed that basal-type cancer cells had elevated levels of CD44 expression. In contrast,
luminal cells showed a low expression of CD44. To evaluate the effects of CD44 on the
phenotype of human breast cancer cells, CD44 expression was knocked down in MDA-MB-
231 and ZR?75 cells. First, we checked the knockdown efficiency of two clones and found
that only clone 2 showed good knockdown efficiency (Figure S1d). Therefore, we used
only clone 2 for further experiments. Conversely, we overexpressed CD44 in MCF7 and
ZR75 cells. It can be seen that the migration and invasion abilities of cancer cells declined
significantly in CD44 knocked down cells and vice versa (Figure 1c,d). Interestingly, CD44
knockdown and overexpression induced morphological changes in MDA-MB-231 cells that
can be clearly observed in the optical microscopic images. ZR75 cells displayed a typical
epithelial morphology (Figure Sle). On the other hand, CD44-overexpressed MCF7 and
ZR75 cells became spindle-shaped (Figure Sle). Additionally, the cell viability of CD44
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knocked down MDA-MB-231 cells was found to be decreased, while the cell viability of
CD44 overexpressed MCEF?7 cells was increased (Figure S1f). Furthermore, cancer stemness
was decreased in CD44 knocked down ZR75 cells and increased in CD44 overexpressed
MCF7 and ZR75 cells (Figure le).
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Figure 1. CD44 expression was higher in metastatic lymph nodes, and CD44 knockdown reduced
the migration and invasion abilities of breast cancer cells: (a) Flow cytometric analysis of CD44
expression in primary breast tumors (T) and paired metastatic lymph nodes (LN) in 14 breast cancer



Biomedicines 2022, 10, 2488

9 of 20

patients’ samples. (b) The expression of CD44 in breast cancer tissues, as determined by immuno-
histochemistry, was assessed by the H-score. The discriminatory threshold was set at H-score = 200,
and existing samples were reread and classed as low (H-score < 200) or high (>200) CD44 expres-
sion. (left) Bar figure showing the quantification results for CD44 expression in primary tumors
(T) and lymph node metastases (LN) was assessed by immunohistochemistry in 35 breast cancer
patients” samples. Scale bar = 100um. (c) Cell migration and invasion abilities in control and CD44
knockdown MDA-MB-231 and ZR75 cells (Luc: luciferase, KD: knockdown). (d) Cell migration and
invasion abilities in control and CD44-overexpressing ZR75 and MCEF?7 cells (EV: empty vector, OE:
overexpression). (e) Mammosphere formation ability of control, CD44 knockdown ZR75, and CD44
overexpressed ZR75 and MCF?7 cells. The data are presented as mean =+ SD. * Indicates p < 0.05, and
** indicates p < 0.01.

3.2. FOXA2 Was Upregulated in CD44 Knockdown Cells

To investigate the downstream event of CD44, a human cancer stem cell RT? Profiler
PCR Array was applied to MDA-MB-231 CD44 knockdown cells. We discovered that the
mRNA levels of various genes were upregulated in CD44 knockdown cells, and we focused
on FOXA2, which has been reported to inhibit epithelial to mesenchymal transition in
breast cancer [24,25,45] (Figure 2a; Figure S2a). Next, we confirmed our stem cell array
results by Western blot (Figure 2b). In previous studies, FOXA2 has been reported to
promote E-cadherin expression [24,33]. Therefore, we also checked E-cadherin protein
expression and found that it was increased in CD44 knockdown cells (Figure 2b) and
decreased in CD44 overexpressed cells (Figure 2c). Additionally, we evaluated the mRNA
level of FOXA2 in CD44 knocked down MDA-MB-231 cells and CD44-overexpressed MCF7
cells. The results showed that the FOXA2 mRNA level was markedly elevated in CD44
knockdown cells compared to CD44-overexpressed cells (Figure S2b,c).

3.3. Inhibition of FOXA2 in CD44 Knockdown Cells Reversed Cell Phenotype from Epithelial
to Mesenchymal

Furthermore, we knocked down FOXA2 in CD44 knockdown cells. Interestingly, the
morphology of the double knockdown cells changed from a round shape to a spindle shape
(Figure 3a). Additionally, FOXA2 inhibition reversed the phenotype of CD44 knockdown
cells and increased the migration and invasion abilities of MDA-MB-231 and ZR75 cells
with the double knockdown of CD44 and FOXA2 (Figure 3b,c). We checked the protein
expression of mesenchymal markers snail, slug, twist, vimentin, and ZEB1 in MDA-MB-231
cells with CD44 knockdown and found that their expression was downregulated, except
ZEB1 (Figure S3a), which is in agreement with previous reports that the expression of
mesenchymal markers is upregulated as a result of CD44 overexpression. We also found
that E-cadherin expression was downregulated in CD44 and FOXA2 double knockdown
MDA-MB-231 cells (Figure S3b). Further study on the expression of mesenchymal markers
snail, twist, and ZEB1 proteins in CD44 and FOXA2 double overexpressing cells (Figure
S3c) showed that CD44 overexpression only upregulated the snail and twist expression
but downregulated ZEB1 expression, while double overexpression (CD44 and FOXA?2)
reversed the twist expression but not the snail or ZEB1 expression (Figure S3c).

3.4. CD44 Leads to Multiple Drug Resistance in Breast Cancer Cells

Previously, it has been reported that CD44 is a cancer stem cell marker, and stem cells
usually display drug resistance [18]. Hence, the role of CD44 in cancer drug resistance in
CD44 knockdown MDA-MB-231 and ZR75 cells, along with CD44-overexpressed MCF7
and ZR75 cells, was evaluated by using chemotherapy drugs, including fluorouracil (5-
FU), paclitaxel, and doxorubicin. The results demonstrated that the viability of cells
decreased markedly in the CD44 knockdown group after treatment with different drugs
(Figure 4a,b; Figure S4a), while CD44 overexpressed cells showed resistance to all three
drugs (Figure 4c,d; Figure S4b).
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3.5. FOXA2 Accumulates in the Nucleus in CD44"% Breast Cancer Cells

To further investigate how CD44 can affect FOXA2 expression, we evaluated FOXA2
localization, as FOXAZ2 is a transcription factor, and it acts in the nucleus. Using subcellular
fractionation in three breast cancer cell lines, MDA-MB-231, MCF7, and ZR75, we found that,
in mesenchymal breast cancer cell line MDA-MB-231, the cytosolic expression of FOXA2
was higher compared to the nucleus. On the other hand, epithelial breast cancer cells MCF7
and ZR75 showed high FOXA2 expression in the nucleus. We also confirmed that our results
were consistent with the immunofluorescence staining for FOXA2 (Figure 5a). In addition,
we investigated the localization of FOXA2 in CD44 knockdown and overexpressed cells
by using subcellular fractionation and immunofluorescence staining. It was found that,
in CD44 knockdown cells, the nuclear expression of FOXA2 was significantly increased
(Figure 5b), while, in CD44-overexpressed MCF7 cells, the FOXA2 nuclear expression was
decreased compared to the control group (Figure 5c). All these findings suggest that CD44
plays a role in regulating FOXAZ2 localization in breast cancer cells.
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Figure 2. FOXA2 was upregulated in CD44 knockdown cells: (a) Human stem cell array table used in
RT? profiler PCR array experiments (top). Heat map showing the altered expression of stem cell array
genes (middle); red, green, and black squares indicate upregulated, downregulated, and nonregulated
genes, respectively. Scatter plot showing genes with >2-fold difference in mRNA expression (bottom)
in CD44 knockdown MDA-MB-231 cells, as identified by using the human cancer stem cell array.
(b) Immunoblotting of CD44, FOXA2, and E-cadherin in nontargeting control and CD44 knockdown
cells (MDA-MB-231 and ZR75). Knockdown clone 2 was used to knockdown CD44 in MDA-MB-231
and ZR75 cells. (c) Immunoblotting of CD44, FOXA2, and E-cadherin in nontargeting control and
CD44-overexpressed ZR75 cells. The data are presented as the mean =+ SD. * Indicates p < 0.05.

3.6. AKT Activation Results in Cytoplasmic Translocation of FOXA2

Aiming to investigate the possible downstream effectors of CD44, which may regulate
FOXAZ2 localization, we used the NetPhos 2.0 Server (http:/ /www.cbs.dtu.dk/services/
NetPhos /21122017 (accessed on 30 May 2022), HSLS, Pennsylvania, USA) to predict phos-
phorylation sites [46] in the FOXA2 protein, and then, the KinasePhos 2.0 Server was used
to predict the kinase-specific site on the basis of an amino acid coupling pattern analysis [47].
The results indicated that AKT is the possible kinase through which CD44 regulates FOXA2
localization (Figure S5a). Based on this, AKT expression was analyzed by Western blotting,
which showed that phosphorylated AKT expression was decreased in CD44 knockdown
cells and increased in CD44 overexpressed cells (Figure 6a; Figure S5b). A previous study
also found that CD44 facilitates signaling activation through the PI3K/AKT pathway [48].
Furthermore, subcellular fractionation in CD44 knockdown MDA-MB-231 cells revealed
that p-AKT expression was decreased in both the cytoplasm and nucleus (Figure 6b). To
confirm our finding that AKT indeed affects FOXA2 localization, we treated MDA-MB-231
cells with wortmannin, which is an AKT inhibitor. It was found that FOXA2 expression was
increased in the nucleus and decreased in the cytoplasm (Figure 6¢). In contrast, the AKT
activator SC79 increased the cytosolic expression of FOXA2 in MCEF?7 cells in which FOXA2
expression is normally low in the cytoplasm (Figure 6¢). Immunofluorescence staining was
performed to further confirm the changes in FOXA2 localization after wortmannin and
SC79 treatment (Figure 6d, Figure S5c). Taken together, these results suggest that CD44
regulates FOXA2 localization through AKT and promotes metastasis in breast cancer cells.
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Figure 3. FOXA2 knockdown in CD44 knockdown cells reversed the epithelial phenotype to a
mesenchymal phenotype: (a) Morphology of MDA-MB-231 cells with the double knockdown of
CD44 and FOXAZ2. Scale bar = 50 pm. (b,c) Migration and invasion abilities of MDA-MB-231 and ZR75
cells with the double knockdown of CD44 and FOXAZ2. The data are presented as the mean + SD. *
Indicates p < 0.05, and ** indicates p < 0.01.
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Figure 4. CD44 facilitates multiple drug resistance in breast cancer cells: (a,b) Effects of 5-FU and
paclitaxel on CD44 knockdown MDA-MB-231 and ZR75 cells. (c,d) Effects of 5- FU and paclitaxel
on CD44 overexpressed MCF7 and ZR75 cells. Two-way ANOVA was performed for the statistical
analysis. The data are presented as the mean + SD. * Indicates p < 0.05, ** indicates p < 0.01, and
*** indicates p < 0.001.
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Figure 5. FOXA2 accumulates in the nucleus in CD44!°% breast cancer cells: (a) Immunoblotting,
quantification, and immunofluorescence staining of nuclear and cytoplasmic FOXA2 protein in
MDA-MB-231, ZR75, and MCF7 cells. (b) Immunoblotting, quantification, and immunofluorescence
staining of nuclear and cytoplasmic FOXA2 protein in CD44 knockdown MDA-MB-231 cells. (c) Im-
munoblotting, quantification, and immunofluorescence staining of nuclear and cytoplasmic FOXA2
protein in CD44-overexpressed MCF7 cells. n.s. stands for not significant. Scale bar = 50 um. The
data are presented as the mean + SD. * Indicates p < 0.05, and ** indicates p < 0.01.
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Figure 6. AKT activation results in the cytoplasmic translocation of FOXA2: (a) Immunoblotting
for AKT and p-AKT protein expression in CD44 knockdown and overexpressed MDA-MB-231 and
MCF7 cells, respectively. (b) Immunoblotting for the cytoplasmic and nuclear expression of p-AKT
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and FOXA2 in CD44 knockdown MDA-MB-231 cells. (¢) Immunoblotting for the cytoplasmic and
nuclear protein expression of p-AKT and FOXA2 in Veh (DMSO used as the vehicle), wortmannin
(Wo), and SC79 (SC)-treated MDA-MB-231 and MCEF?7 cells, respectively. (d) Inmunofluorescence
staining for FOXA2 (green) in wortmannin (Wo) and SC79 (SC)-treated MDA-MB-231 cells. Scale
bar = 50 um. (e) Summary diagram for the signaling pathway.

4. Discussion

It has been reported that CD44 promotes stemness and metastasis in various cancers,
including breast cancer [15,19,21,49-52]. It is also well-documented that CD44 promotes
cancer cell migration and invasion via mesenchymal markers [49,53-55]. This study has
added new information to the growing body of evidence that CD44 plays an important
role in breast cancer metastasis and multidrug resistance. For the first time, we have found
that CD44 regulates FOXAZ2 localization through AKT to promote the metastatic ability of
breast cancer cells.

In the current study, we found that metastatic lymph nodes showed higher expression
of CD44 compared to primary tumors in tissue samples collected from breast cancer patients.
Additionally, the migration and invasion abilities were decreased in CD44 knocked down
breast cancer cells and increased in CD44-overexpressed cells. We also found morphological
changes in breast cancer cells after the knockdown and overexpression of CD44. The CD44
knockdown cells acquired an epithelial phenotype, whereas CD44 overexpressed cells
showed a mesenchymal phenotype. Our findings were consistent with the previous studies
on breast cancer migration and metastasis. Previous studies reported that CD44 promotes
the distant metastasis of breast cancer cells in vivo [21]. Additionally, CD44 upregulation
in breast cancer has been correlated with a higher tumor grade [56]. In a meta-analysis,
elevated CD44 expression has been reported in the basal subtype of breast cancer and was
associated with the EMT and cancer stem cell signature [22]. CD44 can also modulate
breast cancer metabolism under hypoxic conditions and promote EMT [57].

From the stem cell array analysis, we found that FOXA2 expression was upregulated
in CD44 knockdown cells. FOXA2 has been reported as a tumor suppressor in different
cancers. In hepatocellular carcinoma, FOXA2 suppresses metastasis partially through
matrix metalloproteinase-9 inhibition [58]. In gastric cancer, FOXA2 has been reported
to inhibit tumorigenesis both in vitro and in vivo [59]. Additionally, FOXA2 and CDX2
cooperate with NKX2-1 to inhibit metastasis in lung adenocarcinoma [60]. In another
study, FOXA2 has been reported to inhibit mesenchymal transition in breast cancer through
E-cadherin and ZEB-1 regulation [24]. Additionally, it has been found that FOXA2 interacts
with other proteins to inhibit the proliferation and migration of breast cancer cells [25,45].
However, FOXA2 mRNA has also been reported to be associated with relapse in basal-like
breast carcinoma [61]. Here, the contradictory role of FOXAZ2 in breast cancer may be
associated with the localization of FOXA2. Our current results showed that cytoplasmic
FOXAZ2 expression was higher in basal-type breast cancer cells compared to luminal-type
cells. However, further investigations are needed, as we used only one basal cell line in this
study. In luminal-type cells, FOXA2 expression was higher in the nucleus. Therefore, the
subcellular localization of FOXA2 may influence its oncogenic or tumor-suppressive effects.
However, further investigations are required to prove this possibility. It has been reported
that FOXA2 is phosphorylated by AKT at the threonine residue at position 156, which
is found within FOXAZ2’s nuclear export signal domain. FOXA2 phosphorylation at this
residue leads to FOXA2 nuclear export [62]. Additionally, acetylation and deacetylation
compete to influence FOXA2’s transcriptional activity. Lys259 (lysine259) on FOXA2 is
deacetylated by SIRT1 (silent mating type information regulation 2 homolog) deacetylase
when insulin is present, which reduces the target gene’s expression and boosts export from
the nuclei in hepatocytes [63]. Additionally, Foxa2 has a functional CRM1 (Chromosomal
Maintenance 1, also known as Exportin 1)-dependent leucine-rich nuclear export site that
is required for nuclear exclusion in response to insulin stimulation.
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Furthermore, CD44 is known to regulate cell function through various signaling path-
ways, such as Rho GTPases, Ras-MAPK, and PI3K/AKT [5-7]. A previous study showed
that insulin regulated FOXA2 localization through AKT [62]. In this study, we found that
CD44 also regulates FOXA2 localization through the AKT pathway. AKT phosphorylation
mediated by CD44 promotes its translocation to the nucleus. As a consequence, it can phos-
phorylate FOXA2, which leads to FOXA2 accumulation in the cytosol, thereby reducing
E-Cadherin expression. This indeed will promote a mesenchymal phenotype, resulting in
enhanced cancer cell migration and invasion abilities.

5. Conclusions

In conclusion, our study showed that CD44 is more highly expressed in metastatic
lymph nodes compared to primary tumors. We also provide evidence that the overexpres-
sion of CD44 in breast cancer markedly promoted cell migration and invasion abilities,
while the opposite effects were observed upon CD44 knockdown. We summarize that
CD44 promotes cancer cell migration through the cytosolic localization of FOXA2 mediated
by the AKT signaling pathway. This study provides further insights in designing future
therapeutic strategies for breast cancer.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390 /biomedicines10102488 /s1: Figure S1: Basal-type breast cancer
cells have a high expression of CD44. (a) Representative figure showing the gating strategy for flow
cytometric data for CD44-positive cells in primary tumors and metastatic lymph nodes. (b) Table
showing details of the flow cytometric analysis of CD44 expression in primary breast tumors and
paired metastatic lymph nodes and, also, the patients” ER, PR, and HER2 status. (c) Immunoblots of
CD44 in basal-type cells (HS578T and MDA-MB-231) and three luminal-type cells (MCF7, T47D, and
ZR75). (d) Knockdown efficiency of CD44 lentivirus in MDA-MB-231 cells. (e) Cell morphology of
CD44 knockdown MDA-MB-231 and ZR75 cells and CD44-overexpressed ZR75 and MCF7 cells by
using optical microscopy. Scale bar = 50 um. (f) Cell proliferation of CD44 knockdown MDA-MB-231
and CD44-overexpressed MCF-7 cells. Figure S2: mRNA level of CD44 and FOXAZ2. (a) Quantitative
RT-PCR of CD44 and FOXA2 in nontargeting control and CD44 knockdown cells (MDA-MB-231).
(b) Quantitative RT-PCR of CD44 and FOXA2 in nontargeting control and CD44-overexpressed cells
(MCEF?). Figure S3: Protein expressions of EMT markers in CD44 and FOXA2 double knockdown
and double overexpressed cells. (a) Western blot showing the protein expression of mesenchymal
markers snail, slug, twist, vimentin, and ZEBI1, respectively, in CD44 knockdown MDA-MB-231
cells. (b) Western blot showing FOXA2 knockdown efficiency and E-cadherin protein expressions in
CD44 knockdown MDA-MB-231 cells. (c) Western blot showing protein expressions of mesenchymal
markers snail, twist, and ZEB1, respectively, in CD44-overexpressed, FOXA2-overexpressed, and
double overexpressed (both CD44 and FOXA2) MCF?7 cells. Figure S4: Effects of doxorubicin on (a)
CD44 knockdown ZR?75 cells and (b) CD44-overexpressed MCF7 and ZR75 cells. Figure S5: AKT is the
possible kinase through which CD44 regulates FOXA?2 localization. (a) Prediction of CD44-regulated
protein kinases that may be associated with FOXA2. (b) p-AKT expression in CD44 knockdown T47D
cells. (c) Immunofluorescence staining for FOXA2 (green) and CD44 (red) in wortmannin (Wo) and
SC79 (SC)-treated MDA-MB-231 cells. Scale bar = 50 um. Table S1: shRNA target sequence. Table 52:
List of antibodies.
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