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Purpose: Levodopa is the most effective anti-Parkinsonian agent. It has also been 
known to exhibit analgesic properties in laboratory and clinical settings. However, 
studies evaluating its effects on neuropathic pain are limited. The aim of the present 
study was to examine the anti-allodynic effects of levodopa in neuropathic rats. Ma-
terials and Methods: Sprague-Dawley male rats underwent the surgical procedure 
for L5 and L6 spinal nerves ligation. Sixty neuropathic rats were randomly divided 
into 6 groups for the oral administration of distilled water and levodopa at 10, 30, 
50, 70, and 100 mg/kg, respectively. We co-administered carbidopa with levodopa 
to prevent peripheral synthesis of dopamine from levodopa, and observed tactile, 
cold, and heat allodynia pre-administration, and at 15, 30, 60, 90, 120, 150, 180, and 
240 min after drug administration. We also measured locomotor function of neuro-
pathic rats using rotarod test to examine whether levodopa caused side effects or 
not. Results: Distilled water group didn’t show any difference in all allodynia. For 
the levodopa groups (10-100 mg/kg), tactile and heat withdrawal thresholds were 
increased, and cold withdrawal frequency was decreased dose-dependently 
(p<0.01). In addition, levodopa induced biphasic analgesia. Different dosage of le-
vodopa did not impact on the rotarod time (p>0.05). Conclusion: Levodopa re-
versed tactile, cold and heat allodynia in neuropathic rat without any side effects.
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INTRODUCTION

In the clinical setting, treatment of neuropathic pain remains difficult. Many mech-
anisms for causing and maintaining neuropathic pain have been postulated. How-
ever, no single mechanism has been clearly defined. Non-steroidal analgesics, anti-
depressants, calcium channel blockers, alpha(2)-delta ligands, lidocaine, opioids, 
and anti-epileptic medications have been used for the management of neuropathic 
pain with limited success.1

Levodopa is the precursor to the neurotransmitter dopamine. Exogenously admin-
istered levodopa increases dopaminergic concentrations. Levodopa has traditionally 
been used to treat dopamine-deficiency conditions, such as Parkinson’s disease2 and 
restless legs syndrome.3 Although levodopa is not a conventional analgesic, studies 
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dynia was evaluated with von Frey hairs (0.6-26.0 g) using 
up-down method.14 After rats were placed on a metal mesh 
covered with a plastic dome (8×8×18 cm), the third meta-
tarsal bone area of the injured hind paw was stimulated 
with von Frey hairs at 3-4 s intervals. We recorded the min-
imum gram of von Frey hair that initiated nocifencive re-
sponses. The cut-off threshold was 26.0 g. Cold allodynia 
was examined as the % response frequency of paw with-
drawals divided by total 5 trials.15 It was measured as the 
number of paw withdrawal responses after the application 
of cold stimuli (100% acetone) to the plantar surface of the 
injured hind paw. The heat allodynia was expressed as nox-
ious heat threshold using a hot plate (IITC Life Science, 
Woodland Hills, CA, USA).16 After habituation, the rats 
were placed onto the plate, which was then heated up at a 
rate of 12°C/min from a starting temperature of 30°C until 
the animal showed nocifensive behavior. The correspond-
ing plate temperature was considered as the noxious heat 
threshold. Rotarod (Ugo Basile, Comerio-Varese, Italy) 
testing was executed for locomotor function evaluation. All 
behavioral tests were performed prior to oral administra-
tion, and also at 15, 30, 60, 90, 120, 150, 180, and 240 min 
following administration. Positive pain responses for all 
tests included paw withdrawal responses such as lifting, 
shaking and licking behaviors.

 
Statistical analysis
Results are expressed as mean±standard error (SE). Two 
ways analysis of variance (ANOVA) was used to determine 
general difference, depending on the treatment group and 
time. This was followed by post hoc Bonferroni multiple 
comparisons’ test. A percent of the maximal possible effect 
(%MPE) was used for dose-response curves. It was ana-
lyzed by 1-way ANOVA followed by post hoc Tukey’s mul-
tiple comparisons’ test. A %MPE was calculated as follows: 
1) for mechanical allodynia=(treatment threshold-baseline 
threshold)/(26.0 g-baseline threshold)×100, and 2) for cold 
and heat allodynia=(baseline frequency-treatment frequen-
cy)/(baseline frequency)×100. A p value of <0.05 was con-
sidered significant. All analysis was executed by GraphPad 
Prism 5.0 (GraphPad Software Inc., San Diego, CA, USA).

 

RESULTS
 

Tactile allodynia
All rats showed mechanical allodynia after spinal nerve liga-

using levodopa have been performed for the treatment of 
chronic pain conditions secondary to bone metastasis,4 pain-
ful diabetic polyneuropathy5 and herpes zoster pain.6 Howev-
er, the use of levodopa for painful neuropathy simply hasn’t 
been widely considered on the clinical side. Levodopa has 
been shown to have anti-nociceptive properties in animal 
studies,7,8 acting at the level of the spinal cord or the brain via 
the dopaminergic receptors. Animal studies on the analgesic 
activity of levodopa, in the setting of chronic pain, have been 
limited and inconclusive.9,10 Therefore, the aim of this study 
was to investigate, in a rat model, the anti-allodynic effects of 
levodopa to determine if levodopa should be further investi-
gated as a novel treatment modality in humans.

MATERIALS AND METHODS
　　　

Animals
The study was approved by our Institutional Animal Care 
and Use Committee at the Catholic University of Korea. The 
protocol used in this study was modified from our groups’ 
previous studies for testing the analgesic properties of oxy-
carbazepine and pregabalin in a rat model of neuropathic 
pain.11,12 Sprague-Dawley rats (male 100-150 g) were housed 
up to 3-4 animals in plastic cages and maintained on a 12 
hours light/dark cycle. Food and water were available freely. 

 
Spinal nerve ligation
Left L5 and L6 spinal nerves ligation procedure was used, 
as described by Kim and Chung.13 After 7-day recovery of 
surgery, rats that exhibited tactile allodynia to von Frey 
hairs (Stoelting Co., Wood Dale, IL, USA) with an applied 
bending force (<4 g), were employed for the experiments. 
Rats that showed any complication or those which didn’t 
show tactile allodynia were discarded.

 
Drug administration
Levodopa+carbidopa (SINEMET®, MSD-Korea Inc., Seoul, 
Korea) was dissolved in distilled water. Neuropathic rats 
were randomly assigned to 6 groups of increasing oral ad-
ministration of levodopa+carbidopa. Each group received ei-
ther distilled water or levodopa and carbidopa at 10/2.5, 
30/7.5, 50/12.5, 70/17.5 and 100/25 mg/kg (n=10 per group). 

 
Behavioral tests
Testing was performed at pre-defined periods (10:00 am-
5:00 pm) to avoid circadian rhythm errors. The tactile allo-
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quencies of 94% or more. Oral administration of levodopa 
decreased the cold withdrawal frequency at 15 min for 30 
mg/kg, at 15 min and at 180 min for 50 mg/kg, from 15 to 
60 min and at 180 min for 70 mg/kg, from 15 to 60 min and 
at 180 min for 100 mg/kg, as compared to the vehicle group 
(p<0.001) (Fig. 2A). The linear regression curve shows that 
levodopa reduced cold allodynia in a dose-dependent man-
ner (p<0.001) (Fig. 2B). The ED50 was calculated to be 49.2 
mg/kg (95% CI: 38.5 to 59.8).

 
Heat allodynia
All rats showed a baseline heat threshold of 39.5±2.3°C. 
Oral administration of levodopa increased the heat thresh-
olds at 15 min for 30 mg/kg, from 15 to 60 min and at 180 
min for 50 mg/kg, from 15 to 60 min for 70 mg/kg, from 15 
to 90 min and from 150 to 240 min for 100 mg/kg (p<0.001) 
(Fig. 3A). The linear regression curve shows that levodopa 

tion surgery. In the vehicle group, the tactile thresholds were 
1.1±0.3, 1.8±0.9, 1.4±0.4, 1.3±0.3, 1.2±0.2, 1.2±0.3, 1.1±0.3, 
1.1±0.3, and 1.1±0.3 g prior to distilled water administration 
and at 15, 30, 60, 90, 120, 150, 180, and 240 min after dis-
tilled water administration, respectively. The tactile thresholds 
increased at 15 min for 30 mg/kg, from 15 to 30 min for 50 
mg/kg, from 15 to 60 min for 70 mg/kg and 100 mg/kg, as 
compared to the vehicle group (p<0.001) (Fig. 1A). Oral ad-
ministration of levodopa reduced tactile allodynia in a dose-
dependent fashion (p=0.006) (Fig. 1B). In general, the figures 
showed a biphasic analgesia pattern. Therefore, we devided 
Phase I and Phase II by 120 min. The Phase I ED50 was calcu-
lated to be 130.3 mg/kg [95% confidence interval (CI): 90.92 
to 169.6], whereas the Phase II ED50 was not acquired.

Cold allodynia
After ligation surgery, all rats showed cold withdrawal fre-

Fig. 1. (A) Time course of paw withdrawal threshold to tactile stimuli in the neuropathic pain model. The withdrawal threshold was measured before (Pre) 
and after oral administration of distilled water (DW), levodopa 10 mg/kg (L-DOPA10), levodopa 30 mg/kg (L-DOPA30), levodopa 50 mg/kg (L-DOPA50), levodo-
pa 70 mg/kg (L-DOPA70), and levodopa 100 mg/kg (L-DOPA100). The results are expressed as mean±SE (n=10 in each group). *p<0.05, †p<0.01, ‡p<0.001, 
§p<0.0001 significantly different from the DW group. (B) Dose-response curve from the peak effects of percentage maximal possible effect (%MPE) for tac-
tile anti-allodynia in the levodopa groups. This shows a dose-dependent tactile anti-allodynic effect. Each line represents mean±SE for 10 rats. Doses (mg/
kg) are represented logarithmically on the x-axis and peak %MPE is represented on the y-axis. *p<0.05 vs. DW, †p<0.01 vs. DW. 

Fig. 2. (A) Time course of paw withdrawal frequency to cold stimuli. The response frequencies were measured before (Pre) and after oral administration of 
distilled water (DW), levodopa 10 mg/kg (L-DOPA10), levodopa 30 mg/kg (L-DOPA30), levodopa 50 mg/kg (L-DOPA50), levodopa 70 mg/kg (L-DOPA70), and le-
vodopa 100 mg/kg (L-DOPA100). The results are expressed as mean±SE (n=10 in each group). *p<0.05, †p<0.01, ‡p<0.001, §p<0.0001 significantly different from 
the DW group. (B) Dose-response curve from the peak effects of percentage maximal possible effect (%MPE) for cold anti-allodynia in the levodopa groups. 
This shows a dose-dependent cold anti-allodynic effect. Each line represents mean±SE for 10 rats. Doses (mg/kg) are represented logarithmically on the x-
axis and peak %MPE is represented on the y-axis. *p<0.05 vs. DW, †p<0.01 vs. DW, ‡p<0.001 vs. DW. 
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administration, and at 20, 90, 180 min and 24 hours after 
intraperitoneal injection of a single dose of levodopa (200 
mg/kg). In contrast to the methods used in the Cobacho, et 
al.10 study, we performed the spinal nerve ligation devel-
oped by Kim and Chung,13 and observed the tactile, cold, 
and heat allodynia pre-administration, and at 15, 30, 60, 90, 
120, 150, 180, and 240 min after oral administration of 10, 
30, 50, 70, and 100 mg/kg of levodopa. Shimizu, et al.8 re-
ported that intrathecal injection of levodopa reduced sub-
stance P-evoked nocifensive behaviors, however, they uti-
lized substance P mice models and observed licking and 
scratching behaviors. Compared with Shimizu, et al.8 study, 
we administered levodopa orally, not intrathecally, in spinal 
nerve-ligated rat models and observed tactile, cold, and heat 
allodynia. Paalzow7 reported that intraperitoneal injection 
of levodopa induced analgesic effects when they applied 
electrical stimulation to the tail of rats. However, normal rats 
were used in the study and allodynia was not assessed. They 
evaluated vocalization only. Therefore, their results may 
not be applicable for the treatment of neuropathic pain.

Levodopa crosses the blood-brain barrier, whereas dopa-
mine itself cannot. Outside the central nervous system, le-
vodopa is also converted into dopamine within the periph-
eral nervous system. The resulting hyperdopaminergia may 
cause adverse side effects secondary to sole levodopa ad-
ministration. In order to prevent the peripheral synthesis of 
dopamine from levodopa, we co-administered a peripheral 
DOPA decarboxylase inhibitor, carbidopa, along with le-
vodopa. 

It remains unclear how levodopa has an analgesic effect 
on neuropathic pain. However, levodopa’s analgesic effects 

decreased heat allodynia dose-dependently (p<0.001) (Fig. 
3B). The ED50 was calculated to be 49.3 mg/kg (95% CI: 
38.5 to 60.2). 

 
Rotarod performance
Treatment with 10-100 mg/kg of levodopa did not signifi-
cantly decrease the rotarod testing time. Rotarod perfor-
mance was 147.7±0.9, 132.1±12.1, 136.1±8.8, 137.7±9.8, 
141.0±5.6, 144.1±3.3, 148.3±1.2 and 150.0±0.0 at pre-le-
vodopa administration and at 15, 30, 60, 90, 120, 150, and 
180 min after 100 mg/kg levodopa administration, respec-
tively. The rotarod time appeared to be slightly decreased 
15 min after administration of 100 mg/kg levodopa. How-
ever, this time was not significantly different from the cut 
off time (150.0 sec, p>0.05).

DISCUSSION

The present study showed that oral administration of le-
vodopa dose-dependently decreased tactile, cold, and heat 
allodynia in neuropathic rats. In addition, levodopa induced 
a biphasic analgesia pattern. 

Three previous studies have shown the analgesia of le-
vodopa in animal models.7,8,10 However, only one study in-
vestigated neuropathic pain. Cobacho, et al.10 reported that 
intraperitoneal and intrathecal injection of levodopa re-
duced mechanical and cold allodynia in mono-neuropathic 
rat models. However, they executed a sciatic nerve ligation 
according to the method originally developed by Bennett 
and Xie,17 and assessed the tactile and cold allodynia pre-

Fig. 3. (A) Time course of paw withdrawal heat threshold. The heat threshold was measured before (Pre) and after oral administration of distilled water 
(DW), levodopa 10 mg/kg (L-DOPA10), levodopa 30 mg/kg (L-DOPA30), levodopa 50 mg/kg (L-DOPA50), levodopa 70 mg/kg (L-DOPA70), and levodopa 100 mg/
kg (L-DOPA100). The results are expressed as mean±SE (n=6 in each group). *p<0.05, †p<0.01, ‡p<0.001, §p<0.0001 significantly different from the DW group. 
(B) Dose-response curves from the peak effects of percentage maximal possible effect (%MPE) for heat anti-allodynia in the levodopa groups. These 
curves show a dose-dependent heat anti-allodynic effect. Each line represents mean±SE for 6 rats. Doses (mg/kg) are represented logarithmically on the x-
axis and peak %MPE is represented on the y-axis. *p<0.05 vs. DW, †p<0.01 vs. DW, ‡p<0.001 vs. DW.
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ministered. Moreover, systemic levodopa, at all dose levels 
administered did not affect rat’s rotarod performance. Con-
sequently, the anti-allodynic effect of levodopa at 10-100 
mg/kg is not thought to be due to the effect of sedation, 
ataxia or altered locomotion. 

In conclusion, orally administered levodopa attenuated tac-
tile, cold and heat allodynia exhibited by spinal nerve ligated 
rats. Sedation and motor disturbance were not observed at 
any of the dose levels used in this study. In addition, levodo-
pa may induce a biphasic pattern of analgesia in rats suffer-
ing from neuropathic pain. Therefore, further studies may be 
required to determine optimal dose and time interval to avoid 
hyperalgesia. Human studies will also be required to deter-
mine if the results in rats are applicable to humans.
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