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Abstract

There has been increasing interest in the integrated information theory (IIT) of consciousness, which hypothesizes that con-
sciousness is integrated information within neuronal dynamics. However, the current formulation of IIT poses both practical
and theoretical problems when empirically testing the theory by computing integrated information from neuronal signals. For
example, measuring integrated information requires observing all the elements in a considered system at the same time, but
this is practically very difficult. Here, we propose that some aspects of these problems are resolved by considering the topolog-
ical dimensionality of shared attractor dynamics as an indicator of integrated information in continuous attractor dynamics.
In this formulation, the effects of unobserved nodes on the attractor dynamics can be reconstructed using a technique called
delay embedding, which allows us to identify the dimensionality of an embedded attractor from partial observations. We pro-
pose that the topological dimensionality represents a critical property of integrated information, as it is invariant to general
coordinate transformations. We illustrate this new framework with simple examples and discuss how it fits with recent find-
ings based on neural recordings from awake and anesthetized animals. This topological approach extends the existing notions
of IIT to continuous dynamical systems and offers a much-needed framework for testing the theory with experimental data
by substantially relaxing the conditions required for evaluating integrated information in real neural systems.
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Introduction

There is a growing interest in the integrated information theory
(IIT) of consciousness. The central hypothesis of IIT is that con-
sciousness is integrated information within collective neuronal
dynamics (Tononi 2004, 2008; Balduzzi and Tononi 2008; Oizumi
et al. 2014; Tononi et al. 2016). An attractive aspect of IIT is that it
could relate basic properties of subjective experience to the
physical mechanisms of biological (and even artificial) dynami-
cal systems via an information theoretic framework (Tononi
et al. 2016). In particular, IIT is based on partitioning the system,
and these partitions reveal irreducible sets of elements in the
system; those elements or parts of the system corresponding to

the conscious experience. Among the theories of consciousness,
IIT is relatively new and still awaits empirical verification. To
examine IIT with empirical neural recordings, however, its cur-
rent implementation needs to address several issues from both
practical and theoretical viewpoints. Although empirical studies
have reported neural phenomena for which IIT could provide
consistent explanations (Massimini et al. 2005, 2007; Lee et al.
2009; Casali et al. 2013; Sasai et al. 2016), it is still challenging to
test the necessity of IIT directly with empirical datasets under
its current formulation. For example, measuring integrated
information in a rigorous sense requires observing all the ele-
ments at the same time, which imposes a serious bottleneck to
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testing the theory with neural recordings in living organisms. In
addition, deriving exact values of the integrated information is
often computationally intractable for systems with a large num-
ber of elements.

Here, we discuss an alternative implementation of IIT that
could resolve some aspects of those problems. A key idea in our
formulation is to index the integrated information in terms of the
topological dimensionality of shared attractor dynamics. In this
formulation, the effects of unobserved nodes on the attractor
dynamics can be reconstructed using a technique called delay
embedding (Takens 1981; Sauer et al. 1991). This technique allows
us to reconstruct the properties of global multivariate states from
time series observed in the subset of variables. As we will discuss
later in this article, such reconstructability from partial observa-
tion also relates to a conceptual issue: that the effects of spatial
partitioning may depend on how time sequences are chunked to
define the momentary “states”. Remarkably, considering topolog-
ical properties allows us to make use of, rather than suffer from,
such a puzzling property of reconstructability in continuous
dynamical systems. We illustrate how this formulation works
with simple examples and discuss its relevance to the original
formulation of IIT and our recent empirical findings from awake
and anesthetized animals (Tajima et al. 2015).

The aim of the present Opinion Paper is to illustrate the
basic idea behind our formulation. For this purpose, we focus
on intuitive rather than rigorous mathematical descriptions.
Additionally, the interpretation of the “integrated information”
depends on the version of IIT. For example, the latest frame-
work of IIT (so-called “IIT 3.0”; Oizumi et al. 2014) requires more
steps to assess the integrated information than in previous ver-
sion (“IIT 2.0”; e.g., Balduzzi and Tononi 2008). In this article, to
keep the arguments simple and accessible to the general read-
ership, we basically focus on the definition of integrated infor-
mation introduced in IIT 2.0 (which is more similar to the
“small-phi” (/) rather than “big-phi” (U) in IIT 3.0).

Topological Dimensionality as an Indicator of
Integrated Information in Continuous
Dynamical Systems

To illustrate our formulation, let us consider simple dynamical
systems consisting of only two nodes, with values of x1 and x2

(Fig. 1). Suppose that each of x1 and x2 has self-feedback, which
is generally nonlinear. For the sake of simplicity, here we
assume that each node’s value is defined in one-dimensional
continuous space (e.g., x1; x2 2 R), but the subsequent argu-
ments are valid for general cases in which node values are
defined in higher-dimensional spaces.

First, let us begin by considering a mutually interacting sys-
tem (Fig. 1a–i). Since similar arguments apply to the cases with
ordinary differential equations, assume the system dynamics to
be described with deterministic difference equations as:

xt
1 ¼ f xt�1

1 ; xt�1
2

� �
; (1)

xt
2 ¼ g xt�1

1 ; xt�1
2

� �
; (2)

where f and g are arbitrary continuous functions and t denotes
an arbitrary time point. In a general nonlinear system, the state
xt

1; x
t
2

� �
could be distributed across at most a 2-dimensional

manifold A (the light gray square in the figure) in the phase
space of x1; x2ð Þ. For convenience, we call A an “attractor” when
the state stays within A for a sufficiently long time. After a

sufficient duration away from the initial state, attractor A pro-
vides some joint probability density distribution p x1; x2ð Þ.

Suppose that we could identify both nodes’ values xt
1; x

t
2

� �
at

time t by observing them simultaneously (i.e., we could make
the joint probability density distribution p xt

1; x
t
2

� �
be a delta

function through the observation). If we consider the past state
of those nodes, xt�1

1 ; xt�1
2

� �
, based on this observation, the uncer-

tainty in the inference is described by the conditional distribu-
tion p xt�1

1 ; xt�1
2 jxt

1; x
t
2

� �
. In a general nonlinear deterministic

system, p xt�1
1 ; xt�1

2 jxt
1; x

t
2

� �
is supported by a finite number of

points in attractor A, except for some special cases (like either
function f or g being flat). To rephrase, identifying the system’s
current state xt

1; x
t
2

� �
constrains its past state xt�1

1 ; xt�1
2

� �
on a set

of zero-dimensional manifolds (i.e., points). Figure 1a–ii depicts
a simple case in which the previous state is perfectly con-
strained to a single point.

What if we did not use the joint observation, p xt
1; x

t
2

� �
but

rather inferred the past values of individual nodes separately
based on marginal observations, p xt

1

� �
and p xt

2

� �
? Because we

assumed no uncertainty in observing each node’s current value,
p xt

1; x
t
2

� �
, p xt

1

� �
and p xt

2

� �
are all delta functions, and we thus

have p xt
1; x

t
2

� �
¼ p xt

1

� �
p xt

2

� �
. What about the inferred past state,

p xt�1
1 ; xt�1

2 jxt
1; x

t
2

� �
? In fact, such an equality does not hold

between the past state distributions, p xt�1
1 ; xt�1

2 jxt
1; x

t
2

� �
and

p xt�1
1 jxt

1

� �
p xt�1

2 jxt
2

� �
. Indeed, the previous state generally cannot

be identified by the marginal observation when the nodes inter-
act with each other. Namely, p xt�1

i jxt
i

� �
is not described by a

delta function of xt�1
i (i ¼ 1;2), even if p xt

i

� �
is a delta function,

and thus generally

p xt�1
1 ; xt�1

2 jxt
1; x

t
2

� �
6¼ p xt�1

1 jxt
1

� �
p xt�1

2 jxt
2

� �
: (3)

This fact could be understood intuitively as follows: for
example, the set of states that fall in the support of the marginal
distribution p xt

1

� �
is represented by the vertical red line in

Fig. 1a–iv, reflecting the uncertainty about the current value of
xt

2. This set is generally mapped to an oblique line (or a curve) in
the previous time point (the red curve in Fig. 1a–iii) due to the
interaction between x1 and x2. Because we do not know where
the actual past state was on this curve, we have 1-dimensional
uncertainty for the past state of x1 when we consider the projec-
tion of this curve onto the x1-axis (as indicated by the non-zero
length of the red bar on the horizontal axis in Fig. 1a–ii, iii).
The same argument applies to x2, and thus we have another
1-dimensional uncertainty, now for x2, as shown by the blue
bar on the vertical axis. Together, we have a 2-dimensional
uncertainty for the past state inferred from the separate
(“partitioned”) observations p xt�1

1 jxt
1

� �
p xt�1

2 jxt
2

� �
in total (as

depicted by the dark gray rectangle in Fig. 1a-iii). Now,
recalling that the inference based on a joint observation,
p xt�1

1 ; xt�1
2 jxt

1; x
t
2

� �
, had 0-dimensional uncertainty, we can

understand that p xt�1
1 jxt

1

� �
p xt�1

2 jxt
2

� �
generally differs from

p xt�1
1 ; xt�1

2 jxt
1; x

t
2

� �
.

This inequality between the joint and partitioned condi-
tional probability distributions is key for characterizing the inte-
grated information value (/) in IIT (Tononi 2004; Balduzzi and
Tononi 2008; Oizumi et al. 2014, 2016a,b), and note that basically
the same argument applies to the relationships between the
current and future states. How to quantify the difference
between the joint and partitioned distributions is arbitrary.
Roughly speaking, IIT 2.0 used the Kullback–Leibler divergence
(Balduzzi and Tononi 2008; Oizumi et al. 2016a) and IIT 3.0 the
earth mover’s distance (EMD) (Oizumi et al. 2014) to quantify the
differences between the joint and partitioned probability
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distributions. Other information theoretic indices have been
proposed for practical applications (Barrett and Seth 2011;
Oizumi et al. 2016a; Tegmark 2016).

Here, we propose an alternative way of quantifying the dif-
ference in distributions based on the topological dimensionality
of uncertainty rather than precise information-theoretic quanti-
ties. The idea is simple: for example, in the case we described
above, p xt�1

1 ; xt�1
2 jxt

1; x
t
2

� �
is supported by a 0-dimensional mani-

fold (i.e., point(s)), whereas p xt�1
1 jxt

1

� �
p xt�1

2 jxt
2

� �
was supported by

a 2-dimensional manifold (i.e., a rectangle). Then, the difference
in terms of topological dimensionality between those two distri-
butions is 2 (as 2 – 0¼ 2). Formally, if we denote the dimension-
ality of the support of a distribution p by Dim½p�, the integrated
information in terms of the topological dimensionality (/Dim)
can be written as follows:

/Dim � Dim p xt�1
1 jxt

1

� �
p xt�1

2 jxt
2

� �� �
� Dim p xt�1

1 ; xt�1
2 jxt

1; x
t
2

� �� �
: (4)

In this example,

/Dim ¼ 2: (5)

Throughout this article, we only consider cases in which
attractors have integer dimensions, and thus /Dim takes integer
values, although we can extend the framework to real values by
considering non-integer dimensionality such as fractal dimen-
sions (Mandelbrot 1977; Grassberger and Procaccia 1983). Note
that, in contrast to the typical frameworks for IIT, the current
dimensionality-based metric works in continuous dynamical
systems.

p(x1
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Figure 1. Schematic illustrations for the dimensionality-based index of integrated information. (a) A system with mutually interacting nodes. (b) A
system comprising two disconnected nodes. (c) A redundant system, in which a node is a copy of the other node. Insets: (i) The schematic of the sys-
tems; (ii) the inferred past states at time t� 1; (iii) the inferred past state at time t� 1, based on a partitioned observation; (iv) the current states.
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Dimensionality Suggests No Integration in a
Mechanistically Disconnected System or a
Redundant System

For a sanity check, let us now consider how the dimensionality-
based quantification of the integrated information works in
a physically/mechanistically separated system, as shown in
Fig. 1b–i. This system has self-feedback on each node but no
interaction between the nodes:

xt
1 ¼ f xt�1

1

� �
; (6)

xt
2 ¼ g xt�1

2

� �
: (7)

Although this system would appear to form an apparently 2-
dimensional attractor when we plot the trajectory of xt

1; x
t
2

� �
, it is

actually the product of two smaller dynamical systems. How does
this fact affect our measure of integrated information /Dim? As
before, while observing the entire system xt

1; x
t
2

� �
, the possible

past state xt�1
1 ; xt�1

2

� �
is therefore constrained to a finite number of

points (again, except for some special cases). Then, let us say
Dim p xt�1

1 ; xt�1
2 jxt

1; x
t
2

� �� �
¼ 0. What about the partitioned observa-

tion, p xt�1
1 jxt

1

� �
p xt�1

2 jxt
2

� �
? Because there is no interaction between

the nodes, both x1 and x2 are autonomous in their dynamics. This
means that observing x1 alone provides sufficient information to
constrain the past state to be on 0-dimensional manifold(s), and
so does observing x2 alone. Namely, the uncertainty of the parti-
tioned observation p xt�1

1 jxt
1

� �
p xt�1

2 jxt
2

� �
is still 0-dimensional, and

thus the partition does not increase the dimensionality of the
uncertainty. This fact is intuitively represented by the red vertical
and blue horizontal lines in Fig. 1b–ii (notice the difference
from the case in which there are interactions between the nodes;
Fig. 1a–ii). Therefore, in this system, Dim p xt�1

1 jxt
1

� �
p xt�1

2 jxt
2

� �� �
¼ 0,

from which we have

/Dim ¼ 0: (8)

This is the desired result. The above example demonstrates
that the dimensionality-based index of integrated information,
/Dim, correctly captures the “absence of integration” in a discon-
nected system, just like in the original formulation of IIT.

Another case in which the integrated information is zero is
when the system has apparently two (or more) nodes, but the
information is redundant. For an extreme example, if node x1 is
a mere copy of the other node x2, partitioning the observations
of the two nodes does not increase the uncertainty (Fig. 1c),
thus /Dim ¼ 0 even though the two nodes shows strong appa-
rent coupling in terms of correlation. In general, /Dim is zero
when x1 is solely a function of x2 (i.e., x1 ¼ f ðx2Þ) because observ-
ing x1 and x2 at the same time does not decrease the uncertainty
compared to observing x2 alone. This confirms that not only the
coupling among nodes but also the differentiation of the sys-
tem’s states is necessary to have higher /Dim values.

Dimensionality Suggests Integration in an
Attractor Reconstructed from Partial
Observation

We have seen that the dimensionality-based index of integrated
information seems to yield reasonable results for simple exam-
ples. However, what are the advantages of considering the
dimensionality instead of the precise information quantity?
To see this, we now turn to considering a case in which we do

not observe the entire system but can access only part of it—
say, x1 alone (Fig. 1). As in the first example, let us assume
mutual interaction between the two nodes. In contrast to the
previous cases, however, now we assume that we never have
access to x2.

Usually, there is no means of measuring the integrated
information between x1 and x2 when we cannot observe x2’s
state. However, because x1 and x2 are interacting, x2’s informa-
tion could be implicitly coded by the temporal evolution of x1. If
so, we might be able to reconstruct some aspects of the dynam-
ics of the entire system from the observation of its subset. This
is indeed the case in nonlinear, deterministic dynamical sys-
tems in general—via a mathematical technique known as
“delay embedding” (Takens 1981; Sauer et al. 1991). Delay-
embedding theorems claim that, in short, the temporal pattern
of a single variable has a smooth one-to-one mapping to the
state of the entire system that the observed variable belongs to.
In general, if we have an autonomous dynamical system com-
prising N variables x1; . . . ; xNð Þ that interact with each other, the
trajectory of xt

1; . . . ; xt
N

� �
forms an attractor in this N-dimen-

sional space. Let us say we can only observe the time series of
xt

1. According to the delay-embedding theorems, we can recon-
struct the attractor’s topology (a shape defined based on con-
nectivity) by plotting the trajectory of xt

1; x
t�s
1 ; . . . ; xt� d�1ð Þs

1

� �

instead of xt
1; . . . ; xt

N

� �
when d is sufficiently large, where s is the

unit delay and d is the embedding dimension. It is known that if
d is larger than the original attracter’s dimensionality, the
attractor can be reconstructed almost anywhere on itself with
an ignorable volume of overlaps (Sauer et al. 1991). It might be
somewhat surprising that the property of global dynamics can
be reconstructed (in a topological sense) solely from local obser-
vation, although it is proven to be the case in almost any type of
nonlinear, deterministic dynamical system.

Dimensionality is one of the topological properties recon-
structed through the delay embedding. Thus, it is tempting to
expect that the present dimensionality-based index of inte-
grated information could be inferred (at least to some extent)
from a partial observation. This is indeed possible, with some
tweaking, as shown below. Now, let us see how this idea works
in our simple example (Fig. 1).

Because we can only observe x1, we consider a 2-dimen-
sional delay coordinates xt

1; x
t�s
1

� �
instead of the original

2-dimensional state space xt
1; x

t
2

� �
. The unit delay s could be

chosen arbitrarily (or could be optimized in practical data analy-
ses; see “Discussion” section). Let A1 denote the reconstructed
attractor. These 2-dimensinal coordinates are generally not suf-
ficient for embedding when the original attractor A’s dimen-
sionality is 2, as the reconstructed attractor A1 overlaps with
itself. Nonetheless, because the original attractor is 2-dimen-
sional, identifying a 2-dimensional state xt

1; x
t�s
1

� �
in these delay

coordinates can constrain the original state xt
1; x

t
2

� �
within a

finite set of points (0-dimensional manifold), as long as the
number of self-overlaps is finite (which seems to be the case
except in pathological situations). This means that we can also
infer the past state in the delay coordinates, xt�1

1 ; xt�s�1
1

� �
, with

0-dimensional uncertainty.
As the reader may notice, this situation is quite similar to

the case in which we could observe the entire system (Fig. 1a).
Then, what happens if we consider the partitioned observation,
just as before? Now, we cannot consider the spatial partition
(because we observe only a single node!). Instead, let us intro-
duce a new partition: a “temporal partition”. That is, we con-
sider the partition between temporally distant observations xt

1

and xt�s
1 . Applying the same arguments to this temporal
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partition reveals that observing either xt
1 or xt�s

1 alone leads to
1-dimensional uncertainty about the past states xt�1

1 and xt�s�1
1 ,

respectively, and thus the net dimensionality of the uncertainty
is 2 (Fig. 1). Therefore, the dimensionality-based index of the
integrated information in the delay coordinates is

/Dim
1 ¼ 2: (9)

The suffix “1” indicates that it is based on the delay coordi-
nate reconstruction with node x1. Again, the result matches
that of the case in which we could observe the entire system
(Fig. 1a). This fact is interesting because it means that we could
reach the same result based on two distinct data: one from the
complete observation of the entire system and the other from
the partial observation of its subset. In particular, both results
match the dimensionality of the attractor in the mutually inter-
acting system we considered here.

One may suspect that this is only a coincidence, but in fact,
the dimensionality of the reconstructed attractor generally
gives an upper bound of /Dim in the original space. Indeed,
when we have a general dA-dimensional attractor formed by N
mutually interacting nodes x1; . . . ; xNð Þ, the attractor can be
reconstructed within dA-dimensional delay coordinates of node
xi, xt

i ; . . . ; xt�ðdA�1Þs
i

� �
, allowing dA-dimensional self-overlaps. As

long as the number of self-overlaps is finite, the same argument
applies, resulting in 0-dimensiosnal uncertainty in inferring the
past state with the joint observation. A temporal (bi-)partition,

xt
i ; . . . ; xt�kþ1

i

� �
; xt�k

i ; . . . ; xt� dA�1ð Þs
i

� �
8k 2 Nð Þ

n
, leads to dA � k

and k-dimensional uncertainties for the individual partitioned
observations, and thus the net uncertainty turns out to be dA-
dimensional. Together, /Dim

i ¼ dA. On the other hand, /Dim in
the original system is upper-bounded by the attractor dimen-
sions, dA. When dA < N, /Dim could be smaller than dA.
Interestingly, an appropriate projection of the original N-dimen-
sional space to a dA-dimensional space (e.g., by clustering the
nodes and averaging the node values within each cluster) can
recover its upper bound, /Dim ¼ dA—which is analogous to the
fact that integrated information can be maximized by appropri-
ate coarse-graining (Hoel et al. 2013, 2016; Hoel 2016).

Dimensionality Suggests the “Exclusion” of
Upstream Nodes in an Asymmetric Interaction

The previous examples show that /Dim in a mutually interacting
system reflects the dimensionality of the attractor (whether the
observation is over the whole or partial system), whereas /Dim

¼ 0 in a disconnected system. Note that the apparent dimen-
sionalities of the attractors were both 2 in those examples
(Fig. 1a and b). In this regard, we can interpret /Dim as an index
of “interaction-relevant dimensionality” rather than the appa-
rent dimensionality within the original phase space.

The dimensionality-based characterization becomes even
less trivial when we consider a system having a hierarchy in
terms of the directionality of interactions. To see this, let us
consider an example in which the nodes do not mutually inter-
act but rather have a directed interaction (Fig. 3a–c). Now, the
node x2 affects, but is not affected by, node x1, which can be for-
mally written as

xt
1 ¼ f xt�1

1 ; xt�1
2

� �
; (10)

xt
2 ¼ g xt�1

2

� �
: (11)

We can define x1 as the “downstream” and x2 as the
“upstream” in the system. Note that the upstream node x2

forms an autonomous dynamical system by itself, whereas the
downstream node x1 belongs to the dynamical system formed
by both x1 and x2. As we did earlier, we assume that the system
has an apparently 2-dimensional attractor in the phase space of
x1; x2ð Þ:

Let us first consider the simultaneous observation of the
entire system (Fig. 3a). Applying the same analysis as earlier to
this system, we find that identifying the system’s current state
xt

1; x
t
2

� �
constrains its past state xt�1

1 ; xt�1
2

� �
on a set of zero-

dimensional manifolds. On the other hand, in the partitioned
observations, identifying the upstream node xt

2 constrains its
own past state xt�1

2 with 0-dimensinal uncertainty, as it is
dynamically autonomous, whereas identifying the downstream
node xt

1 leaves a 1-dimensional uncertainty about its past state
xt�1

1 , reflecting the unknown effect from upstream. Together,
the net uncertainty in the partitioned observation is 1-dimen-
sional, and thus the index of integrated information in the sys-
tem is

/Dim ¼ 1: (12)

Notably, this value of /Dim under the directed interaction is
smaller than under the mutual interaction (Fig. 1a).

What if the observation is partial? There are two possibilities
of partial observations: observing only the downstream node x1

(Fig. 3b) or observing only the upstream node x2 (Fig. 3c). First,
when we observe the downstream alone, we can plot the state
trajectory in the delay coordinates xt

1; x
t�s
1

� �
to reconstruct the

topology of the attractor being realized in the entire system
x1; x2ð Þ, which has 2 dimensions in this case (Fig. 3b). This sit-

uation is the same as that in Fig. 1c, and considering the same
temporal partition reveals that the index of integrated informa-
tion based on this reconstructed attractor is

/Dim
1 ¼ 2: (13)

On the other hand, when we plot a similar trajectory in the
2-dimensional delay coordinates with the upstream xt

2; x
t�s
2

� �
,

we can reconstruct only a 1-dimensional manifold (Fig. 3c).
Because the reconstructed attractor is 1-dimensional, the tem-
poral partition in this 2-dimensional delay coordinates does not
increase the uncertainty, resulting in

/Dim
2 ¼ 0: (14)

To summarize the results presented above, in this system
with a directed interaction,

/Dim
1 > /Dim > /Dim

2 : (15)

These inequalities illustrate that our dimensionality-based
index of integrated information is maximized when it is quanti-
fied within the downstream node dynamics, not within the
entire system. In particular, the higher integration in a subset of
the system rather than the whole demonstrates the axiomatic
property of “exclusion” assumed in IIT: namely, the physical
substrate of conscious experience has unique borders (e.g., the
contents of conscious experience do not include the distinction
of one’s blood pressure being high or low) (Tononi 2008; Oizumi
et al. 2014; Tononi et al. 2016). In the present framework, it is nat-
ural to interpret the system’s subset i that maximizes /Dim

i as

Integrated information and dimensionality | 5
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Figure 2. A partial observation of the system with mutually interacting nodes (the same system as in panel (a)). The inset conventions follow
those of Fig. 1.
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Figure 3. Heterogeneity of dimensionality-based index of integrated information under a directed interaction. (a) The index derived based on
the observation of the entire system. (b) The index derived based on the observation of the downstream node. (c) The index derived based on
the observation of the upstream node. The inset conventions follow those of Fig. 1.
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an analogue of “complex” in IIT, which determines the borders
of subjective experiences. Note that the complex in IIT 3.0
(Oizumi et al. 2014) is defined with “big-phi” (/), with which sys-
tems connected by a purely unidirectional relationship result in
“zero” integrated information. Although it is beyond this
article’s scope to discuss the detailed relations in terms of IIT
3.0, considering big-phi or its proxy would be important for
determining the spatial boundaries of physical substrate of con-
sciousness in empirical data (see also “Discussion” section).

Discussion

In this article, we have introduced a dimensionality-based index
of integrated information. An advantage of this approach is that
it is applicable to continuous nonlinear deterministic systems
in general. This complements the existing practical measures
that in many cases make use of empirical probability distribu-
tions while assuming binary states or linear dynamics with a
stochastic component, often for the sake of computational
tractability. Our dimensionality-based measure is much simpler
than even the original IIT’s formulation (Tononi 2004) (Tononi
2004), thus it provides an appealing proxy for integrated infor-
mation in empirical studies.

Relevance to the Cross-Embedding Complexity

We have seen that our dimensionality-based index of inte-
grated information reflects the dimensions of attractors in
dynamical systems in a way sensitive to how the nodes in the
systems interact with each other. For example, the value of
/Dim can generally differentiate between a mutual interaction
(Fig. 1a), a directed interaction (Fig. 3a), and no interaction
(Fig. 1b). An alternative way to quantify the interaction-
relevant dimensionality (complexity) of the attractor dynamics
is “cross-embedding” (Tajima et al. 2015). Cross-embedding
measures the embedding dimensions necessary for inferring a
node’s value from the temporal pattern of another node’s
value by reconstructing attractors in the delay coordinates of
individual nodes. Interestingly, analogous to the present
dimensionality-based measure of integrated information in

interacting and disconnected systems (Fig. 4a and b), the
cross-embedding indixes higher dimensionality for the down-
stream nodes than the upstream nodes. Such a hierarchy of
dimensionality is observed in artificial systems having asym-
metric interactions as well as in the actual brain dynamics in
conscious animals, but much weaker in unconscious animals
(Fig. 4c and d) (Tajima et al. 2015). Indeed, both the cross-
embedding and the dimensionality-based integrated informa-
tion share the basic idea that high-dimensional attractor
dynamics are relevant for consciousness. Moreover, similar to
the cross-embedding (Tajima et al. 2015), the present index of
integrated information demonstrates that information about
other nodes can be reconstructed from local dynamics through
the delay-embedding technique. This non-localized nature of
integrated information can be interpreted as a form of infor-
mation “broadcasting” among nodes, which the Global
Neuronal Workspace Theory associates with consciousness
(Dehaene and Changeux 2011). Future studies will investigate
more detailed relationships between the cross-embedding and
the dimensionality-based integrated information with theoret-
ical analysis and neural recordings.

Spatial Partitions and Coordinate
Transformations

To assess the dimensionality of dynamics with partial observa-
tions, we introduced the idea of “temporal partitioning” of the
attractor reconstructed within delay coordinates, based on the
delay-embedding theorems. This is a key contribution of this
study that could bridge IIT’s framework to empirical data, in
which we often have access to only partial observations of the
studied system. At the same time, the delay embedding and
temporal partitioning may invite a new question about the
meaning of the spatial partitions considered in the original for-
mulations of IIT: because we can extract information about
unobserved variables through delay embedding by regarding
the temporal pattern in a subset of the system as a “state”, the
conclusion derived from the spatial partition could be affected
severely by the definition of state within each node. As it has
previously been proven that the spatiotemporal coarse-graining

Downstream Upstream All

Simple

Complex

Conscious brain

Cross-embedding in Macaque data

Dimensionality-based index of
integrated information x1 x2 

2 

x1 x2 

0 

x1 x2 

1 

x1 x2 

0

Simple

Unconscious brain

(b)

(c)

(a)

(d)

Directed interaction No interaction

Figure 4. Comparison of the dimensionality-based index of integrated information and the interaction-relevant attractor dimensionality
(“complexity”) revealed by cross-embedding in conscious and unconscious animals. (a) The system with a directed interaction between nodes
(the same as in Fig. 2a–c). (b) The system with no interaction (the same as in Fig. 1b). (c, d) Summary figures modified from Ref. (Tajima et al.

2015). (c) The distribution of the attractor complexity revealed by a cross-embedding analysis in awake (conscious) macaque monkeys. (d) The
distribution of the attractor complexity revealed by a cross-embedding analysis in anesthetized (unconscious) macaque monkeys.
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affects both effective information and integrated information
(Hoel et al. 2013, 2016;), this indicates an avenue of future
research may be in how the information leveraging by the delay
embedding changes the net integrated information. If so, the
present dimensionality-based indexing of integrated informa-
tion allows us to make use of, rather than suffer from, the
effects of embedding in continuous dynamical systems.
Moreover, the dimensionality-based assessment could be
robust to changes in the definition of states because the topo-
logical dimensionality is in many cases invariant to coordinate
transformations, even a partial observation of a system. Note
that this invariance is gained in exchange of a more detailed
characterization of the information-theoretic quantity; the
topological dimensionality is a much coarser measure than the
usual measures of integrated information due to the topological
invariance.

Finding the Complex with Empirical Data

When relating IIT’s predictions to recorded neural activities,
identifying the “complex” (the set of neurons corresponding to
the conscious experience) in the brain will be a crucial step
(Koch et al. 2016; Tononi et al. 2016). A possible description of the
“complex” in our framework would be: “the set of elements
sharing a maximally irreducible and high-dimensional
attractor”. Practically, to specify such a set of elements in
empirical data would require solving at least two technical
issues: inferring whether the observed variables actually share
an attractor, and identifying an appropriate spatiotemporal
scale to define such dynamics.

Although we have focused on illustrating our present frame-
work with simple examples, in practice it will be a critical prob-
lem whether the observed variables belong to the same
complex or not, particularly when we analyze real data. One of
the possible approaches to identifying complexes is to look at
the similarity of measured dimensionality: if two nodes belong
to the same complex, they should share the same (or nearly the
same, in practice) phi-dim. Another way is to directly assess the
causal couplings between the considered nodes by testing
the existence of embedding (a one-to-one mapping) between
the attractors reconstructed from those nodes (“cross-
embedding” used in Tajima et al. 2015). This is because, if the
two nodes belong to the same complex, they should share the
same attractor dynamics, thus, there should generally be a one-
to-one relationship between the reconstructed attractors.

In practical data analyses, we also often need to search for
an appropriate length of unit delay, particularly when dealing
with limited amount of data. In such cases, the efficiency of
attractor reconstruction will depend on the dominant timescale
(e.g., how slowly the autocorrelation decays) in the observed
signals: generally, the longer unit delay works better for the
slower dynamics data, because using a longer unit delay effec-
tively means putting more emphasis on slower components
than faster ones in the analysis with delay-coordinate recon-
structions. In this sense, the choice of a particular unit delay
corresponds roughly to analyzing the interactions or integrated
information at a particular temporal scale (Hoel et al. 2013,
2016). Practically, we could choose the unit delay a priori based
on the autocorrelation or mutual information (Fraser and
Swinney 1986), or could choose it by directly looking at the
resulting /Dim values (e.g., by maximizing /Dim). Although the
present article focuses mostly on the idealized situation with a
large data size limit, how to select an appropriate

spatiotemporal scale will be an important issue when we apply
the theory to analyzing real systems.

Limitations

Although we believe that the present topology-based approach
will provide both practical and theoretical insights to IIT, there
is still room for elaboration. A major limitation of the current
framework is that it assumes we can estimate the exact dimen-
sionality of attractors, which can be challenging in real data.
To implement the computation described here requires an
efficient algorithm for estimating the underlying the attractor
dimensionality, however, we expect that it should be possible
by extending a dimensionality estimation algorithm similar to
the one used in the cross-embedding method (Tajima et al.
2015).

Another caveat of the current embedding-based argument is
that mathematically rigorous claims can be applied only to con-
tinuous, deterministic systems. However, when we consider a
grid (or similar form of) representation of states that span some
volume in a continuous state space, we can naturally define
non-zero dimensions. For example, by considering a version of
box-counting dimensions with box sizes larger than the grid
intervals. In respect to the determinism, empirical studies with
artificial and real data have shown that delay embedding works
even in dynamical systems with some stochasticity (Sugihara
and May 1990; Sugihara et al. 2012; Tajima et al. 2015; Ye and
Sugihara 2016), although future theoretical studies are required
for more thorough verifications of the method. Note also that in
realistic situations including stochastic dynamics, some infor-
mation could be lost in the communications among nodes
due to noise or other constraints on signal transmissions
(e.g., narrow-band temporal frequency responses) that make
the downstream information degenerate. In such cases, the
attractor dimensions are not always maximized at the system’s
downstream as in the examples we discussed—which agrees
with our intuition that the maximally integrated information
should be observed in the central nervous system, rather than
its peripheral downstream (e.g., muscles).

Lastly, although the present study focused on the attractor
dimensions and relating them to the integrated information as
a measure of the level of consciousness, it remains to be investi-
gated how we can characterize the quality (or contents) of con-
sciousness within this topological framework. A potentially
useful approach to characterizing the quality of consciousness
is to look at more detailed structures of the attractors, such as
the number of holes in each dimension or the higher-order rela-
tionships among multiple reconstructed attractors.

Conclusion

Currently, the value of IIT is still a subject of debate, attracting
both enthusiasm and criticism (Cerullo 2015). An important
next step will be to test the fundamental concepts of IIT empiri-
cally. For practical and theoretical reasons, however, it has been
difficult to perform a rigorous computation of integrated infor-
mation from real neural data. Our present study offers one prac-
tical measure of the integrated information from real neural
data in which the observations are partial and the variables are
continuous. Specifically, we have shown that in continuous
attractor dynamics, the topological dimensionality of a recon-
structed attractor can be used to measure the degree of inte-
grated information. We believe that this captures a critical
aspect of integrated information as it is invariant to general
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coordinate transformations. This topological dimensionality-
based characterization is not only consistent with the existing
framework of IIT, but it also significantly relaxes the conditions
required for evaluating the integrated information. As such, the
topological dimensionality enables us to assess the integrated
information even from partial observations and provides a
much-needed framework for testing the theory with experi-
mental data.
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