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emerged in the post-Sanger sequencing era ( 1, 2 ). NGS 
platforms provide massively parallel sequencing of mil-
lions of DNA fragments, which enables the rapid sequenc-
ing of whole genomes in less than a day and at a fraction 
of the cost compared with Sanger sequencing. The recent 
clinical application of NGS has revolutionized the ability 
to rapidly develop molecular diagnoses in inherited dis-
ease ( 3, 4 ), especially monogenic diseases ( 2, 5, 6 ). Fur-
thermore, the cost of NGS is rapidly decreasing, and has 
made tangible the prospect of incorporating genome-
based diagnosis into medical care. In this regard, the US 
Food and Drug Administration recently approved Illumi-
na’s MiSeqDx for NGS applications in the clinical setting 
( 7 ). These developments are relevant for genetic dyslipi-
demias, as the comprehensive detection of genome-wide 
variation opens up new approaches to further characterize 
the polygenic basis of complex metabolic traits ( 8, 9 ). 

 Clinically, the identifi cation of causative genetic muta-
tions in patients with suspected familial hypercholester-
olemia (FH) is a criterion for diagnosing “defi nite FH” or 
“probable FH” in two widely used clinical algorithms ( 10, 
11 ). Also, screening for causative mutations in candidate 
genes in lipolysis for the diagnosis of familial chylomi-
cronemia is supplanting traditional biochemical diagnos-
tic methods, such as LPL activity in plasma collected 
postheparin infusion ( 12, 13 ). It is not presently clear 
whether molecular diagnosis will be clinically important 
for the >20 other monogenic disorders of lipid and lipo-
protein metabolism whose molecular basis has been solved 
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different hypertriglyceridemia (HTG) patients whose genomic 
DNA was sequenced extensively in the course of previous unre-
lated projects involving Sanger sequencing ( 20, 21 ). The techni-
cal replication portion of the study included 12 samples that were 
duplicate HTG samples, including 6 genomic DNA samples and 
6 whole genome amplifi ed (WGA) DNA samples. The remaining 
48 samples were obtained from patients with a range of pheno-
types, including 19 referred with possible FH (but without any 
prior molecular data), 10 who were FH patients with no muta-
tions in the candidate FH genes ( LDLR ,  APOB , and  PCSK9 ), 14 
who were recently diagnosed with severe HTG, and 5 who were 
referred with other rare monogenic phenotypes ascertained clin-
ically, including 2 with familial partial lipodystrophy (FPLD), 2 
with MODY, and 1 with HBL. FH patients were diagnosed as 
probable FH based on the Dutch Lipid Clinic Criteria prior to 
assessment with LipidSeq ( 11 ). HTG patients included in this 
study had fasting plasma TG >10 mmol/l. All patients provided 
informed consent under a protocol approved by the Research 
Ethics Board at Western University (#07920E). 

 Sequencing 
 Sample preparation.   DNA was processed in batches of 12 

samples. The initial quality and quantity of genomic DNA sam-
ples was assessed by visualization on a 1% agarose gel and using a 
NanoDrop 1000 spectrophotometer (Thermo Fisher Scientifi c, 
Inc., Waltham, MA). The DNA was then diluted to a starting con-
centration of 3.0 ± 0.5 ng/ � l and measured using a Qubit 2.0 
fl uorometer (Invitrogen, Carlsbad, CA). WGA DNA samples were 
diluted to a starting concentration of 3.0 ± 0.5 ng/ � l using the 
Qubit 2.0 fl uorometer. 

 Library preparation was conducted at the London Regional 
Genomics Centre   following the Nextera Custom Enrichment 
Sample Preparation Guide. Briefl y, samples were enzymatically 
fragmented, PCR amplifi ed with individual sample barcodes, 
equimolar pooled, hybridized to the custom designed target 
probes (two cycles of 18 h each with multiple washes), and PCR 
amplifi ed again to select the fi nal target sequence. All steps were 
conducted in accordance with the manufacturer’s recommenda-
tions. DNA pull-down steps used the Magnetic Stand-96 (Life 
Technologies, Gaithersburg, MD) and PCR amplifi cation used 
the Veriti thermocycler (Applied Biosystems, Foster City, CA). 
Mid-preparation sample quality was verifi ed using the Agilent 
2100 BioAnalyzer (Agilent Technologies, Palo Alto, CA); fi nal li-
braries were quantifi ed using the KAPA quantitative PCR   library 
quantifi cation kit (KAPA Biosystems, Woburn, MA) on a ViiA 7 
real-time PCR system (Life Technologies). 

 Sequencing parameters.   Indexed samples were pooled in 
equimolar ratios of 500 ng. Once combined, 16 pM of dena-
tured pooled library was loaded on to a standard fl ow-cell on 
the Illumina MiSeq personal sequencer (Illumina, San Diego, 
CA) using 2 × 150 bp paired-end chemistry according to the 
manufacturer’s instructions. PhiX (1%) was spiked in as a posi-
tive control for sequencer performance. Sequencing quality 
control was assessed using multiple parameters in Illumina 
MiSeq Reporter and visualized either in Illumina BaseSpace or 
locally using Illumina sequencing analysis viewer. Demulti-
plexed FASTQ fi les were downloaded for each sample and 
processed individually using downstream software packages, as 
described below. 

 Variant discovery and annotation 
 Sequence alignment and variation discovery.   Sequence align-

ment and variant calling were conducted using a custom auto-
mated workfl ow designed in CLC Bio Genomics Workbench 
v6.5  �  (CLC Bio, Aarhus, Denmark). First, sequencing reads were 

( 11 ), particularly as feasibility and effi ciency via Sanger se-
quencing have limited the broad integration of clinical 
resequencing for dyslipidemia patients. However, NGS 
now presents a tool to evaluate the effectiveness of genome-
based diagnosis in monogenic dyslipidemias and address 
clinical feasibility and applicability, as well as poten tial 
ethical concerns that come with genome-wide variant 
detection. 

 Here, we have designed and evaluated a targeted rese-
quencing panel for monogenic dyslipidemias termed Lipid-
Seq. Our objective was to utilize an NGS-based approach 
to facilitate molecular diagnosis of dyslipidemias in patient 
samples studied at the Blackburn Cardiovascular Genetics 
Laboratory with the intention of replacing existing Sanger 
sequencing-based methods. Our laboratory performs mo-
lecular diagnosis of largely clinical samples from patients 
covering a range of dyslipidemias that are characterized 
by:  1 ) very high levels of LDL cholesterol, including FH 
and related conditions;  2 ) very low levels of LDL choles-
terol, including abetalipoproteinemia and hypobetalipo-
proteinemia (HBL);  3 ) very high levels of HDL cholesterol; 
 4 ) very low levels of HDL cholesterol, including Tangier 
disease and familial defi ciencies of apoA-1 and LCAT; and 
 5 ) very high levels of TG, including familial chylomicrone-
mia ( 14 ). The laboratory also receives samples for molecu-
lar diagnosis of miscellaneous dyslipidemias, as well as 
monogenic forms of diabetes, such as lipodystrophy syn-
dromes ( 15, 16 ), and mature onset diabetes of the young 
(MODY) ( 17 ). Our aims were to:  1 ) determine the accu-
racy of NGS compared with traditional Sanger sequencing 
with respect to variant discovery in monogenic dyslipi-
demias and related metabolic disorders;  2 ) evaluate the 
reproducibility of variant discovery between samples; and 
 3 ) assess the potential diagnostic utility of targeted high-
throughput sequencing technology in the clinic. 

 METHODS 

 Study design 
 Sequence capture.   We used the Nextera Custom Enrichment 

kit (Illumina, San Diego, CA) to capture genomic regions corre-
sponding to 73 genes (supplementary Table I) and 178 SNPs 
(supplementary Table II) associated with clinical dyslipidemias 
and related metabolic disorders, comprising 689 kb of sequence 
per sample. Some content was also included for experimental 
research purposes. Each exon of every coding isoform of the 73 
targeted genes was captured, as well as 150 bp pads into the in-
trons and an extra 2 kb of upstream sequence and 500 bp of 
downstream sequence. We also included SNPs that were chosen 
based on their contribution to polygenic risk scores for LDL and 
HDL cholesterol and TG, based on genome-wide association 
studies (GWASs) of lipid traits ( 18 ). SNPs were captured using a 
single probe centered on the variant of interest. Chromosome 
scaffold coordinates were obtained from the University of Cali-
fornia Santa Cruz genome browser using the February 2009 
GRCh37/hg19 genome build ( 19 ) and were submitted to the Il-
lumina Online Design Studio (Illumina, San Diego, CA). 

 Sample selection.   In total, 84 patient samples were sequenced 
in this study. The validation portion of the study included 24 
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 RESULTS 

 Validation 
 Sequencing quality.   Two validation runs of 12 samples 

produced comparably high quality sequence data as mea-
sured by several quality control fi lters (  Table 1  ).  Run 1 pro-
duced a total of  � 15,000,000 reads of which  � 13,000,000 
(86.1%) passed standard instrument quality control fi lters. 
From these reads, 96% of indexes were correctly deci-
phered and 93% of reads exceeded a Phred quality score 
of Q30, signifying an error probability <1/1,000. Run 2 pro-
duced a total of  � 20,000,000 reads of which  � 17,000,000 
(84.9%) passed standard instrument quality control fi l-
ters. From these reads, 96% of indexes were correctly deci-
phered and 93% of reads exceeded a Phred quality score 
of Q30. 

 Each sample index was fairly well represented on the 
fl ow cell. The mean (±SD) proportion of reads identifi ed 
per sample was 8.0% (±2.5%) in run 1 and 8.0% (±1.0%) 
in run 2, as would be expected (100%/12 samples = 8.3%/
sample). There was greater variation among samples 
within run 1: two samples had a proportion of total reads 
of  � 4.0%, whereas another two samples had a proportion 
of total reads of  � 11.0%. Samples within run 1 had pro-
portions of index reads between 6.0 and 10.0%. Results for 
all samples in both runs were within 2 SDs of the mean. 

 Our sequence capture reagents were designed to ex-
ceed 100-fold (100×) coverage of 1,043 target sites repre-
senting 689,400 bp ( Table 1 ). This approach resulted in a 
mean (±SD) read depth per base pair of 298.1 (±88.6) in 
run 1 and 392.1 (±48.1) in run 2. The percentage of tar-
gets with a mean coverage <30× was 2.6% (±1.0%) in run 1 
and 1.8% (±0.4%) in run 2, whereas the percentage of 
these with a minimum coverage <30× was relatively higher, 
encompassing 6.8% (±2.2%) of run 1 targets and 4.5% 
(±0.4%) of run 2 targets. Variant detection was conducted 
at all locations where read depth was >20× coverage. Con-
versely, targets that failed in their entirety based on a maxi-
mum coverage <30× only occurred in 1.9% (±0.9%) and 
1.3% (±0.3%) of targets in runs 1 and 2, respectively. 
These statistics were all superior for run 2 given the greater 
signifi cant increase in reads captured and sequenced. A 
higher resolution investigation of targets with poor cover-
age revealed that the proportion of individual base pairs 
with coverage <30× was only 2.5% (±0.8%) in run 1 and 

imported from FASTQ fi les and mapped to the full human ge-
nome GRCh37/hg19 build. Second, default settings of two 
built-in protocols were used to improve read mapping including 
a local realignment to improve mapping around insertion-dele-
tion mutations (indels) and removal of PCR duplicates. Finally, a 
quality-based variant detection tool was used to call sequence 
variants according to a minimum 10-fold coverage and 20% read 
frequency. These parameters were chosen to minimize false neg-
atives by facilitating identifi cation of variants in low-coverage re-
gions for follow-up using Sanger sequencing if necessary. Target 
region summary statistics were generated in tab-delimited format 
and variant reports for each sample were exported in VCF format 
for use in downstream annotation pipelines. Only variants iden-
tifi ed within 10 bp of target regions were included in these 
analyses. 

 Variant annotation.   Variant annotation was performed us-
ing ANNOVAR ( 22 ). All genome coordinates and database fi les 
made reference to human genome build GRCh37/hg19. Sev-
eral databases were downloaded from ANNOVAR to facilitate 
annotation, including RefSeq (February 2013 update), db-
SNP137 (July 2013; nonfl agged variants), the National Heart, 
Lung, and Blood Institute   Exome Sequencing Project (ESP; 
June 2012 update), 1000 Genomes Project (G1K; February 2012 
update), and sorting intolerant from tolerant (SIFT) and Poly-
Phen-2 databases (May 2011 updates). Variants were also com-
pared against the Human Gene Mutation Database using an 
automated script. 

 Variants were classifi ed into four functional categories:  1 ) cod-
ing variants found in translated portions of exons;  2 ) clear splic-
ing variants found within two nucleotides of an intron-exon 
boundary;  3 ) untranslated region (UTR) variants found in the 
5 ′  or 3 ′  UTR; or  4 ) noncoding variants found in introns with no ef-
fect on splicing or intergenic variants. Single nucleotide variants 
were classifi ed as nonsynonymous (missense and nonsense) or 
synonymous variants, whereas indels were classifi ed as insertions 
or deletions either causing a frameshift or not (i.e., in-frame). 
Novel variants were defi ned as having no frequency listed in ei-
ther ESP or G1K, and no rsID in dbSNP. Among novel variants, 
three were identifi ed in >10% of study samples and were deemed 
sequencing artifacts; these variants were not included in sum-
mary statistics. 

 Statistical analyses 
 All statistical analyses were conducted in SAS v9.2 (Cary, NC). 

Data are expressed as mean ± SD. Comparisons between means 
were conducted using unpaired  t -test assuming unequal vari-
ances. Statistical signifi cance was defi ned as a two-tailed  P  value 
<0.05. 

 TABLE 1. Quality control measures for sequencing validation runs     

Run Parameter Validation Run 1 Validation Run 2 Validation Run Mean

Cluster density (×10 3 /mm 2 ) 966 1165 1065
Total reads (×10 3 ) 14,915 19,515 17,215
Reads PF (×10 3 ) 12,847 16,583 14,715
Reads PF (%) 86.1 84.9 85.5
Reads Identifi ed  a   (%) 96.0 95.7 95.9
Reads > Q30  a   (%) 92.7 92.7 92.7
Mean coverage (±SD) 298.1 (±88.6) 392.2 (±48.1) 345.1 (±84.67)
Targets with mean coverage <30× (%) 2.6 (±1.0) 1.8 (±0.4) 2.2 (±0.9)
Targets with min coverage <30× (%) 6.8 (±2.2) 4.9 (±0.4) 5.8 (±1.8)
Targets with max coverage <30× (%) 1.9 (±0.9) 1.3 (±0.3) 1.6 (±0.7)

Validation runs included 24 independent samples with 12 samples per run. PF, passed fi lter.
  a   Percentage of reads identifi ed and percentage of reads >Q30 are based on reads SD.
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WGA input DNA is suffi cient for sequencing and the identifi -
cation of clinically relevant variants. 

 Validating LipidSeq variant detection with Sanger sequenc-
ing.   The two validation runs were composed of 24 unique 
samples that were previously extensively Sanger sequenced 
in unrelated projects using the ABI 3730 automated se-
quencer Sanger sequencing protocol ( 8 ). Concordance was 
compared for both common and rare variants found in 
translated sequences from 18 HTG subjects sequenced 
across eight genes involved in HTG susceptibility (including 
>17.2 kb per person) and six additional subjects with mono-
genic phenotypes were sequenced across three to nine 
genes (including 6.3 kb to 27.5 kb per person). Among 18 
polygenic HTG patients, or HTG patients with no candidate 
HTG mutations ( 23 ), Sanger sequencing identifi ed 32 dis-
tinct sequence variants including 19 nonsynonymous vari-
ants and 13 synonymous variants, corresponding to a total 
of 114 alternate genotypes within these samples. All 114 al-
ternate genotypes were identifi ed by the MiSeq protocol, 
including 6 alternate genotypes that were initially missed or 
misannotated by Sanger sequencing, and correctly identi-
fi ed by the MiSeq upon Sanger sequence confi rmation. Ad-
ditionally, we compared Illumina-determined genotypes for 
HTG samples for a subset of 44 SNPs selected from GWASs 
of plasma lipids ( 13 ), which had been previously genotyped 
in our lab using TaqMan reagents. Two SNPs consistently 
failed to be captured, including the fatty acid desaturase 
1/2/3 ( FADS1/2/3 ) gene cluster rs174547 and cholesteryl 
ester transfer protein ( CETP ) rs173539, although these SNPs 
also consistently failed in our TaqMan genotyping assays, 
suggesting that local DNA properties may interfere with at-
tempts to genotype these loci. Within 18 samples at the re-
maining 42 genotypes, we achieved 100% concordance for 
variants being queried. 

 Among samples from patients referred with potential 
monogenic phenotypes, Sanger sequencing identifi ed 42 
distinct sequence variants, including 24 nonsynonymous 
variants and 18 synonymous variants, corresponding to 68 
alternate genotypes. Again, all 68 alternate genotypes were 
detected by the MiSeq. Therefore, among all validation 
samples, 182 nonreference genotypes were correctly called 
by the MiSeq and 396,241 reference genotypes were cor-
rectly called by the MiSeq using Sanger sequencing as the 
comparator. Such fi ndings demonstrate the high accuracy 
afforded by the MiSeq protocol to detect clinically relevant 
variants in samples referred for diagnosis. 

 Application 
 Variant discovery.   We sequenced an additional 48 ge-

nomic DNA samples from patients with one of multiple 

1.9% (±0.3%) in run 2, and a signifi cant proportion of these 
sites were base pairs with 0× coverage, including 0.5% 
(±0.1%) of base pairs in run 1 and 0.6% (±0.1%) in run 2. 

 Technical concordance between samples and DNA inputs.   We 
conducted additional sequencing to assess the technical 
concordance between samples. For six samples, we selected 
one technical replicate prepared from genomic DNA and 
one prepared from WGA DNA. The NGS run containing 
these 12 samples performed exceptionally well, produc-
ing a total of  � 21,000,000 reads of which  � 16,500,000 
(79.2%) passed standard instrument quality control fi l-
ters. From these reads, 97% of indexes were correctly deci-
phered and 90% of reads exceeded a Phred quality score 
of Q30. 

 Interestingly, sample performance indexes were signifi -
cantly higher among genomic versus WGA DNA samples, 
with mean (±SD) of 10.3% (±1.4%) versus 5.8% (±1.5%) 
reads per sample ( P  = 0.0004;   Table 2  ),  respectively. The 
greatest proportion of indexes for a single technical repli-
cate was 11.9% corresponding to genomic DNA sample 
input, whereas the lowest proportion of indexes was 4.2% 
corresponding to a WGA DNA sample input. Sequencing 
coverage was also signifi cantly better among genomic ver-
sus WGA DNA samples ( Table 2 ). For instance, the mean 
(±SD) read depth per base in genomic DNA versus WGA 
DNA samples was 399.4 (±78.2) versus 264.5 (±58.0), re-
spectively ( P  = 0.008); all other measures of coverage were 
better among genomic DNA sample inputs. 

 Concordance rates were excellent in both categories of 
technical replicates with an overall concordance rate of 
95.2%; however, genomic DNA replicates performed with 
signifi cantly higher concordance compared with WGA repli-
cates (  Table 3  ).  The number of concordant calls was no dif-
ferent among genomic versus WGA DNA samples (464.5 vs. 
453.3, respectively;  P  = 0.48), however the number of discor-
dant calls was lower among genomic versus WGA DNA sam-
ples (18.0 vs. 28.6, respectively;  P  = 0.01). This difference was 
driven by variants that were exclusively called in either the 
original or replicate sample, rather than variants that were 
identifi ed in both samples but called with different genotypes 
(supplementary Table III). Furthermore, the vast majority of 
discordant variants were found in regions of lower clinical 
importance including the 5 ′  UTRs or noncoding regions. 
These regions provide limited diagnostic value as their im-
pact on protein structure and function is less clear in com-
parison to nonsynonymous variants. The overall concordance 
rate was 96% among genomic DNA samples and 94% among 
WGA DNA samples ( P  = 0.008). These fi ndings demonstrate 
that technical concordance among genomic DNA is excel-
lent according to multiple quality control metrics, although 

 TABLE 2. Quality control measures compared between genomic and WGA DNA sample inputs     

Run Parameter Genomic DNA (n = 6) WGA DNA (n = 6)  P 

Mean index reads (%) (±SD) 10.3 (±1.44) 5.84 (±1.50) 0.0004
Mean coverage (±SD) 399.4 (±78.2) 264.5 (±58.0) 0.008
Targets with mean coverage <30× (%) 1.0 (±0.09) 4.0 (±1.5) 0.005
Targets with min coverage <30× (%) 4.8 (±0.8) 9.9 (±2.7) 0.005
Targets with max coverage <30× (%) 0.6 (±0.1) 2.6 (±1.1) 0.007
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 LMF1 , and 1 each in  GPIHBP1  and  APOA5  (supplemen-
tary Table V). Of the HTG patients negative for rare vari-
ants in monogenic HTG genes, 5 (35.7%) were carriers of 
rare variants in polygenic HTG genes, including 4 in  APOB  
and 2 in  GCKR  (supplementary Table V). One of two pa-
tients referred with suspected MODY carried multiple rare 
variants in the candidate MODY gene,  CEL  (supplemen-
tary Table V). The FPLD patients studied harbored no dis-
ease-causing variants in known lipodystrophy genes. Finally, 
the single HBL patient was heterozygous for a novel non-
sense variant in exon 9 of  APOB  (supplementary Table V). 

 Mutation-negative patients (n = 18) were assessed for the 
presence of low-frequency variants [minor allele frequency 
(MAF) < 0.03] in noncandidate dyslipidemia genes included 
in the LipidSeq panel. A subset of FH patients previously 
found to be mutation-negative at candidate FH genes was 
also screened using the LipidSeq panel. Accordingly, sev-
eral detected rare variants highlighted additional cardio-
metabolic pathways with potential relevance to the respective 
dyslipidemia phenotypes (supplementary Table VI). 

 DISCUSSION 

 In evaluating the performance of our NGS-based dys-
lipidemia gene resequencing panel, we found that:  1 ) 
combining the Illumina Nextera custom enrichment kit 
with the MiSeq NGS platform produced high-quality 

 TABLE 3. Concordance of variants identifi ed in technical replicates separated by location           

Sample ID Input DNA

Concordant Calls  a  Discordant Calls  b  

Exon: Coding Exon: UTR Noncoding Total Exon: Coding Exon: UTR Noncoding Total

3344 Genomic 89 135 245 469 1 9 6 16
WGA 86 134 240 460 4 13 11 28

3645 Genomic 100 135 236 471 0 12 8 20
WGA 100 126 235 461 0 19 11 30

3732 Genomic 96 160 245 501 0 12 6 18
WGA 93 151 238 482 3 20 14 37

4221 Genomic 98 132 247 477 0 6 9 15
WGA 96 130 247 473 2 10 6 18

4270 Genomic 83 122 221 426 0 9 8 17
WGA 81 117 219 417 2 14 9 25

4667 Genomic 93 124 226 443 2 8 12 22
WGA 89 114 224 427 5 18 11 34

Noncoding refers to intronic and intergenic variants.
  a   Concordant calls refer to a variant being identifi ed and identical genotype called between the original and replicate sample.
  b   Discordant calls refer to a variant identifi ed in both samples but genotype was called differently, or the variant was called in either the original 

or replicate sample.

 TABLE 4. Candidate mutation detection rates within experimental 
dyslipidemia cohorts    

Disease

Candidate Mutation

Positive Negative

FH (%) (n = 19) 8 (42.1) 11 (57.9)
HTG (%) (n = 14) 12 (85.7) 2 (14.3)
MODY (%) (n = 2) 1 (50) 1 (50)
FPLD (%) (n = 2) 0 (0) 2 (100)
HBL (%) (n = 1) 1 (100) 0 (0)
Total  a   (%) (n = 38) 22 (57.9) 16 (42.1)

  a   FH patients previously screened for candidate mutations (n = 10) 
are not included here.

monogenic or polygenic phenotypes, making a total of 72 
unique samples (supplementary Table IV). Sequencing 
runs in these samples were performed as in the validation 
samples described above. In total, we identifi ed 1,929 dis-
tinct nonreference sequence variants including 502 exonic 
coding variants, 645 UTR variants, 6 splicing variants, and 
776 intronic and noncoding variants. Approximately 40% 
of exonic coding variants were synonymous changes (n = 
210), whereas the remainder included 275 nonsynony-
mous single nucleotide variants, 9 frameshift-causing in-
dels, and 8 in-frame indels. Considering all variants, only 
48 variants were novel singletons and potentially disease-
causing, including 36 nonsynonymous variants, 7 frameshift-
causing indels, 3 in-frame indels, and 2 splicing variants. 
In total, we observed 35,179 sequence changes across these 
samples, which corresponded to 6,972 exonic coding vari-
ants, with 3,536 potentially disease-causing variants. On 
average, each patient’s genome carried 488.1 variants, in-
cluding 96.8 coding sequence variants, of which 49.1 were 
potentially deleterious and 2 were novel. 

 Diagnostic yield.   We focused on the ability of our Lipid-
Seq panel to detect genetic variants contributing to patient 
clinical phenotypes (  Table 4  ).  From the entire study co-
hort, 38 patients had no previous sequencing performed: 
this subgroup comprised our experimental cohort, in 
which we investigated mutation detection rates based on 
the disease subgroups existing within the experimental 
cohort. 

 In samples from FH, HTG, MODY, FPLD, and HBL pa-
tients, we detected rare nonsynonymous variants (fre-
quency <1%) within 73 candidate genes in 22 patients 
(57.9%), while 16 patients (42.1%) carried no rare non-
synonymous variants. Subgroup analyses showed that, 
among 19 patients with suspected FH in whom no previ-
ous candidate gene sequencing had been performed, 8 
(42.1%) carried heterozygous rare variants in candidate 
FH genes, including 5 in  LDLR,  3 in  APOB , and 1 in  LDL-
RAP1  (supplementary Table V). Furthermore, 7 of 14 
HTG patients (50%) carried rare variants in candidate 
monogenic HTG genes, which included 1 in  LPL , 3 in 
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been shown to cause severely elevated LDL cholesterol. 
While rare variants in noncandidate genes may not cur-
rently be of clinical utility, such hypothesis-generating data 
might be important for future investigations into the poly-
genic etiology of dyslipidemias, particularly in patients 
who are mutation-negative in known genes. Furthermore, 
as the panel is limited to genes involved in lipoprotein me-
tabolism, this targeted approach potentially provides more 
focus than the unwieldy list of variants from across the ge-
nome that would be generated by whole exome sequence 
analysis of these samples. 

 In addition to our focus on rare variant detection, we 
also designed the LipidSeq panel to genotype 178 dyslipi-
demia-associated SNPs to build polygenic genetic risk 
scores (GRSs). Targeted sequencing probes were specifi -
cally designed because most of the GWAS-derived SNPs lay 
in intergenic and intronic regions that would not have 
been genotyped using standard exome sequencing ap-
proaches. For potential clinical purposes, we used the top 
largest effect SNP variants associated with a particular lipid 
trait identifi ed through the largest GWAS ( 18 ). SNPs were 
grouped based on the strongest associations with lipid 
traits. For example, the top 14 SNPs previously associated 
with plasma TG were grouped into a TG GRS. Similar re-
duced complexity GRSs were determined for HDL choles-
terol and LDL cholesterol. These various literature-based 
GRSs were designed to investigate the polygenic etiology 
of complex blood lipid traits and cardiovascular endpoints 
by using SNPs as proxies for assessing the cumulative role 
of candidate gene variation in estimating cardiovascular 
risk. Currently, no robust GRSs exist for assessing coronary 
artery disease risk or plasma lipid concentration  ; however, 
a recent study by Talmud et al. ( 25 ) successfully applied a 
12-SNP LDL GRS in distinguishing mutation-positive FH 
patients from mutation-negative FH patients. Evaluation 
of polygenic SNP GRSs concurrent with sequencing data 
of monogenic dyslipidemia genes may provide additional 
information that might be useful in some patients. For in-
stance, the GRS may modulate the severity of the pheno-
type that is primarily determined by a rare variant of large 
effect in a dyslipidemia gene. Also, there are clearly in-
stances of patients with apparently monogenic forms of 
dyslipidemia in whom the phenotype is explainable not by 
a rare mutation of large effect, but rather by a high poly-
genic GRS, whereby many common variants of individual 
small effect underlie the phenotype ( 25 ). The LipidSeq 
approach has uniquely integrated GWAS SNP detection 
with targeted resequencing which provides the potential 
for more comprehensive risk evaluation that combines 
both common and rare variation as the next step in evalu-
ating polygenic dyslipidemia. 

 We also investigated the suitability of WGA DNA sam-
ples in the NGS LipidSeq approach, because many samples 
from interesting patients may be subject to depletion or 
degradation with time, and require WGA in order to in-
crease DNA mass. We noted objective reductions in WGA 
DNA sample quality compared with genomic DNA, as indi-
cated by reduced mean coverage (264.5 ± 58.0 vs. 399.4 ± 
78.2,  P  = 0.008) and an increased percentage of sequencing 

sequencing data resulting in an average (±SD) read depth 
per base pair of 345.1 (±84.67) with an average >30× cover-
age for 97.8% of targets;  2 ) MiSeq variant detection accu-
racy was 95.2% in 18 reference samples with known 
mutations that had been determined using Sanger se-
quencing;  3 ) WGA DNA yielded variant detection rates 
comparable to Sanger sequencing and thus presents a suit-
able substitute for NGS when genomic DNA is not avail-
able; and  4 ) in samples from individuals with a variety of 
dyslipidemias, including FH, HTG, HBL, MODY, and 
FPLD, in which no prior sequencing had been performed, 
57.9% were identifi ed as carrying at least one candidate 
variant likely affecting the patient phenotype, which were 
subsequently confi rmed with Sanger sequencing. 

 Clinical implementation of LipidSeq has several advan-
tages over current Sanger-based clinical resequencing 
strategies. First, LipidSeq enabled us to process and ana-
lyze 12 patient DNA samples within one week, compared 
with the time requirement several orders of magnitude 
greater than this to accomplish a comparable amount of 
screening with Sanger sequencing. On a more limited scale, 
the stepwise resequencing of only the causative genes for 
heterozygous FH, namely  LDLR ,  APOB , and  PCSK9 , can 
take  � 1 month including bench work and analysis. Simi-
larly, obtaining variant calls from whole exome sequenc-
ing can take  � 1 month. Second, we sequenced patient 
samples for the 23 dyslipidemia genes and 50 other related 
metabolic genes at a total cost of <$500.00 per sample, 
which was about half the cost of Sanger sequencing the 
three candidate FH genes only ( � $1,000.00 per sample). 
Comparatively, whole exome sequencing on the Illumina 
HiSeq is approximately three times the cost of the Lipid-
Seq panel ( � $1,700.00 per sample; based on 24 samples 
per run), with a larger number of patient samples required 
per run in order to reduce the per-sample cost. Targeted 
NGS may represent a more economical, focused, and 
accurate approach for clinical resequencing in mono-
genic dyslipidemias. These advantages, when considered 
with the strong concordance in variant detection rates 
with Sanger sequencing suggest that LipidSeq has the 
potential to effectively replace Sanger sequencing in the 
clinic. 

 The LipidSeq panel also provided supplemental genetic 
information that could help molecularly diagnose the 
42.1% of candidate mutation-negative dyslipidemia pa-
tients. Because the LipidSeq panel interrogates genes that 
act at several points in metabolic pathways associated with 
dyslipidemias, we detected several low-frequency variants 
that might play a role in modulating the observed clinical 
phenotypes. For example, two patients with possible FH 
carried no variants in FH genes, but instead were carriers 
of rare variants in the genes encoding  ABCG5  and sortilin 
1 ( SORT1 ) (supplementary Table VI). Similarly, rare vari-
ants in  SORT1  and  ABCG8  were detected in FH patients 
previously screened for candidate mutations (supplemen-
tary Table VI). Genetic variation in  ABCG5  and  ABCG8  has 
been associated with sitosterolemia while GWAS has re-
cently implicated  SORT1  as a novel locus for LDL choles-
terol ( 24 ). However, rare variation in  SORT1  has so far not 
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extent to which mutation detection results are disclosed to 
the patient, particularly when potentially disease-causing 
and clinically actionable mutations are detected but may 
be unrelated to the immediate patient health issue ( 30–32 ). 
In response to this issue, the American College of Medical 
Genetics and Genomics (ACMG) identifi ed 56 genes as-
sociated with adult-onset diseases for which incidental ge-
nomic fi ndings should be disclosed to patients ( 33 ). As the 
only three ACMG genes featured on the LipidSeq panel 
include the known FH genes  LDLR, APOB , and  PCSK9 , the 
LipidSeq approach considerably limits patient exposure to 
incidental genomic fi ndings unrelated to dyslipidemia. 

 In summary, we report the fi rst comprehensive targeted 
NGS approach for molecular diagnoses across the spec-
trum of monogenic dyslipidemias. The panel performs 
well, with high concordance in samples with known muta-
tions based on Sanger sequencing and a high detection 
rate of mutations likely to be causative for disease in sam-
ples not previously sequenced. Clinical implementation of 
LipidSeq has the potential to diagnose patients with mo-
nogenic dyslipidemias with a high degree of speed and ac-
curacy and at lower cost than either Sanger sequencing or 
whole exome sequencing. Furthermore, targeted NGS of 
dyslipidemia-related loci will help to provide a more fo-
cused picture of monogenic and polygenic contributors 
that underlie dyslipidemia, and will not provide unwanted 
information about incidental pathogenic, clinically action-
able variants in nonmetabolic pathways that affect disease 
risk. A signifi cant limitation continues to center on the in-
terpretation and parsing of detected variants based on 
clinical utility; however, as comprehensive genomic varia-
tion in dyslipidemia patients continues to be documented, 
we stand to gain greater insight into the spectrum of vari-
ants underlying the phenotypic heterogeneity commonly 
observed within dyslipidemia subtypes.  

 The authors especially thank the study subjects who consented 
to participate in this research project. 
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