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Rapid bacterioplankton transcription cascades regulate organic
matter utilization during phytoplankton bloom progression in a
coastal upwelling system
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Coastal upwelling zones are hotspots of oceanic productivity, driven by phytoplankton photosynthesis. Bacteria, in turn, grow on
and are the principal remineralizers of dissolved organic matter (DOM) produced in aquatic ecosystems. However, the molecular
processes that key bacterial taxa employ to regulate the turnover of phytoplankton-derived DOM are not well understood. We
therefore carried out comparative time-series metatranscriptome analyses of bacterioplankton in the Northwest Iberian upwelling
system, using parallel sampling of seawater and mesocosms with in situ-like conditions. The mesocosm experiment uncovered a
taxon-specific progression of transcriptional responses from bloom development (characterized by a diverse set of taxa in the
orders Cellvibrionales, Rhodobacterales, and Pelagibacterales), over early decay (mainly taxa in the Alteromonadales and
Flavobacteriales), to senescence phases (Flavobacteriales and Saprospirales taxa). Pronounced order-specific differences in the
transcription of glycoside hydrolases, peptidases, and transporters were found, supporting that functional resource partitioning is
dynamically structured by temporal changes in available DOM. In addition, comparative analysis of mesocosm and field samples
revealed a high degree of metabolic plasticity in the degradation and uptake of carbohydrates and nitrogen-rich compounds,
suggesting these gene systems critically contribute to modulating the stoichiometry of the labile DOM pool. Our findings suggest
that cascades of transcriptional responses in gene systems for the utilization of organic matter and nutrients largely shape the fate
of organic matter on the time scales typical of upwelling-driven phytoplankton blooms.
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INTRODUCTION
Wind-induced upwelling of nutrient-rich subsurface water triggers
pronounced phytoplankton blooms along eastern boundary
coastal zones. Despite their small surface area (~7% of global
ocean), coastal seas contribute 14-30% of the global oceanic
primary production [1]. Phytoplankton produce a diverse mixture
of organic compounds by photosynthesis [2–4], which is rapidly
processed by prokaryotes into biomass and CO2 [5]. Typically,
substrate availability and interactions among microorganisms
determine spatiotemporal differences in microbial community
composition and function [6–11]. However, compared to the
temporal dynamics in bacterial community composition [12, 13],
little is known about the microbially mediated processes involved
in the degradation and uptake of phytoplankton-derived organic
matter on the time scales of a few days to weeks that characterize
upwelling blooms.
Although bacterioplankton communities are composed of thou-

sands of bacterial populations, typically only a few become dominant
during phytoplankton blooms [6]. Hence, it has been postulated that
the utilization of phytoplankton-derived dissolved organic matter
(DOM) is partitioned among specialized bacteria that thrive under

rapidly changing environmental conditions [6]. This is underscored by
both field studies of naturally occurring phytoplankton blooms
[11, 14–17] and enrichment experiments [18–21]. For example, well-
known phytoplankton-associated bacterial taxa such as the Flavo-
bacteriaceae and Alteromonadaceae are efficient degraders of algal
polysaccharides, proteins, and glycoproteins [6, 11, 13], and the
Roseobacter clade (Rhodobacteraceae) are exceptionally competitive
utilizers of low-molecular-weight DOM compounds like dimethylsul-
foniopropionate (DMSP), polyamines, and taurine [6, 22]. Collectively,
these studies show that DOM compositional characteristics are
important for structuring bacterioplankton community composition,
potentially driving bacterial succession over longer time scales.
Several studies that investigated bacterial responses to

phytoplankton-derived organic matter [18, 23–26], concentrated
seawater DOM [27, 28] and DOMmodel compounds [4, 29, 30], found
pronounced functional resource partitioning among distinct bacterial
clades. Metabolic functions that are typically detected in bloom-
associated bacteria involve the degradation of polymers (e.g.,
carbohydrate-active enzymes that hydrolyze glycosidic bonds found
in polysaccharides or proteolytic enzymes that hydrolyze peptide
bonds), and the transport of hydrolysis products, besides features like
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surface adhesion, bacterial signaling, biofilm formation, and motility
[11, 24]. While there is ample knowledge of the molecular
mechanisms driving DOM utilization by bacteria in the open ocean,
corresponding knowledge for coastal seas is limited.
Given the rapidly shifting phytoplankton bloom dynamics in

upwelling areas, we carried out a shipboard mesocosm experiment
over seven days to investigate bacterial growth and transcription
responses associated with different bloom phases (i.e., bloom
development, through early decay to senescence phases). In parallel
with the experiment, we sampled the field station from where the
mesocosmwater was collected, to contrast the responses measured
in the experiment with dynamics taking place in the natural
environment. We hereby hypothesize that the detection of
transcriptional differences between key taxa across bloom phases
in a replicated experimental setting would have the potential to
inform on the ecology of these taxa in their natural environment.

MATERIALS AND METHODS
Study site, sampling, and experimental setup
Seawater was collected during the ENVISION-III cruise [31], at shelf station 3
(Stn 3; 42° 7’ 42.3984” N, 8° 55’ 44.9724”W) (Fig. S1). Detailed methods on the
experimental setup are given in Supplementary Material. Briefly, for initiating
the mesocosm experiment on 5 August 2016 (day 0), each of three
mesocosms received a mix of nutrient-rich water from 20m depth (152 L;
derived from a recent upwelling) and water from 5m (38 L; with a
phytoplankton bloom under development) (Fig. S2). All water was filtered
through a 200 µm mesh. Based on previous experience [32], we expected
this would induce pronounced and replicated phytoplankton blooms in the
mesocosms, of comparable magnitude to the blooms occurring in natural
surface waters. This experimental design allowed us to determine the
transcriptional responses of bacteria to different bloom phases, by avoiding
advective processes that would disrupt the temporal connectivity between
samples sequentially collected at sea. Mesocosms were incubated onboard
and tomaintain in situ temperature (~15 °C) themesocosms were placed in a
tank with flow-through seawater from ~2m depth. Subsamples of ~5 L were
collected daily for total prokaryotic cell counts and 3H-leucine incorporation
rates, chlorophyll a, and NH4

+, NO2
−, NO3

−, PO4
3−, and SiO4

4− concentra-
tions, and on days 0, 1, 3, 5, and 7 for DNA and RNA extractions. In parallel,
corresponding samples were collected from 5m depth at Stn 3.

Chlorophyll a and nutrients
Size-fractionated chlorophyll a (Chl a) concentrations were determined by
sequentially filtering 300mL seawater samples through 3.0- and 0.2-μm-
pore-size polycarbonate filters [31]. Chl a was extracted with 90% acetone
at 4 °C overnight in the dark. Fluorescence was determined using the non-
acidification technique [33], with a TD-700 fluorometer (Turner Designs)
calibrated with a pure Chl a solution [34]. Samples for inorganic nutrient
analysis (NH4

+, NO2
−, NO3

−, PO4
3−, and SiO4

4−) were collected in 50mL
polyethylene bottles and stored at –20 °C until analysis by standard
colorimetric methods [35]. Dissolved organic carbon (DOC) concentrations
were measured with a Shimadzu TOC-V analyzer according to [36]
(Supplementary Material).

Prokaryote abundance and heterotrophic production
Samples (1.8 mL) for prokaryote abundance were preserved with a mix of
1% and 0.05% (final concentrations) of paraformaldehyde and glutaralde-
hyde, respectively, and frozen at −80 °C until analysis. Samples were
stained with 2.5 mM SybrGreen DNA fluorochrome and enumerated with a
FACSCalibur flow cytometer (Becton Dickinson) [37]. Bacterial hetero-
trophic production was estimated through the 3H-leucine incorporation
method according to [38]. Samples (1 mL in triplicates) were amended with
40 nM radioactive leucine (final concentration) and dark-incubated at
in situ temperature for 1 h. Production was calculated using a conversion
factor of 3.1 kg C mol Leu−1 [38] (Supplementary Material).

Microbial community composition analysis
Prokaryotic and eukaryotic community composition were determined from
~2 L water samples, which were sequentially filtered through 3-μm-pore-
size Nuclepore polycarbonate filters (Whatman) and 0.22-μm-pore-size
Sterivex filters (EMD Millipore) and analyzed as described in [31] and

Supplementary Material. In brief, for prokaryotes, the 16S rRNA gene V4-V5
region was amplified using the universal primers “515 F” and “926 R” [39]
from the <3.0-µm and >0.2-µm size fraction. Eukaryotic 18S rRNA genes
were amplified using the primers TAReuk454FWD1 and TAReukREV3 [40]
from both size fractions. Amplicons were sequenced on a MiSeq platform
(Illumina, Inc.) to obtain 2 × 300 bp paired-end reads. Raw reads were
processed using the Ampliseq (v2.2.0) pipeline [41] and SILVA reference
database (v138.1) [42] for taxonomic assignments of 16S rRNA gene
amplicon sequence variants (ASVs). The databases PR2 together with the
marine protist database from the BioMArKs project were used to infer
taxonomy of 18S rRNA gene ASVs.

Metatranscriptomics analysis
For metatranscriptomics, ~3.5 L water samples from each of the triplicate
mesocosms and the field samples were sequentially filtered through 3-μm-
pore-size polycarbonate filters (Whatman) and collected on Sterivex filters
(GP 0.22-μm-pore-size), preserved in 2mL RNAlater (Qiagen, Hilden,
Germany), and immediately flash-frozen in liquid nitrogen. RNA was
extracted using RNeasy (Qiagen), treated to remove DNA and rRNA, and
linearly amplified with minor modifications [29, 43]. Sequencing was done at
the Swedish National Genome Infrastructure, on a HiSeq 2500 platform
(Illumina, Inc.) in rapid mode to obtain 2 × 125 bp paired-end reads.
Sequencing summary statistics are in Table S1.
Details on metatranscriptomics analyses are in Supplementary Material. In

brief, Illumina adapter sequences were removed with Cutadapt [44] and
reads were trimmed with Sickle using default settings [45]. Reads aligning to
an in-house database of stable RNA sequences were removed with ERNE [46]
and quality reads de-novo assembled with MEGAHIT [47] separately for
mesocosm and field samples. Open reading frames (ORFs) were determined
with Prodigal [48] in single mode. The ORFs were clustered at a 99% level
with VSEARCH [49] and aligned to the NCBI Refseq protein database (release
date: December 20, 2018) with DIAMOND [50]. Taxonomic annotations were
assigned using MEGAN [51]. For details on annotations and analyses of
transcribed DOM active genes and phylogenetic marker genes see
Supplementary Material. In brief, glycoside hydrolases (GHs), peptidases
(PEPs), transporters (TPs), and sulfatases (STs) were detected and classified
with HMMER3 using HMM profiles specific for each in the PFAM, MEROPS,
Transporter Classification, and SulfAtlas databases, respectively. GHs were
additionally classified with run-dbcan (v2.0.11) against the dbCAN2 database
(release date: July 31, 2018) [52]). To further identify transcriptionally active
taxa, we carried out phylogenetic analyses on two expressed marker genes
broadly distributed in bacteria: the genes coding for ribosomal protein L12
(the most highly expressed ribosomal protein gene in our data set) and for
RecA (necessary for maintaining DNA integrity).

Statistics, normalizations and visualization
Detailed description of statistics and normalizations are provided in the
Supplementary Material. In brief, for principal component analysis (PCA),
raw counts were transformed into centered log ratios (clr) using CoDaSeq
[53] (v0.99.6) and Euclidean distances computed with the function dist
(vegan v2.5–7). PCAs were performed using the function prcomp (stats
v4.1.0) in R v4.1.0 [54]. For order-specific PCA analyses, clrs were calculated
for each order separately. Redundancy analysis (RDA) was performed on
the same input data as described above (clr). Environmental variables used
in the RDA were selected based on pairwise Pearson correlations
coefficients <0.9 and variance inflation factors <10. To detect differences
in gene transcription between bacterial orders, we normalized individual
gene transcript counts to the total transcription within each order,
attempting to favor changes in bacterial transcription over changes in
abundance. The same principle was applied to analyses at the genus level,
whereby genus level information on transcription of the studied gene
systems was obtained by grouping order-normalized transcript counts at
the respective taxonomic genus levels and functional GH family or PFAM
levels (Supplementary Material).
For visualization in Ternary plots, we grouped order-normalized

transcript counts at the genus and GH family or PFAM level into
development phase (DP - mean of day 0 and day 1; n= 4), early decay
(ED - mean of day 3; n= 3), and senescence phase (SP - mean of day 5 and
7; n= 6), and standardized the counts to equal row sums (Supplementary
Material). To obtain additional insight into the transcriptional dynamics of
the coastal upwelling system, we compared the expression of these genes
at GH family and PFAM levels between the parallel mesocosm and field
samples through linear regressions based on log2-transformed order-
normalized transcripts (Supplementary Material).
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RESULTS
Microbial dynamics during an upwelling-driven
phytoplankton bloom
Sampling in the NW Iberian Peninsula coastal upwelling system
captured a phytoplankton bloom during its development and
subsequent decaying phases (Fig. S1). Chl a increased from
3.8 mgm−3 to a peak of 14mgm−3 on day 2, progressively
decreasing to 2.5 mgm−3 on day 7 (Fig. 1A). The 18S rRNA gene
analysis showed that dinoflagellates (mostly Dinophyceae) were
dominant components of the eukaryotic community along with
ciliates (Ciliophora) during bloom development. From day 5
onwards, the relative abundance of diatoms (e.g., Chaetoceros
and Thalassiosira) increased (Fig. S3A, [31]). DOC concentrations
ranged from 82 µM C (day 2) to 53 µM C (day 7) (Fig. 1A). The
continuous increase in inorganic nutrient concentrations mea-
sured from day 4 onwards at station 3 indicated an upwelling
pulse (Fig. 1B, Fig. S2). Bacterial production was highest on day 2,
coinciding with the phytoplankton peak, and bacterial abundance
increased until day 5 (Fig. 1C).
The 16S rRNA gene analysis showed that the bacterial

community was largely dominated by e.g., the Flavobacteriaceae
genera Aurantivirga and Polaribacter making up ~11% of the
community along with Flavicella and Formosa (up to 6%) and the
Rhodobacteraceae genera Planktomarina and Yoonia-Loktanella
accounting for 8.6% and 6.1%, respectively. Gammaproteobacteria
such as the genus Glaciecola and the clades SAR92 and OM60/
NOR5 showed relative abundances ≤2% (Fig. S3B).
The prokaryotic community transcription was dominated by

Cellvibrionales, which nearly doubled to ~30% of total transcripts
on day 3 (Fig. 1D), primarily due to the families Porticoccaceae and
Halieaceae (identified through phylogenetic analyses of the genes
encoding ribosomal protein L12 and RecA; Figs. S4, S5). The other
taxa remained fairly stable, with Flavobacteriales (mainly the
Flavobacteriaceae genera Polaribacter and Tenacibaculum; Figs. S6,
S7) and Rhodobacterales (genus Planktomarina; Figs. S8, S9) each
contributing ~10% of total transcription. Pelagibacterales (genus
Pelagibacter; Figs. S8, S9) and Alteromonadales (genera Alter-
omonas and Glaciecola; Figs. S4, S5) accounted for ~4% each
(Fig. 1D).

Microbial dynamics during an experimental mesocosm bloom
As in the field, Chl a peaked on day 2 (~18.6mgm−3) and decreased
to 1.5 mgm−3 on day 7 (Fig. 1E). 18S rRNA gene analysis showed a
mixed phytoplankton community, primarily composed of dino-
flagellates (mostly Dinophyceae) and diatoms (e.g., Chaetoceros and
Thalassiosira) (Fig. S3A). Chlorophyta peaked on day 3 and marine
alveolates (MALV), and marine stramenopiles (MAST) increased on
day 7 (Fig. S3A). The transition from bloom development to early
decay was associated with pronounced changes in nutrient
concentrations (Figs. 1E, F, S2). Upon the Chl a decrease, dissolved
organic carbon (DOC) doubled from day 2 to 3, reaching ~145 µM C
(Fig. 1E), whereas dissolved inorganic nutrients sharply decreased
(Figs. 1F, S2). Still, bacterial production reached maximum rates
later than in the field, peaking on day 5 - one day after the peak in
bacterial abundance (Fig. 1G).
The 16S rRNA gene analysis showed that the genera

Alteromonas (Alteromonadaceae) and Pseudoalteromonas (Pseu-
doalteromonadaceae) increased substantially on days 3 and 5 (up
to ~10% of community) along with Rhodobacteraceae genera like
Planktomarina and Yoonia-Loktanella (up to ~14%) (Fig. S3B).
During bloom senescence, the Flavobacteriales genus Polaribacter
(Flavobacteriaceae) became dominant (up to ~40% on day 7).
The prokaryotic transcriptional responses in the mesocosms

were comparable to those in the field during the phytoplankton
bloom development phase (days 0 and 1; Fig. 1D, H, S10);
dominated by Cellvibrionales (families Porticoccaceae and Haliea-
ceae; Figs. S4, S5), Rhodobacterales (family Rhodobacteraceae and
genus Planktomarina; Figs. S8, S9), and Flavobacteriales

(Flavobacteriaceae genera Polaribacter and Tenacibaculum; Figs. S6,
S7). The transition from bloom development to early decay,
characterized by the rapid decrease in Chl a along with inorganic
nutrients and a concomitant increase in DOC until day 3 (Fig. 1E),
substantially induced Alteromonadales transcription (from 3% to
38% of total transcripts; Fig. 1H), mainly the genera Alteromonas
and Glaciecola (Alteromonadaceae) and Pseudoalteromonas (Pseu-
doalteromonadaceae) (Figs. S4, S5). At this time, the transcription
of both Flavobacteriales and Rhodobacterales remained fairly
stable. Thereafter, Alteromonadales transcription decreased to
20% on day 7, whereas Flavobacteriales transcription increased to
22% of transcripts. Simultaneously, a few orders with initially low
transcription (e.g., Saprospirales and Vibrionales) increased toward
day 7 (Fig. 1H). Bacterial richness and Shannon diversity based on
the transcriptional data on the phylogenetic marker genes for L12
and RecA in the mesocosms were highest during bloom
development and decreased during bloom senescence. In the
field, dynamics in diversity were less pronounced (Fig. S11).
A principal component analysis (PCA) performed on the

metatranscriptomic data further emphasized shifts from the
bloom development phase (day 0 and 1) to the early decay
phase (day 3) and to the senescence phase (day 5 and 7) (Fig. 2A;
PC1 explained 68% of the temporal transcriptional variation). The
temporal shift in prokaryotic transcription was significant (PER-
MANOVA, R2= 0.79, p < 0.001). A redundancy analysis (RDA)
showed that Chl a (0.2 and 3.0 µm size fractions), DOC, and
NH4

+, explained ~55% of the variation on RDA1 and ~19% on
RDA2, and collectively accounted for ~68% of the variation in
community transcription (Monte Carlo permutation test,
p= 0.001). Variance partitioning analysis further showed that Chl
a (3.0 µm fraction) explained ~27% and DOC ~11% of variation in
transcription (Chl a 3.0–0.2 µm and NH4

+ were not significant)
(Figs. 2B, S12), emphasizing the coupling between phytoplankton
bloom development and bacterial gene expression.

Dynamics in DOM utilization gene transcription in the
mesocosm bloom phases
We performed PCAs on order-normalized expression that
distinguishes the contribution of transcriptional regulation from
changes due to growth (Fig. S13). These analyses showed that
Alteromonadales expression shifted strongly between day 1 and 3
(Fig. S13A), as did Flavobacteriales and Saprospirales to a some-
what lesser degree (Fig. S13B, C), largely mirroring the changes in
community transcription (Fig. 1H). In contrast, the expression of
Rhodobacterales, Cellvibrionales, and Pelagibacterales remained
relatively stable until day 5 (Fig. S13D–F), indicating little
immediate responsiveness to the DOC increase on day 3. This
indicated a divergence between orders in sensing and utilizing
changes in the organic matter pool during phytoplankton bloom
progression.
Analysis of the transcribed genes involved in the utilization of

phytoplankton-derived labile organic matter or nutrients showed
taxon-specific transcription patterns throughout the phytoplank-
ton bloom (Fig. 3). Cellvibrionales had the highest order-
normalized levels of GH expression until day 3 (Fig. 3A, y-axis);
and the highest relative expression of GHs, as normalized to the
entire metatranscriptome, was recorded for Alteromonadales on
day 3 (Fig. 3A, size of filled circles). These taxa were primarily
represented by the Porticoccaceae family and the genera
Alteromonas plus Glaciecola, respectively (Figs. 3D, S14). In
contrast, transcription of flavobacterial GHs increased three-fold
during bloom progression to ~1% of order-normalized transcrip-
tion on day 7 (Fig. 3A), mainly due to the genus Polaribacter
(Flavobacteriaceae) (Figs. 3D, S14). Also PEPs showed pronounced
differences between bacterial taxa in both temporal expression
dynamics and in relative transcription. For all orders, PEP
transcription remained fairly constant during the bloom develop-
ment phase (days 0 and 1), after which the transcriptional
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investment steadily increased in Saprospirales and Flavobacteriales
(Fig. 3B), especially in Polaribacter (Figs. 3D, S14). Alteromonadales,
in turn, showed a pronounced peak in PEP expression on day 3
(Fig. 3B), due mainly to the genera Alteromonas and Pseudoalter-
omonas (Figs. 3D, S14). Rhodobacterales generally had high
relative PEP expression (reaching ~2.4%, Fig. 3B) compared to GHs
(~0.3% of order-normalized transcription, Fig. 3A), and were
primarily represented by unclassified Rhodobacteraceae (Figs. 3D,
S14). Membrane transporters (TPs) accounted for ~10–20% of
order-normalized transcription in the studied bacteria (Fig. 3C).
While Cellvibrionales, Alteromonadales, and Flavobacteriales pri-
marily invested in the transcription of TonB-dependent transpor-
ters (TBDTs; on average accounting for around 40%, 30%, and 20%

of their total TP transcription, respectively), Rhodobacterales and
Pelagibacterales favored ABC-type transporter transcription
(45–40% of TP transcription) (Fig. S15). The Flavobacteriales (e.g.,
Polaribacter) and Saprospirales (dominated by the genus Phaeo-
dactylibacter and an unclassified taxon) depicted a relatively
constant investment in transporters throughout the phytoplank-
ton bloom (Figs. 3C, D, S14); note though that for Flavobacteriales
this stability resulted from shifts between taxa within the
Flavobacteriaceae, from”Unclassified” to Polaribacter (Fig. 3D). In
the other orders, expression generally decreased one-fourth over
time, although Pelagibacteraceae transporter expression increased
~3-fold during the bloom development phase (day 0 to 1), to a
peak at 37% of order-normalized transcripts (dominated by
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Candidatus Pelagibacter, Figs. 3C, D, S14). Altogether, these results
emphasize the broad range in temporal adjustments of transcrip-
tional investment in DOM and nutrient scavenging processes that
marine bacterioplankton perform during phytoplankton bloom
progression.

Transcription of DOM-utilization genes as putative drivers of
functional succession during the mesocosm bloom
To further investigate the dynamics in bacterial substrate usage
across bloom phases, we visualized the transcription of GHs, PEPs,
and TPs in ternary plots (Fig. 4). We found pronounced differences
between orders in grouping patterns resulting from: (i) differences
in temporal expression of individual genes that were shared
between orders (Fig. 4 and S15), and (ii) the expression of genes
restricted to particular orders (or shared in different combinations;
Fig. S16). Moreover, changes in GH, PEP, and TP transcription over
time within orders, especially in the Alteromonadales and

Flavobacteriales, resulted from changes in transcription ascribed
to successional dynamics of different genera, as seen by
comparing individual data points in the function plots to the
corresponding taxon plots (Fig. 4). In the three transcribed gene
systems, this was most evident as shifts in dominance in
transcription from Glaciecola to e.g., Alteromonas and Pseudoalter-
omonas (in Alteromonadales) and from unclassified Flavobacter-
iaceae to Polaribacter (in Flavobacteriales).
Divergent grouping of transcribed GH genes affiliated with

Alteromonadales and/or Flavobacteriales was observed along the
early decay axis or toward the senescence phase axis, respectively
(Fig. 4A), due to e.g., genes that likely code mostly for endo-acting
laminarinases (e.g., GH17, GH16), exo-acting laminarinases, and α-
amylases (GH3 and GH13, respectively) (Fig. 4 and S15). The other
orders transcribed only few GHs (note Saprospirales GH3 and GH13
in the bloom development and early decay phases), or one as in
Pelagibacterales. Sulfatase transcription was generally very low, with
potential utilization of sulfated carbon compounds among Plancto-
mycetes, Rhizobiales, and Rhodobacteraceae (Fig. S17).
Transcribed peptidase genes of Alteromonadales grouped

primarily along the early decay axis (Fig. 4B), although not directly
on the axis - indicating their transcription was maintained into the
senescence phase to a higher degree than GHs. Differences over
time were observed for diverse sets of metallo- (e.g., M23, M20,
M41), serine- (e.g., S8, S9, and S24), and cysteine peptidases (e.g.,
C26). In contrast, expressed Flavobacteriales PEP genes, similar to
their GHs, grouped away from the central part of the ternary plot
toward the senescence axis (Fig. 4B). The relative transcriptional
investment, in particular of intracellular cysteine peptidase C56,
metallo- (e.g., M50, M20, and M1), and serine peptidases (e.g., S24
and S41) differed between Flavobacteriales and Alteromonadales
(Fig. 4B and S15). The transcribed Rhodobacterales and Cellvibrio-
nales PEP genes formed fairly tight clusters toward the center of
the ternary plot, indicating that transcription of these genes
remained largely stable during the bloom. Also Saprospirales
showed a relatively stable investment, although several pepti-
dases deviated (e.g., C14, M24, and M41) or were not expressed
during the development phase (Fig. 4B and S15B).
Clustering of the many transcribed transporter genes affiliated

with Alteromonadales (Fig. 4C) was in line with their overall strong
response primarily during early decay (i.e., day 3; Figs. 1H, 2A).
Alteromonadales were particularly active in transcribing TBDTs and
general secretory pathway (Sec) family genes (Fig. S15). For
Flavobacteriales transporters, there was a tight cluster centered in
the ternary and a second cluster tightly aligning with the bloom
senescence axis. The first cluster included secretory pathway and
cation transport systems (e.g., 3.B.1 NaT-DC and 3.D.5 Na-NDH),
whereas the second cluster was enriched in ABC-type transporters
and the outer membrane factor (1.B.17 OMF). In contrast to the tight
clustering of Rhodobacterales transporters (3.A.1 ABC for sugars,
branched-chain amino acids, and DMSP), the spread of Cellvibrio-
nales indicated a pronounced divergence in temporal expression of
particular transporters. Cellvibrionales showed a high transcriptional
investment in TBDTs (up to ~60% of their total TP transcription on
day 7) and had the highest proteorhodopsin transcription during
bloom development together with Pelagibacterales (Fig. S15C). In
Pelagibacterales, the most abundant transporters were the Na+-
transporting carboxylic acid decarboxylase (NaT-DC) that peaked on
day 2 and the ABC Superfamily (Fig. 4C).

Responsiveness of functional gene expression (GHs, PEPs, and
TPs) in the field compared to mesocosms
Regression analyses showed that transcription of GHs, PEPs, and TPs
were strongly and positively correlated between mesocosms and
field samples, except for GHs in Saprospirales (Fig. S18, Supplemental
Material Table S1). Overall, GHs and PEPs (Fig. S18A, B) showed some
variability, with slopes between 0.5 and 1.2 and R2adj values between
0.32 and 0.97, whereas TPs (Figs. S18C, S19) were similarly expressed
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Fig. 2 Analysis of changes in prokaryotic transcription during the
mesocosm experiment. A Principal component analysis (PCA) of clr-
transformed transcript counts and pairwise Euclidean distances of
open reading frames (ORFs) with at least 5 counts per million (CPM)
in at least 3 samples (50533 ORFs accounting for ~68% of total
transcripts - TPM). Values were scaled to unit variance.
B Redundancy analysis (RDA) based on the same data and
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centered, and scaled to unit variance prior to RDA analysis.
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(slopes: 0.9–1.1 and R2adj: 0.7–0.96). The early decay phase (day 3),
during which major nutrient transitions occurred in the mesocosms,
showed that GHs for the orders Alteromonadales, Rhodobacterales,
and Cellvibrionales were highly correlated between mesocosms and
the field (slopes > 0.8). Nevertheless, putative cellulases, α-amylase,
exo- and endo-acting glucanases/laminarinases and chitinase (e.g.,
GH3, 13, 16, and 19) deviated from this pattern and were more
responsive to nutritional conditions in the field. In contrast,
Flavobacteriales showed a higher transcriptional investment in
putative GHs in the mesocosms compared to the field (slopes < 0.8,
Supplementary Material Table S2). These included e.g., GH3 and
GH23, and exo-acting β-N-acetylglucosaminidases (GH20) targeting
amino-sugars, and endo-β−1,4-mannanases (e.g., GH26) for hydro-
lyzing plant polysaccharides (Fig. 5A). In the field, there was a
tendency to higher transcription of GHs involved in the degradation
of structural polymers such as chitin and peptidoglycan (e.g., GH15,
73, 81, 144, 158) (Fig. 5A, S18). The negative correlation of GH
transcription between mesocosm and field for Saprospirales, together
with a tendency of higher transcription of PEPs and TPs in
mesocosms, indicated a minor role of these Bacteroidetes in the
upwelling (Figs. S18, S19).
For PEPs, most orders showed a fairly similar transcriptional

investment in both systems (Fig. 5B; PEPs aligning with the 1:1
line). Still, Alteromonadales and Pelagibacterales tended to have
higher expression in the mesocosms (Fig. 5B, slope < 1); note

though those relationships changed on day 7 (Figs. S18B, S19).
Compared to GHs and PEPs, transporter expression was highly
consistent between the mesocosms and field (slopes: 0.9–1)
(Fig. 5C)—especially for Flavobacteriales and Rhodobacterales
(slopes > 0.96). Inorganic phosphate transporters (PiTs) showed
higher proportions in Flavobacteriales in the field, whereas ABC
transporters were more important in mesocosms. Pelagibacterales
showed the lowest number of regulated genes (slope ~1) (Fig. 5C,
Supplementary Material Table S2), but an exceptional transcrip-
tional investment in transporters during bloom development
(Figs. 3C, S19).
We generated a conceptual model of the transcriptional cascades

of major bacterial taxa across an upwelling bloom (Fig. 6) that builds
on the genetic analyses in general and on the comparative analysis of
order-specific gene transcription patterns of GHs, PEPs, and TPs
between the mesocosms and the field in particular (Figs. 5 and S18).
The model outlines inferred changes in DOM and the identity of
bacterial orders and families (and genera where possible) that
dominate the transcription in different bloom phases.

DISCUSSION
Transcriptional cascades across phytoplankton bloom phases
Our findings portray rapid adjustments in molecular mechanisms
underlying functional traits of marine bacteria that can influence
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carbon cycling in upwelling waters. Since transcriptional
responses in the mesocosms distinctly changed as a function of
the phytoplankton bloom development phase, to the sharp peak
in Chl a into the early decay and senescence phases, we here
discuss responses of the studied bacteria according to bloom

phases. Still, the taxonomic detail obtained from different genes or
by different molecular approaches differed depending on the
representation of taxa in current databases. Nevertheless, our
analyses of 16S rRNA genes in community DNA and of total
metatranscriptomes, including expressed targeted gene systems
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(i.e., GHs, PEPs, TPs, and STs) along with phylogenetic analyses of
transcribed genes conserved across broad groups of bacteria (i.e.,
genes for RecA and ribosomal protein L12), provided a coherent
view on the taxonomic identity of the key bacterial players in the
studied upwelling bloom system.
The transcriptional dominance during bloom development of

such phylogenetically different bacterial orders as Pelagibacterales,
Rhodobacterales, and Cellvibrionales was noteworthy. The Pelagi-
bacterales (SAR11 clade; here Pelagibacteraceae) are adapted to
oligotrophic conditions, with streamlined genomes and fairly low
transcriptional plasticity in combination with highly expressed
high-affinity ABC transporter systems [55, 56]. In contrast, the
Rhodobacterales (here mostly Rhodobacteraceae represented by
the Roseobacter clade) life strategies range from streamlined
oligotrophs to metabolically versatile opportunists [6, 57]. Yet,
both Pelagibacteraceae and Rhodobacteraceae typically engage in
the assimilation of phytoplankton-derived metabolites, in parti-
cular low-molecular-weight dissolved organic matter (LMW-DOM)
[56, 58–61]. Knowledge of the ecophysiology of Cellvibrionales is
limited, although they are common players in the global ocean
[31, 62–64]. The order, in our study mainly represented by
Halieaceae and Porticoccaceae, includes bacteria isolated from
macroalgae or seaweed that possess agarolytic capabilities, such
as Agarilytica rhodophyticola [65] and Gilvimarinus polysacchar-
olyticus [66]. Our results indicated that the Cellvibrionales families
were similar to Rhodobacteraceae with respect to the number of
expressed GHs and PEPs, but with substantially higher expression
levels for the former. Moreover, Cellvibrionales dominated
transcription of TBDTs, which together with their high transcrip-
tion of GHs suggests a crucial role in the turnover of labile
carbohydrates. As such, polysaccharide hydrolysis by different
Cellvibrionales families potentially complements the Rhodobacter-
aceae and Pelagibacteraceae toward the turnover of LMW-DOM
compounds.
A remarkable feature shared by the Pelagibacteraceae, Rhodo-

bacteraceae, and Cellvibrionales families was their very limited
transcriptional response to the strong DOC pulse on day 3. This
could have been expected for pelagibacters, given their oligo-
trophic life strategy and their recognized specialization on LMW-
DOM like carboxylic acids and DMSP [56, 67]. Nevertheless,
Pelagibacteraceae were highly dynamic in their membrane
transporter expression before the DOC pulse, focused on organic
acids and DMSP (e.g., TTT, NaT-DC, TRAP-T, and ABC). However,
the limited response by Rhodobacteraceae was surprising given
that these bacteria (i.e., roseobacters such as Planktomarina)
typically are referred to as dominant components of the bacterial
community during phytoplankton blooms [6]. Incidentally, a lack
of pronounced responses to phytoplankton decay DOM by both
Pelagibacteraceae and Rhodobacteraceae was also observed across
a spring bloom in the North Sea [11]. These findings and other
studies suggest a limited involvement by Rhodobacteraceae in the
degradation of high-molecular-weight DOM (HMW-DOM) com-
pounds from massive phytoplankton decay [6]; in part due to

being outcompeted by HMW-DOM specialists among e.g.,
Gammaproteobacteria and Flavobacteriia [68]. Our results provide
the environmental context to model organism work showing
Rhodobacteraceae as sensitive interaction partners that benefit
from their proximity to active phytoplankton with which they can
exchange metabolites [69–71].
An important feature of the early decay phase was the burst in

Alteromonadales transcription, especially transcripts affiliated with
the genera Alteromonas (Alteromonadaceae) and Pseudoalteromo-
nas (Pseudoalteromonadaceae). These genera are widespread
opportunists [27, 68, 72] and efficient scavengers of (algal)
polysaccharides (e.g., laminarin, alginate, and pectin)
[29, 30, 73, 74]. Beyond being opportunists in experiments,
Alteromonas relatives are increasingly observed in various natural
waters [74, 75]. Indeed, the pronounced transcriptional response
in several GH genes showed that Alteromonadales rapidly
exploited diverse polysaccharides or possibly glycoproteins.
Notably though, this was combined with a broad set of PEPs,
potentially related to the use of released proteins [76], and ABC
transporters (e.g., for cobalamin) and outer membrane porins
(potentially allowing surface attachment for utilization of polymers
in aggregates or decaying phytoplankton). Altogether, our
transcriptional analyses suggest that the success of Alteromona-
dales, and especially Alteromonas and Pseudoalteromonas, under
bloom decay conditions fundamentally relies on the ability to
exploit a palette of labile biopolymers, particularly polysaccharides
and proteins [72, 76].
The early decay phase triggered a pronounced transcriptional

response also by Bacteroidetes, which in the senescence phase
further increased in relative transcription levels compared to
Alteromonadales. Early bacterioplankton community composition
studies showed that, in particular, members of the Flavobacter-
iaceae thrive upon phytoplankton bloom demise, suggesting a
preference for HMW-DOM [77, 78]. Indeed, Bacteroidetes are
efficient degraders of algal polysaccharides (e.g., laminarin, alpha-
glucans, and sulfated xylans) [11, 79, 80] and proteins [29, 81–84].
These bacteria engaged little in transcription of sulfatases as
compared to Planctomycetes and Rhizobiales. This is in line with
previous reports showing that members of the Plactomycetes and
Verrucomicrobia are specialized in the degradation of complex
polysaccharides such as fucoidan [85–87]. Here, Flavobacteriales
and Alteromonadales overall expressed a similar number of GH
and PEP. In fact, they shared several GHs (e.g., GH3, 17, and 16)
that accounted for similar proportions of their transcription,
suggesting an important role of laminarin (a beta-1,3-glucan used
for carbon storage in phytoplankton, particularly in diatoms), thus
indicating an overlapping bacterial substrate range (i.e., niche
space). However, Flavobacteriales showed a broader suite of
expressed enzymes for hydrolyzing plant polysaccharides (endo-
β-1,4-mannanases—e.g., GH26). While the source of mannans
during algae blooms remains unclear, the cell walls of some
diatoms contain mannans [88]. Thus, our findings suggest that
certain Flavobacteriales mediate alpha- and beta-mannan

Fig. 4 Ternary plots showing transcriptional differences between target gene systems (Function) and key bacterial taxa (Taxon) across
mesocosm phytoplankton bloom phases. A Glycoside hydrolases (GHs), (B) peptidases (PEPs), and (C) transporters (TPs). Bloom phases are
the development phase (DP, n= 4; days 0 and 1), early decay (ED, n= 3; day 3), and senescence phase (SP, n= 6; days 5 and 7). Bubble sizes
denote normalized transcript abundances of individual GH families or PFAMs per genus averaged over all days in percent. The top 12 most
abundant GH families are shown in color, all others in grey. All PEPs are color-coded according to their proteolytic families in the MEROPS
database. The top 12 most abundant TP families in addition to TC TTT, MR, and PRC are shown in color. Abbreviation of TC families: Mot/Exb -
The H+- or Na+-translocating Bacterial Flagellar Motor/ExbBD Outer Membrane Transport Energizer; OMR - Outer Membrane Receptor (here
TonB-dependent transporters; TBDTs); OOP - OmpA-OmpF Porin; TRAP-T - Tripartite ATP-independent Periplasmic Transporter; TTT -
Tricarboxylate Transporter; ABC - ATP-binding Cassette; F-ATPase - H+- or Na+-translocating F-type, V-type and A-type ATPase; Sec - General
Secretory Pathway; NaT-DC - Na+-transporting Carboxylic Acid Decarboxylase; QCR - Proton-translocating Quinol:Cytochrome c Reductase;
COX - Proton-translocating Cytochrome Oxidase; Na-NDH - Na+-translocating NADH:Quinone Dehydrogenase; FeoB - Ferrous Iron Uptake;
MR - Ion-translocating Microbial Rhodopsin, PRC - Photosynthetic Reaction Center.
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degradation. Alteromonadales, in turn, transcribed higher levels of
TBDTs and one-third more ABC-transporters (26 PFAMs) compared
to Flavobacteriales and the temporal development of e.g., TBDT
and porin genes differed substantially. These findings confirm
previous observations on taxon-specific differences in transporter
expression [11] and the importance of TBDTs for organic matter
acquisition during phytoplankton blooms [15, 89], and provide
novel mechanistic understanding on the divergent temporal
evolution of hydrolytic enzyme and transporter transcription
between the two taxa. In particular, the proportionately increased
Flavobacteriaceae transcription of diverse enzymes toward bloom
senescence suggested these bacteria are capable of exploiting a
broader variety of phytoplankton-derived biopolymers.

Interpreting bacterioplankton transcriptional responses to
upwelling-driven blooms
The annual cycle of phytoplankton biomass in the NW Iberian
upwelling system is characterized by a spring and summer bloom
season representative of temperate shelf seas [90–92]. Rather than
continuous blooms in each season, intermittent upwelling events
induce variability in the duration of sequential bloom cycles from
two to 20 days from initiation to complete dissipation [93–98]. The
duration of the field and mesocosm phytoplankton blooms in our
study (eight days) falls within this range, although the amplitude
of changes in Chl a and DOC concentrations was more
pronounced in the mesocosms. These differences are consistent
with the higher initial nutrient concentrations in the mesocosms
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(intentionally obtained by water mass mixing) compared to the
field, and the lack of loss factors such as advective or diffusive
processes. It should also be noted that the mesocosm senescence
phase was not observed in the field, likely due to the upwelling-
driven injection of nutrients to the surface waters from day 4
onward. Nevertheless, the cascade of order-level transcriptional
responses in gene systems for utilization of organic matter and
nutrients that developed in parallel in the field and in the
mesocosms was remarkably similar (except Saprospirales
responses). Thus, it is pertinent to interpret the experimental
results on resource utilization in the context of the natural
settings.
What initially appeared a puzzling result was the substantial

increase in Cellvibrionales transcription with bloom progression in
the field but decrease in the mesocosm. Based on the generally
high expression levels of GHs during mesocosm bloom develop-
ment, along with the limited transcriptional response to the DOC

pulse in the mesocosms on day 3, we propose that the
Cellvibrionales families Haliaceae and Porticoccaceae largely rely
on the utilization of polysaccharides released from physiologically
deteriorating phytoplankton (but not from mass lysis). In contrast,
the strong increase in transcription of recognized opportunist
Alteromonadales genera like Alteromonas and Pseudoalteromonas
[72, 99] in the mesocosms was less surprising. However,
Alteromonadales accounted for up to 4% of the relative transcrip-
tion in the field samples, as represented primarily by the genus
Glaciecola, and for example Alteromonas is not uncommon in field
studies of natural phytoplankton blooms [14], placing it as a
potentially important player in upwelling systems. Our mesocosm
findings suggest that in ecosystems with recurrent phytoplankton
blooms, a diverse set of Alteromonadales genera are not merely
opportunists, but rather, fine-tuned scavengers able to take
advantage of labile biopolymers from lysing phytoplankton cells
(selected polysaccharides and proteins; preferably supplied at a

Fig. 6 Conceptual model of order-specific transcription cascades across upwelling phytoplankton bloom phases. In the graph circles, cell
sizes of the six studied bacterial orders denote their relative contribution to overall community transcription. Gray shapes outside the graph
circles indicate tentative compositional changes in the dissolved organic matter pool. In the lower circles, the transcriptional response of the
bacterial orders characteristic to each of the bloom phases is indicated. Doughnuts denote the transcription of gene systems for dissolved
organic matter utilization and nutrient uptake: glycoside hydrolases (GHs), peptidases (PEPs), and transporters (TPs). The size of doughnut
sections reflects differences in the relative allocation of transcriptional effort to the different gene systems.
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reasonably stable rate). These gammaproteobacterial taxa were
accompanied by pelagibacters and roseobacters, which appear to
be competitive in the quest for various labile LMW-DOM
compounds under the transient high-nutrient conditions asso-
ciated with phytoplankton blooms in upwelling systems (see
details on these taxa above). Particularly, the pelagibacters are
highly oligotrophic bacteria, yet some lineages of the SAR11 clade
prefer coastal zones [56]. Lastly, we emphasize the recognized
importance of Flavobacteriaceae in organic matter degradation
during bloom senescence [11, 77], probably due to their
combined ability to engage unusually diverse sets of enzyme
systems for utilization for both polysaccharides and proteins [82].
For Saprospirales, we foresee that the high investment in
peptidase transcription could provide an advantage over Flavo-
bacteriaceae upon massive release of protein from phytoplankton
lysis, resulting in resource partitioning of proteins between distinct
Bacteroidetes taxa.
Our transcriptomics results on resource partitioning suggest

that the chemical characteristics of important components of the
DOM pool rapidly change during phytoplankton bloom succes-
sion. Bacteria can contribute to such DOM remodeling through
differences between bacterial groups in the demands for, or
utilization efficiency of, key elements like carbon and nitrogen, as
observed for roseobacters compared to Bacteroidetes [100].
Accordingly, adjustment of glycoside hydrolase and peptidase
expression, and corresponding membrane transporters, to selec-
tively target carbon from carbohydrates or nitrogen-rich com-
pounds like proteins could influence DOM pool stoichiometry. Our
findings also suggest that transcriptional analysis of metabolic
plasticity in nutrient acquisition can provide novel knowledge of
mechanisms that underlie bacterioplankton succession under
upwelling conditions leading to phytoplankton blooms, and how
this relates to the labile DOM pool that accounts for a large
fraction of surface ocean carbon fluxes [3, 23]. Given coastal zones
contribute disproportionately to ocean productivity [1], rapid
dynamics in bloom progression and bacterial responses would
ultimately shape the biogeochemistry of the contemporary ocean.
These lines of reasoning indicate that uncovering the linkages
between bacterial activity and spatiotemporal variability in DOM
chemical composition represents a tangible pursuit for microbial
oceanography.
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