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Abstract: Pressure ulcers (PUs) or sores are a secondary complication of diabetic neuropathy and
traumatic spinal cord injury (SCI). PUs tend to occur in soft tissues located around bony prominences
and may heal slowly or not at all. A common mechanism underlying impaired healing of PUs may
be dysfunction of the local neurovascular system including deficiency of essential neuropeptides,
such as substance P (SP). Previous studies indicate that disturbance in cutaneous sensory innervation
leads to a defect in all stages of wound healing, as is the case after SCI. It is hypothesized that nerve
fibers enhance wound healing by promoting initial inflammation via the releasing of neuropeptides
such as SP. Therefore, we investigated whether exogenous SP improves skin wound healing using
in vitro and in vivo models. For in vitro studies, the effects of SP on keratinocyte proliferation and
wound closure after a scratch injury were studied under normoxia (pO2 ~21%) or hypoxia (pO2 ~1%)
and in presence of normal serum (10% v/v) or low serum (1% v/v) concentrations. Hypoxia and
low serum both significantly slowed cell proliferation and wound closure. Under combined low
serum and hypoxia, used to mimic the nutrient- and oxygen-poor environment of chronic wounds,
SP (10−7 M) significantly enhanced cell proliferation and wound closure rate. For in vivo studies,
two full-thickness excisional wounds were created with a 5 mm biopsy punch on the dorsum on
either side of the midline of 15-week-old C57BL/6J male and female mice. Immediately, wounds
were treated topically with one dose of 0.5 µg SP or PBS vehicle. The data suggest a beneficial role in
wound closure and reepithelization, and thus enhanced wound healing, in male and female mice.
Taken together, exogenously applied neuropeptide SP enhanced wound healing via cell proliferation
and migration in vitro and in vivo. Thus, exogenous SP may be a useful strategy to explore further
for treating PUs in SCI and diabetic patients.

Keywords: neuropeptides; substance P; normoxia; hypoxia; starvation; proliferation and migration;
wound healing; in vivo and in vitro; histology

1. Introduction

Normal wounds self-heal following a typical wound repair process, which involves
four temporally and spatially overlapping phases: coagulation, inflammation, proliferation,
and remodeling [1]. A prolonged inflammatory phase leads to chronic wounds such as
pressure wounds or sores or ulcers (PUs), which do not heal in a predictable amount
of time [2]. PUs are a common but serious complication of spinal cord injury (SCI) and
neuropathy due to diabetes and age, and tend to occur in soft tissues (i.e., skin and
underlying fat and muscle) located around bony prominences where body weight is
concentrated while the patient is sitting or lying [3,4]. A multifactorial process contributes
to PU formation, including extrinsic causes such as local pressure, temperature, and
moisture, as well as intrinsic factors such as the patient’s mechanical properties of bone,
muscle, and soft tissue surrounding the wound [5]. PUs often heal slowly and have a high
risk of life-threatening complications such as infection and pneumonia [6]. Three million
people are suffering from PUs in the US alone, and 60,000 die from PU complications
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annually. The annual cost of PU care is $11 billion [7]. Therefore, PUs are a prevalent and
costly health problem nationwide. Current treatments include local wound care, negative
pressure wound therapy, electrical stimulation, and surgery, which are either too invasive
or have limited therapeutic outcomes [7]. Thus, better treatment for PUs is an urgent need.

Sensory neurons and their derived neuropeptides have been reported to play an
important role in the wound healing process, especially for the inflammation and prolif-
eration phases. Disturbance in the cutaneous nerve fibers delayed all phases of wound
healing [8–10]. Reduction of neuropeptides, such as substance P (SP), may induce a chronic
wound [11]. SP is an important neuropeptide for wound healing and immune activities [12].
The positive therapeutic effect of SP on wound healing in diabetic models has been widely
studied [11,13,14]. It was reported that SP levels decreased in diabetic wounds and that
topical application of exogenous SP enhanced wound healing significantly in a diabetic rat
wound model [11]. Several studies show that SP can also improve the healing of other types
of wounds, including burns and photodamaged corneas [15–19]. Faden’s study reported
that local SP content at the SCI site decreased in a rat model, and Lenoard et al. showed
that SP decreased in the dorsal horn of human SCI tissue [20,21]. Based on these clues, it is
plausible that exogenous SP could also improve the healing of PUs in SCI. Aging is also
related to slow or defective wound healing due to less inflammatory signal via cutaneous
nerve fibers, as confirmed by rodent and human studies [3,22].

Therefore, we hypothesized that exogenous SP application can improve the healing
process of chronic wounds. We therefore examined the effect of SP in vitro under hypoxic
and limited serum conditions, and in vivo in 15-week-old mice, to simulate the chronic
wound condition of slow healing. We used an in vitro scratch assay to optimize the concen-
tration of SP and found that 10−7 M SP could significantly improve wound closure under
hypoxia and low serum concentration. A single application of exogenous SP accelerated
the closure of full-thickness wounds in 15-week-old male and female mice.

2. Experimental Section
2.1. Cell Culture Chemicals and Reagents

HaCaT cells (P37-39, immortalized keratinocytes), Dulbecco’s modified Eagle’s medium
(DMEM containing 4.5 g/L glucose), and fetal bovine serum (FBS) were from Life Tech-
nologies (Carlsbad, CA, USA). Additionally, 1% v/v penicillin–streptomycin (PenStrep)
was from Sigma Aldrich and AlamarBlue™ cell viability reagent was from Invitrogen.
Fluorescence readings were taken using a microplate reader (DTX 880 Multimode Detector,
Beckman Coulter, CA, USA). Hypoxic cultures were carried out in a hypoxia incubator
(Galaxy® 14 S CO2 Incubators, Eppendorf, Framingham, MA, USA).

2.2. Cell Culture and Maintenance

HaCaT cells were cultured in T75 flasks in DMEM supplemented with 10% FBS and
1% PenStrep. The media were changed every 72 h until cells were sufficiently confluent
to the plate for proliferation or scratch wound assays. For these experiments, cells were
incubated under normoxia (N; 21% O2, 5% CO2, balance N2) or hypoxia (H; 1% O2, 5%
CO2, balance N2), and 100% humidity at 37 ◦C for 24–72 h.

2.3. Cell Proliferation/Metabolic Activity

The experimental timeline is summarized in Figure 1A. HaCaT cells (5000/well) were
plated in a 96-well plate in DMEM with 10% FBS overnight (12–16 h). The next day,
cells were washed with PBS twice and media were replaced with DMEM with no FBS
supplementation. Treatments were added, namely, 10−7 M SP (SP group) or no stimulus
(control group). Plates were then incubated for 24–48 h under normoxia or hypoxia
conditions. The total cellular metabolic activity in each well was measured at 24 h and
48 h. For this purpose, AlamarBlue (10% in DMEM) was added to the wells according
to the manufacturer’s instructions, and cells were incubated for 1 h in their respective
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incubator. Fluorescence (Ex/Em-571/585 nm) in each well was read in a microplate reader
and reported as relative fluorescence units (RFU).

2.4. Cell Migration (Scratch Assay)

The experimental timeline is summarized in Figure 1B. HaCaT cells were plated
(250,000/well) in a 24-well plate and allowed to reach confluence (~48 h). At that point,
and before any medium change, a scratch was made in each well using a sterile 200 µL
pipette tip to create an “injury” in the center of the HaCaT monolayer. The wells were
then washed with 1× PBS twice before introducing the experimental conditions, including
1% FBS or 10% FBS supplementation and under normoxia or hypoxia, and SP at different
concentrations (0, 10−6, 10−7, 10−8 M). The data of SP 10−7 M are discussed here in detail
and the other two concentrations (10−6 and 10−8 M) were used for standardization (Blais
et al., 2014) along with 10−7 M SP (Figure S1). The wells were photographed using an
Olympus CKX41 light microscope using a 10× objective to capture the initial wound area
(day 0). The plates were incubated in different conditions for the next 3 days. Wells were
washed with PBS (1×) and refreshed with the respective experimental conditions every
3 days until the scratch wound completely closed. Scratch area images were captured at
every time point and quantified by ImageJ analysis software (NIH). The wound area in
each well was normalized to its area at the initial time point and expressed as a percentage
of wound closure. The equation used was: Percentage wound closure = (1 − (remaining
wound area)/(initial wound area)) × 100%.

2.5. Skin Wound Healing Animal Study

Animal studies were performed in accordance with a protocol approved by the Institu-
tional Animal Care and Use Committee at Rutgers University (IACUC ID: PROTO999900017
approved on 29 August 2017). Fifteen-week-old male and female mice (C57BL/6J, inbred
in-house colony from Rutgers University, were used in this study.

2.5.1. Skin Full-Thickness Wound Model

The experimental timeline is summarized in Figure 1C. One day before surgery, mice
(male and female) were anesthetized by isoflurane (Henry Schein, Melville, NY, USA)
inhalation, and the back of each mouse was shaved using a clipper and depilated using
NairTM cream (Church & Dwight Co., Inc., Ewing, NJ, USA). On the day of surgery, the
mice were anesthetized, and betadine scrub and 70% ethanol were applied alternately
3 times to prepare the dorsum for wounding. A 5 mm biopsy punch (Integra Life Sciences,
Princeton, NJ, USA) was then used to create two circular full-thickness skin wounds on
either side of a median line on the dorsum, approximately ~1 inch apart. The mice were
randomly divided into two groups, namely the SP group and the control vehicle group, and
immediately treated once with 0.5 µg/wound SP or plain PBS, respectively. The wounds
were then covered with TegadermTM (3M, Saint Paul, MN, USA). The wound area was
photographed immediately on day 0 and then on days 3, 7, 10, and 14. The percentage of
wound closure was analyzed using ImageJ software (NIH) and calculated as described
above (for the in vitro scratch studies).
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Figure 1. Schematic representation of the whole study design. (A) In vitro cell proliferation study after 24 h and 48 h
incubation. (B) In vitro wound healing study for 6 days using a scratch assay. (C) Full-thickness skin wound healing (biopsy
punch) study in male and female mice. ON: overnight; N: normoxia; H: hypoxia, RFU: relative fluorescence units, SP:
substance P.

2.5.2. Skin Wound Histology

On post-wounding day 14, mice were sacrificed and skin samples around the wound
area (including the scar area) were excised. The collected tissues were processed for
histology as previously described. Briefly, the tissues were fixed in 10% neutral buffered
formalin (VWR; Radnor, PA, USA) for 72 h and later stored at 4 ◦C in 70% ethanol until
processing for histology. Tissues were paraffin embedded and sectioned (5 µm thickness).
The sectioned tissues were stained with hematoxylin and eosin (H&E) stain and imaged
using a light microscope (2.5×). Studied histological parameters included the thicknesses
of epidermis and dermis that were compared among treatment groups for male and
female mice.

2.6. Statistical Analysis

Statistical analysis was performed using KaleidaGraph software (version 8.4) and
graphs were prepared using GraphPad Prism (version 8.4.3). Differences among experi-
mental groups were analyzed using one-way ANOVA followed by a post hoc Fisher’s least
significant difference (LSD) test, or a Student’s t-test for comparisons limited to two groups.
The results are expressed as mean ± standard error of the mean (SEM). A p-value < 0.05 is
considered statistically significant.

3. Results
3.1. Effect of SP and Hypoxia on Cell Proliferation In Vitro

Human HaCaT cell proliferation, measured per well, was determined over 48 h in
serum-free conditions under normoxia or hypoxia, and in the presence or absence of the
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neuropeptide SP (10−7 M). Hypoxia decreased (p = 0.008 at 24 h and p = 0.0002 at 48 h)
the viable cell number as compared to normoxia. Overall, SP increased proliferation both
at 24 h (ANOVA; F = 11.78, p < 0.01) and 48 h (ANOVA; F = 45.11, p < 0.0001). Post
hoc test analysis suggested that adding SP to the culture without serum enhanced the
cell proliferation in normoxia (p = 0.04 at 24 h, p = 0.002 at 48 h) and hypoxia (p = 0.02
at 24 h, p = 0.04 at 48 h) at both time points (Figure 2). This suggests that SP at this
concentration promotes cell proliferation in a serum-free medium under both normoxic
and hypoxic conditions.
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Figure 2. Evolution of viable cell number in normoxic (N) and hypoxic (H) conditions in absence (control) or presence
of 10−7 M SP (SP). HaCaT cell number was estimated by the metabolic reduction of AlamarBlue per well. Cells were
incubated in serum-free Dulbecco’s modified Eagle’s medium (DMEM) in the specified conditions (n = 6). */** indicates a
comparison between control and SP groups under normoxia (N). $ indicates a comparison between control and SP groups
under hypoxia (H). */** p < 0.05/0.01, while $ p < 0.05.

3.2. Effect of SP on Wound Closure In Vitro

A scratch assay was carried out to test the effect of SP in combination with hypoxia (1%
vs. 21% O2) and low serum (1% FBS vs. 10% FBS) on the in vitro wound healing response
of HaCaT cells. We observed that all scratch wounds closed by day 6 except for the 1% FBS
group under hypoxia (Figure 3). There was also a significant slowing of wound closure
rate in the 1% FBS group vs. the 10% FBS group throughout the study period (p < 0.01).
Supplementation with SP (10−7 M) caused better wound closure at day 3 than untreated
cells under conditions of hypoxia and 10% FBS (p < 0.01). Similarly, under conditions of
hypoxia and low serum (1% FBS-H), the SP treatment group had better wound closure
at day 3 than the untreated group (p < 0.01) (Figure 3, lower panel). Thus, SP improved
wound closure in this assay under conditions that mimic chronic wounds, namely, hypoxia
and low serum availability.
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Figure 3. Effect of SP on wound closure in vitro under hypoxic and/or low-serum conditions.
Representative images of scratch injuries in confluent HaCaT cultures (n = 8–11) in each group over
6 days (A). Quantified wound images showing the fraction (%) of wound closure (B). ** p < 0.01. FBS:
fetal bovine serum.

3.3. Effect of SP on Wound Closure In Vivo

To study the effect of neuropeptide SP in vivo, a full-thickness skin wound was created
and treated immediately with a single topical dose of neuropeptide SP in 15-week-old
male and female mice (Figure 4A–D). There was an overall difference between male and
female control mice (data not shown) over 14 days (ANOVA; F = 8.74, p = 0.0001) in the
wound healing closure rate, although no statistically significant difference between the
two groups could be determined for any specific time point. We found that SP treatment
accelerated wound healing in both male (ANOVA; F = 7.6644, p = 0.0001) and female
(ANOVA; F = 15.331, p = 0.0001) mice as compared to their respective vehicle control
(Figure 4B,D, respectively). In male mice, the percentage of wound closure was statistically
significantly higher in the SP-treated group vs. control on day 3 (p = 0.035) (Figure 4B). In
female mice, a significant difference vs. vehicle control was seen both on day 3 (p = 0.0003)
and day 7 (p = 0.045) (Figure 4B).
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After the end of the study period on day 14, skin wound tissues were processed for
H&E staining to assess the morphology and measure the thicknesses of the epidermis
and dermis of the healed wound (Figure 5). The wound linear width (which reflects scar
diameter) was found to be smaller in the SP treatment groups compared with the controls
for each sex. Wound width was generally larger in females. In male mice, all animals had
healed, as defined by a reconstituted epidermis with no gap, and also exhibited a dermal
scar (Figure 5A,B). We assessed the thickness of these layers at three sites, namely, the center
of the wound and two wound edges. In the SP-treated males, epidermis (p < 0.05) and
dermis (p > 0.05) were thicker than in untreated control mice (Figure 5Ac). In control female
mice, one out of four mice exhibited partial reconstitution of the epidermis. Hypertrophy
of the epidermis suggests that the wound was still in the remodeling phase (Figure 5Ba).
On the other hand, all SP-treated female mice had fully regenerated epidermis and dermis
(Figure 5Bb). In SP-treated female mice, epidermis (p > 0.05) and dermis (p < 0.05) were
thicker than in untreated control mice (Figure 5Bc).
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Figure 5. Effect of SP treatment on male (M) and female (F) mouse wound histology. Representative histology of healed
wound skin (hematoxylin and eosin (H&E) stain) showing epidermis (white arrow for the reappearance of the epidermis
and red thick downward arrow for missing epidermis), dermis (red thin arrow), hair follicles (blue arrow), and fat layer
(yellow arrow) in the male and female untreated control (Aa and Ba, respectively) and SP-treated (Ab and Bb, respectively)
mice. Scale bar = 500 µm. Quantification of the epidermal and dermal thickness of healed wounds on post-wounding
day 14 in male (Ac) and female mice (Bc). White lines on each side of the image represent the wound width. Statistical
significance was determined by the Student’s t-test.

4. Discussion

In this study, we investigated the potential of exogenous SP to improve wound
healing under unfavorable conditions, such as restricted serum and hypoxia in vitro using
keratinocytes, and in full-thickness wounds using 15-week-old male and female mice
in vivo. In vitro data suggested that hypoxia and low serum concentration significantly
reduced the rate of cell proliferation and wound healing, whereas exogenous 10−7 M
SP significantly enhanced cell proliferation as well as wound healing in a scratch assay
with or without serum restriction in a hypoxia environment. This implies SP has a distinct
function in wound healing enhancement rather than a simple replacement of serum. Topical
application of SP in vivo resulted in improved healing of experimental full-thickness skin
wounds in 15-week-old male and female mice. Wound histology showed that epidermis
and dermis were significantly thicker in SP-treated male and female mice in comparison to
non-treated mice.

Keratinocytes form a barrier against pathogens which is a primary function of the
skin. Keratinocytes are primarily responsible for restoring the epidermis after any injury to
the skin. The defining parameters of successful wound closure are characterized by ker-
atinocyte proliferation, migration, and ultimately differentiation [23,24]. Impaired or slow
wound healing is a common complication of traumatic SCI injury-induced immobility [25],
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aging [26], and other pathological conditions such as diabetes and hypertension [24].
Delayed wound healing is generally characterized by a weak and often prolonged inflam-
matory phase with persistent infections, thereby negatively affecting cell proliferation
and migration [27]. Impaired blood flow causing limited nutrient and oxygen supply
(hypoxia) is thought to be a major underlying cause in the delayed repair process [28]. We
found previously that serum starvation as well as hypoxia significantly slow down the
proliferation and migration of keratinocytes in vitro [29], which is comparable to this study.
In the current in vitro study, we chose keratinocytes as they are the primary cells to close
the wound and they also express the receptor for SP. Exogenous application of SP restored
cell proliferation and cell migration.

Studies from other groups also suggested that keratinocytes themselves may release
SP when they are stimulated by SP, and induce paracrine signaling via binding to the
NK-1 receptor on keratinocytes, which ultimately induces cell proliferation as well as
migration [8,30,31]. These and other studies showed the beneficial effect of SP on wound
healing in vitro under normal conditions, and herein we show that SP is also effective in
a serum-starved and hypoxia environment. Acute transient hypoxia or low oxygen is a
primary mediator of the wound healing response via activation of hypoxia-inducible factor
(HIF)-1, leading to the secretion of several cytokines/growth factors involved in several
processes such vascularization, proliferation, and migration; however, chronic hypoxia
leads to non-healing chronic open wounds [32,33]. Strategies to alleviate local hypoxia,
such as by providing topical oxygen in a hyperbaric oxygen chamber, exist but are not
readily available and have led to inconsistent results [34]. Therefore, topical treatments
for chronic wounds must be able to work even under the suboptimal chronic wound
environment. For this reason, we performed in vitro studies that mimic chronic wounds
with low oxygen and low serum. We found that while low serum and hypoxia delayed
wound healing in keratinocyte monolayers, exogenous SP was able to reverse these effects.

In our in vivo study, we used 15-week-old male and female mice because the wound
healing process is known to slow down with increasing age, which may be due to a range
of factors, including decreased neurogenic modulation, vascularity, and SP levels [35,36].
Therefore, we monitored the healing of full-thickness biopsy wounds on 15-week-old
male and female mice. These animals are easy to maintain and cost-effective in compari-
son to SCI and diabetic animals. Most studies show that SP accelerates diabetic wound
healing through modulating inflammatory responses, notably the activation of NF-κB
and inflammatory cell density [8,11,37–39]. Another major mechanism of SP improving
wound healing is angiogenesis acceleration [40–42]. SP may accelerate angiogenesis by
modulating levels of transforming growth factor-β1 (TGF-β1), vascular endothelial growth
factor (VEGF), tumor necrosis factor-α (TNF-α), and interleukin 10 (IL-10) during wound
healing [13]. Additionally, SP has been reported to help repopulate stem cells, leading to
enhanced wound healing [14,17]. SP also improves wound healing by promoting stromal
maturation and re-epithelization [8,43,44]. These may be the mechanisms contributing
to SP’s positive therapeutic effect on skin wound healing. Our study also showed that a
single dose of exogenous SP enhanced the wound closure and improved the thickness of
the dermis and epidermis in both male and female mice. This is supported by other studies
including different parameters and different pathologies [3,8,22,36,45,46].

5. Conclusions

The data herein show that hypoxia and limited serum concentration significantly
reduced HaCaT cell proliferation and migration and thereby slowed wound closure in vitro.
Under these suboptimal conditions, exogenous neuropeptide SP significantly enhanced
these functions of wound healing. Slow wound healing is a problem associated with aging,
diabetes, and SCI. In full-thickness model wounds in 15-week-old male and female mice, a
single exogenous application of SP enhanced wound closure in both genders and increased
the thicknesses of epidermal and dermal layers of skin. Taken together, SP enhanced wound
healing in vitro and in vivo in systems mimicking suboptimal chronic wound conditions.
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