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Streptococcus pneumonia (SPn) is a Gram-positive bacterium which causes life threatening diseases. The bacteria protect them-

selves against non-specific host defence by an external polysaccharide (PS) capsule which bears a repeating unit, a-D-Galp(1->3)-
a-D-Glep(1->3)-a-L-Rhap(1->3)-D-Rib (SPn 6A). A closer look at the structure reveals the presence of a-linked galactose and
glucose residues. The synthesis of these 1,2-cis glycosidic linkages are considered challenging particularly in the context of a one-

pot oligosaccharide synthesis. We have synthesized the aforesaid tetrasaccharide (SPn 6A) based on both stepwise and sequential

one-pot glycosylation reactions using easily accessible common building blocks; eventually similar overall yields were obtained in

both cases.

Introduction

Complex glycans serve as attractive targets for carbohydrate-
based vaccines and therapeutics [1-3]. Streptococcus pneu-
monia (SPn) has been posing a serious threat in recent times. It
is a major cause of pneumonia, bacteraemia, and meningitis in
immune-compromised patients, elderly and children. A
UNICEF/WHO survey has estimated that 920136 children died
of pneumonia in 2015 accounting for 16% of all fatalities under
the age of five [4]. Out of over 90 serotypes that have been re-
ported for SPn [5,6], serogroup 6 has been ranked among the

most important causes of invasive pneumonococcal diseases
[7]. These facts have led to extensive research towards the
establishment of polysaccharide structures associated with the
SPn serogroup 6 [8,9] (Figure 1).

Initially, it was thought that due to their similar carbohydrate
core structures the antibodies elicited by SPn 6A would be
effective against SPn 6B as well [10-13]. But recent studies

have shown that serotype specific immune responses are
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Figure 1: The tetrasaccharides associated with the pneumonicoccal serogroup 6.

elicited by the antibodies and that they cross react slowly [14].
As a result the importance of the presence of the capsular poly-
saccharide of SPn 6A in multicomponent vaccines like Pneu-
movax® has been recognized [15]. The low hydrolytic stability
of the phosphodiester linkages in the clinical isolates of the SPn
6A polysaccharides poses a major drawback as it leads to low
bioavailability [16]. Hence, the requirements of pure SPn 6A
conjugate in proper amounts for future vaccine development
can only be met via chemical synthesis. Therefore, a number of
syntheses targeting the SPn 6A tetrasaccharide has been re-
ported in literature. Initial reports of a linear synthesis were
made by Vliegenthart et al. in the nineties [17-21]. After this,
the Demchenko group improved these early reports with a
convergent approach using glycosyl thioimidates as comple-
mentary glycosyl donors with respect to thioglycosides [22-25].

Herein, we wish to report synthetic routes to the SPn 6A tetra-
saccharide via stepwise as well as one-pot sequential glycosyla-
tion strategies.

Results and Discussion

Keeping in mind our objective to synthesize the SPn 6A tetra-
saccharide following stepwise as well as one-pot synthetic
strategies based on common building blocks, a retrosynthetic
analysis was made which led us to galactose-based donor 2
[26], ribitol-based acceptor 7 [22] and a gluco-rhamno-based
disaccharide (3a/3b) to contemplate the synthesis of the tetra-

saccharide derivative 1 (Figure 2).

The disaccharides (3a/3b) can be synthesized from their parent
monomeric units 6a/6b/6¢ and 5 [27]. To ensure high o-selec-
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Figure 2: Retrosynthetic analysis.
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tion during the formation of the central gluco-rhamno disaccha-
ride the benzylidene protected glucosyl donor (Figure 2) was
selected, because the induction of the 1,2-cis selectivity in
benzylidene-protected substrates via torsional/electronic effects
have already been recognized [28].

The galactosyl trichloroacetimidate donor 2 was prepared
following literature procedures [26]. On the other hand the
D-glucosyl thioglycoside 8 was converted to the known benzyl-
idene derivative 9 [29,30] according to our previously reported
procedure. Benzylation of 9 under phase-transfer conditions led
to 10 [31] in 49% yield (Scheme 1). Subsequently, 10 was sub-
jected to naphthylmethylation/p-methoxybenzylation [32] with
2-(bromomethyl)naphthalene (NapBr)/p-methoxybenzyl chlo-
ride in DMF to afford 6a/11 [32] in 90% and 80% yields, re-
spectively.

These derivatives were next subjected to thioglycoside hydroly-
sis using trichloroisocyanuric acid (TCCA) [33] in wet acetone
which provided 12a/12b [34] in 85% and 89% yields, respec-
tively. These were finally converted to their corresponding tri-
chloroacetimidate 6b/6c [34] (Scheme 1) with yields of 93%
and 90%, respectively.

The L-rhamnosyl thioglycoside 14 [29,30], prepared from
L-rhamnose (13), was deacetylated quantitatively in the pres-
ence of Ets3N/MeOH/H,O [35], and then stannylene-mediated
selective naphthylmethylation at the O-3 position was carried
out to give the known derivative 15 in 82% yield [36]. This was
next benzoylated almost quantitatively to give 16. Finally
DDQ-mediated deprotection of the naphthylmethyl group gave
the acceptor 5 [27] in 83% yield (Scheme 2).

For acceptor 7 (Figure 2) ribitol 17 was converted to its corre-
sponding diisopropylidene derivative 18 [37] in the presence of

OH
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Scheme 2: Preparation of L-rhamnosyl acceptor 5. Reaction condi-
tions: a) Py, BzCl, rt, 12 h, 99%; b) DDQ, DCM/H50 (19:1), rt, 2 h,
83%.

dimethoxypropane and pTSA in acetone. Treatment with NapBr
and NaH in DMF gave compound 19 in 93% yield. Subsequent
deprotection of isopropylidene ketal with pTSA/MeOH (aq) and
then benzylation furnished 20 in 95% yield over two steps.
Deprotection of the naphthylmethyl group in the presence of
DDQ in aqueous dichloromethane (19:1) gave the glycosyl
acceptor 7 [22] in 85% yield (Scheme 3).

In order to construct the central disaccharide fragment 3 in high
yield with 1,2-cis selectivity, several glycosylation reactions
using glucosyl donors 6a/6b/6¢/12a and rhamnosyl acceptor 5
were contemplated. None of the conditions, based on the use of
thioglycoside 6a as the glycosyl donor and separately, BSP/
T£,0 (Table 1, entry 1) or Ph,SO/Tf,0 (Table 1, entry 2) as the
corresponding activators, or based on 1-hydroxy donor 12a and
Ph,SO/T1,0 (Table 1, entry 3), could furnish any desired result.
After trying with the mentioned donors, and reagent combina-
tions (Table 1), we switched over to utilize trichloroacetimidate
donors (6b, Table 1, entries 5 and 6, and 6c¢, entry 4); the
TMSOTf mediated glycosylation in DCM/Et,0O solvent

Ph"\-0
HO O gt M o) O g [16] Ph/%o o
HO - HO —_— SEt
HO
OH OH
OBn
8 9 10
l a
HN.__CCl;
Ph"\-0 Y PPN 0T\ o Ph"\-0
o2 .0 c 0 OH b 00 skt
RO - RO e RO
OBn OBn OBn
6b, R = Nap R =Nap 12a 6a, R = Nap
6c, R = PMB R =PMB 12b 11, R = PMB

Scheme 1: Preparation of D-glucosyl donor 6. Reaction conditions: a) NapBr/PMBCI, NaH, DMF, rt, 12 h, 90% (6a), 80% (11); b) TCCA, CH3COCH3/
H0 (4:1), rt, 85% (12a), 89% (12b); c) CCI3CN, DBU, DCM, 0 °C, 93% (6b), 90% (6c).
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Scheme 3: Preparation of ribitol acceptor 7. Reaction conditions: a) Me,C(OMe),, pTSA, CH3COCHj3, rt, 81%; b) NapBr, NaH, DMF, rt, 8 h, 93%;
c) (i) pTSA, MeOH, 40 °C, 4 h, (ii) BnBr, NaH, DMF, rt, 12 h, 95% over 2 steps; d) DDQ, DCM/H,0 (19:1), rt, 2 h, 85%.

Table 1: Optimization of protocol for the synthesis of disaccharide 3.

Entry Donor Acceptor Conditions Yield?@
PAY07\ o SPh
0o SEt Bz0 222 BSP®, Tf,0, DCM, d
1 NapO oBn or, ~60 °Coort (A)° N.R.
OBz
6a 5
P07\ SPh
) Nago SEt Bzoﬁgj Pgssog, TT480P°, c';l'f(zBO)é DCM, NR®
OBn OH OBz - -
6a 5
PAY07\ o SPh
3 NapO OH Bzow Pgssog, TT‘;BOPO, CT%B% DCM, NR
OBn OH OBz B -
12a 5
HN CCl3 SPh
\ Ph/%w/ 520@7 TMSOTf, DCM, NR
- ° C N
PMBO e OH OBy 30 °C (C)
6c 5
HN CCl3 SPh
P02 o T B20 /2 TMSOTY, DCM, 3a,
5 Na O O z _10 oC (C)C 54AJ
P OBn OH 0Bz (a only)
6b 5
HN CCl3 SPh
0
. P ﬁj’; 820@7 TMSOT!, DCMIERO (5:1), 9
NapO 5Bn OH OBz —30°C(C) (aonly)
6b 5

a|solated yields of products; PBSP = benzenesulfinylpiperidine; Scorresponding glycosylation procedure (see Supporting Information File 1); 9starting
material was decomposed; ®donor was decomposed but acceptor was recovered; fa complex mixture was formed from which the desired disaccha-
ride could not be purified by column chromatography.
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(Table 1, entry 6) was found to be effective in case of donor 6b
and acceptor 5 which generated the desired disaccharide 3a in
high yield and exclusive a-anomeric selectivity (evidenced from
NMR). We presume that this near exclusivity in a-selection
may be due to the synergistic effect from the 4,6-O-benzyl-
idene group, which is a good promoter for 1,2-cis glycosylation
in galactose-based systems [38], as well as the steric crowding
caused by the bulky 3-O-naphthylmethyl group at the pB-side of
the ring. Having obtained the central disaccharide 3a in requi-
site yield and excellent stereochemical purity we now
proceeded towards the synthesis of the trisaccharide fragment
21 (Scheme 4).

Compound 3a was treated with DDQ in dichloromethane to
remove the 3-O-Nap protection group generating acceptor 4 in
93% yield. Glycosylation between donor 2 and acceptor 4 was
achieved uneventfully in the presence of TMSOTT in dichloro-
methane/Et,O (4:1) to give the trisaccharide 21 in 70% yield.
Successful glycosylation was also carried out between trisac-
charide 21 and ribitol acceptor 7 in the presence of NIS and
TMSOTT in dichloromethane at —20 °C to give the tetrasaccha-
ride derivative 1 in 89% yield, thereby finishing the stepwise
synthesis of SPn 6A tetrasaccharide 1 in the protected form
(Scheme 4).

Having standardized a stepwise synthesis of the tetrasaccharide

1 in the protected form we then turned our attention to devise a

Beilstein J. Org. Chem. 2018, 14, 1095-1102.

one-pot protocol to achieve the same derivative. The one-pot
synthesis of this target is particularly challenging because of the
presence of the two 1,2-cis glycosidic linkages which are likely
to make product isolation particularly difficult at the end of the
glycosylative protocol. Assuming equal preference of forma-
tion for each and every possible diastereomer across the three
glycosylation steps a mixture of 8 different diastereomers may
be formed if the four monomers are sequentially added in a
(1+1+1+1)one-pot strategy. However, the number of possi-
bilities may be reduced to 4 isomers by using a participating
group on the rhamnose residue to induce near exclusive a-selec-
tivity in the last step. Further reduction can be ensured by incor-
porating a (1 + 2 + 1) approach where the number of possible
diastereomers becomes 2. So, we selected this (1 +2 + 1) glyco-

sylation for our synthesis.

Two different strategies were attempted in this direction.
Recently, Mong et al. have reported high a-selectivity in the
formation of glucan and galactan under non-participating condi-
tions from the O-2 protecting group [39,40]. With this method,
we tried to couple donor p-tolyl 2,3,4,6-tetra-O-benzyl-1-thio-B-
D-galactopyranoside (22) with acceptor 4 using a NIS/TMSOTf
combination in the presence of DMF acting as a modulating sol-
vent (inset, Scheme 5). Unfortunately, when this strategy was
applied to our case it could not produce a viable result. So we
switch to the conventional orthogonal strategy for a one-pot

synthesis of the targeted tetrasaccharide (Scheme 5).

HN._ _CCl,
SPh
NapO o BzO Q
OBn gb o
0 b Ho_Bnoj OBz
BnO OBz o)
ﬁ\? ONap Ph 5270
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\LO 3a 4
2
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Ph\Ao
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Scheme 4: Stepwise synthesis of tetrasaccharide 1. Reaction conditions: a) TMSOTf, DCM/Et,0 (5:1), 4 A MS, -30 °C, 75%; b) DDQ, DCM/H,0

(9:1), 1, 93%; c) TMSOTf, DCM/Et,0 (4:1), 4 A MS, =15 °C, 70%;
File 1), 89%.

d) NIS, TMSOTf, DCM, 4 A MS, -20 °C, (procedure D, see Supporting Information
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Scheme 5: One-pot synthesis of tetrasaccharide 1. Reaction conditions: a) TMSOTf, 4 A MS, DCM/Et,0 (4:1), Ny, -15 °C, 1 h; b) NIS, TMSOTf,

-10 °C, 45 min; c) NaOMe, MeOH, rt; d) Hp, Pd/C, EtOH/EtOAC/AcOH, rt.

The disaccharide acceptor 4 was glycosylated with galactosyl
trichloroacetimidate donor 2 at —15 °C using 30 mol % of
TMSOTT{. After full consumption of the starting materials
(TLC), into the same pot the second acceptor 7 followed by NIS
were added. The reaction mixture was allowed to reach —10 °C
before another 30 mol % of TMSOTf were added; TLC after
45 minutes showed complete consumption of the starting mate-
rials. Thus the targeted tetrasaccharide derivative was prepared
via a three component, one-pot sequential glycosylation tech-
nique in 52% yield (Scheme 5). It is to be noted that the temper-
ature had to be raised to —10 °C from —20 °C in the second step
of the one-pot protocol. This was necessary to improve the
overall yield of the final product. The tetrasaccharide derivative
1 was next deprotected under Zemplén conditions [41], fol-
lowed by hydrogenation with H,/Pd-C in EtOH/EtOAc/AcOH
solvent to give the deprotected tetrasaccharide 23 in 85% yield
over two steps.

TH NMR in D,O of the target tetrasaccharide 23 showed the
anomeric protons of the galactose, glucose, and rhamnose
residues from the non-reducing end appearing at & 5.32
(d,J=3.5Hz), 3 5.02 (d, /=3 Hz), and 9 4.93 (bs), respective-
ly. 13C NMR along with the HSQC in the same solvent
revealed that the chemical shifts of the anomeric carbons
of the same units from the non-reducing end are at & 99.2
(Merpr = 167.7 Hz), 95.4 (WJeqgy = 169.3 Hz) and 100.1
(1JC1-H1 =169.2 Hz), respectively. The values are indicative of
o-stereochemistry at all the anomeric centers [42]. Moreover,

the chemical shifts were found to be in fair agreement with the

reported C-1 chemical shifts at 6 99.5, 95.6, and 100.3, exhib-
ited in DO corresponding to the anomeric centers of com-
pound 23 [22].

Conclusion

Summarizing our work we have achieved stepwise and sequen-
tial one-pot syntheses of the tetrasaccharide repeating unit of
SPn 6A via an orthogonal glycosylation strategy using com-
monly used trichloroacetimidate and thioglycoside donors. The
challenging 1,2-cis linkages could be prepared with a yield and
a selectivity which were high enough to allow the one-pot syn-
thesis.

Supporting Information

Supporting Information File 1

Experimental details for the preparation of compounds 1,
3a,4,5, 6a, 6b, 7, 12a, 19, 20, 21, and 23 and the
corresponding characterization data.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-14-95-S1.pdf]

Supporting Information File 2

'H and '3C NMR of compounds 1, 3a, 4, 5, 6a, 6b, 7, 12a,
19, 20, 21, and 23 and 2D NMR (COSY, HSQC and
HMBC) of compound 23.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-14-95-S2.pdf]
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